3,814 research outputs found

    Mitigating Free Riding in Peer-To-Peer Networks: Game Theory Approach

    Get PDF
    The performance of peer-to-peer systems is based on the quality and quantity of resource contributions from participating peers. In most systems, users are assumed to be cooperative, but in reality, sharing in peer-to-peer systems is faced with the problem of free riding. In this paper, we model the interactions between peers as a modified gift giving game and proposed an utility exchange incentive mechanism to inhibit free riding. This technique allows peers to either upload or download resources based on their best strategy and interest. Through extensive simulations, we show that this mechanism can increase fairness and encourage resource contribution by peers to the network. This will ensure a resourceful and stable peer- to-peer systems.http://dx.doi.org/10.4314/njt.v34i2.2

    On the Applicability of Resources Optimization Model for Mitigating Free Riding in P2P System

    Get PDF
    The survival of peer-to-peer systems depends on the contribution of resources by all the participating peers. Selfish behavior of some peers that do not contribute resources inhibits the expected level of service delivery. Free riding has been found to seriously affect the performance and negates the sharing principle of peer-to-peer networks. In this paper, first, we investigate through simulations the effectiveness of a proposed linear model for mitigating free riding in a P2P system. Second, we extended the initial linear model by incorporating additional constraints on download and upload of each peer. This helps in reducing the effects of free riding behavior on the system. Lastly, we evaluate the impacts of some parameters on the models.Keywords: Peer-to-Peer, Resources, Free rider, Optimization, Constraints, Algorith

    A credit-based approach to scalable video transmission over a peer-to-peer social network

    Get PDF
    PhDThe objective of the research work presented in this thesis is to study scalable video transmission over peer-to-peer networks. In particular, we analyse how a credit-based approach and exploitation of social networking features can play a significant role in the design of such systems. Peer-to-peer systems are nowadays a valid alternative to the traditional client-server architecture for the distribution of multimedia content, as they transfer the workload from the service provider to the final user, with a subsequent reduction of management costs for the former. On the other hand, scalable video coding helps in dealing with network heterogeneity, since the content can be tailored to the characteristics or resources of the peers. First of all, we present a study that evaluates subjective video quality perceived by the final user under different transmission scenarios. We also propose a video chunk selection algorithm that maximises received video quality under different network conditions. Furthermore, challenges in building reliable peer-to-peer systems for multimedia streaming include optimisation of resource allocation and design mechanisms based on rewards and punishments that provide incentives for users to share their own resources. Our solution relies on a credit-based architecture, where peers do not interact with users that have proven to be malicious in the past. Finally, if peers are allowed to build a social network of trusted users, they can share the local information they have about the network and have a more complete understanding of the type of users they are interacting with. Therefore, in addition to a local credit, a social credit or social reputation is introduced. This thesis concludes with an overview of future developments of this research work

    `Q-Feed' - An Effective Solution for the Free-riding Problem in Unstructured P2P Networks

    Full text link
    This paper presents a solution for reducing the ill effects of free-riders in decentralised unstructured P2P networks. An autonomous replication scheme is proposed to improve the availability and enhance system performance. Q-learning is widely employed in different situations to improve the accuracy in decision making by each peer. Based on the performance of neighbours of a peer, every neighbour is awarded different levels of ranks. At the same time a low-performing node is allowed to improve its rank in different ways. Simulation results show that Q-learning based free riding control mechanism effectively limits the services received by free-riders and also encourages the low-performing neighbours to improve their position. The popular files are autonomously replicated to nodes possessing required parameters. Due to this improvement of quantity of popular files, free riders are given opportunity to lift their position for active participation in the network for sharing files. Q-feed effectively manages queries from free riders and reduces network traffic significantlyComment: 14 pages, 10 figure

    EGOIST: Overlay Routing Using Selfish Neighbor Selection

    Full text link
    A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a prototype overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using measurements on PlanetLab and trace-based simulations, we demonstrate that Egoist's neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we discuss some of the potential benefits Egoist may offer to applications.National Science Foundation (CISE/CSR 0720604, ENG/EFRI 0735974, CISE/CNS 0524477, CNS/NeTS 0520166, CNS/ITR 0205294; CISE/EIA RI 0202067; CAREER 04446522); European Commission (RIDS-011923

    Collusion in Peer-to-Peer Systems

    Get PDF
    Peer-to-peer systems have reached a widespread use, ranging from academic and industrial applications to home entertainment. The key advantage of this paradigm lies in its scalability and flexibility, consequences of the participants sharing their resources for the common welfare. Security in such systems is a desirable goal. For example, when mission-critical operations or bank transactions are involved, their effectiveness strongly depends on the perception that users have about the system dependability and trustworthiness. A major threat to the security of these systems is the phenomenon of collusion. Peers can be selfish colluders, when they try to fool the system to gain unfair advantages over other peers, or malicious, when their purpose is to subvert the system or disturb other users. The problem, however, has received so far only a marginal attention by the research community. While several solutions exist to counter attacks in peer-to-peer systems, very few of them are meant to directly counter colluders and their attacks. Reputation, micro-payments, and concepts of game theory are currently used as the main means to obtain fairness in the usage of the resources. Our goal is to provide an overview of the topic by examining the key issues involved. We measure the relevance of the problem in the current literature and the effectiveness of existing philosophies against it, to suggest fruitful directions in the further development of the field
    • …
    corecore