23,536 research outputs found

    Conformal mapping methods for interfacial dynamics

    Full text link
    The article provides a pedagogical review aimed at graduate students in materials science, physics, and applied mathematics, focusing on recent developments in the subject. Following a brief summary of concepts from complex analysis, the article begins with an overview of continuous conformal-map dynamics. This includes problems of interfacial motion driven by harmonic fields (such as viscous fingering and void electromigration), bi-harmonic fields (such as viscous sintering and elastic pore evolution), and non-harmonic, conformally invariant fields (such as growth by advection-diffusion and electro-deposition). The second part of the article is devoted to iterated conformal maps for analogous problems in stochastic interfacial dynamics (such as diffusion-limited aggregation, dielectric breakdown, brittle fracture, and advection-diffusion-limited aggregation). The third part notes that all of these models can be extended to curved surfaces by an auxilliary conformal mapping from the complex plane, such as stereographic projection to a sphere. The article concludes with an outlook for further research.Comment: 37 pages, 12 (mostly color) figure

    Hyperboloidal layers for hyperbolic equations on unbounded domains

    Full text link
    We show how to solve hyperbolic equations numerically on unbounded domains by compactification, thereby avoiding the introduction of an artificial outer boundary. The essential ingredient is a suitable transformation of the time coordinate in combination with spatial compactification. We construct a new layer method based on this idea, called the hyperboloidal layer. The method is demonstrated on numerical tests including the one dimensional Maxwell equations using finite differences and the three dimensional wave equation with and without nonlinear source terms using spectral techniques.Comment: 23 pages, 23 figure

    Multiscale Problems in Solidification Processes

    Get PDF
    Our objective is to describe solidification phenomena in alloy systems. In the classical approach, balance equations in the phases are coupled to conditions on the phase boundaries which are modelled as moving hypersurfaces. The Gibbs-Thomson condition ensures that the evolution is consistent with thermodynamics. We present a derivation of that condition by defining the motion via a localized gradient flow of the entropy. Another general framework for modelling solidification of alloys with multiple phases and components is based on the phase field approach. The phase boundary motion is then given by a system of Allen-Cahn type equations for order parameters. In the sharp interface limit, i.e., if the smallest length scale ± related to the thickness of the diffuse phase boundaries converges to zero, a model with moving boundaries is recovered. In the case of two phases it can even be shown that the approximation of the sharp interface model by the phase field model is of second order in ±. Nowadays it is not possible to simulate the microstructure evolution in a whole workpiece. We present a two-scale model derived by homogenization methods including a mathematical justification by an estimate of the model error

    Subdivision Shell Elements with Anisotropic Growth

    Full text link
    A thin shell finite element approach based on Loop's subdivision surfaces is proposed, capable of dealing with large deformations and anisotropic growth. To this end, the Kirchhoff-Love theory of thin shells is derived and extended to allow for arbitrary in-plane growth. The simplicity and computational efficiency of the subdivision thin shell elements is outstanding, which is demonstrated on a few standard loading benchmarks. With this powerful tool at hand, we demonstrate the broad range of possible applications by numerical solution of several growth scenarios, ranging from the uniform growth of a sphere, to boundary instabilities induced by large anisotropic growth. Finally, it is shown that the problem of a slowly and uniformly growing sheet confined in a fixed hollow sphere is equivalent to the inverse process where a sheet of fixed size is slowly crumpled in a shrinking hollow sphere in the frictionless, quasi-static, elastic limit.Comment: 20 pages, 12 figures, 1 tabl

    Invisibility and Inverse Problems

    Full text link
    This survey of recent developments in cloaking and transformation optics is an expanded version of the lecture by Gunther Uhlmann at the 2008 Annual Meeting of the American Mathematical Society.Comment: 68 pages, 12 figures. To appear in the Bulletin of the AM

    Fast, Scalable, and Interactive Software for Landau-de Gennes Numerical Modeling of Nematic Topological Defects

    Get PDF
    Numerical modeling of nematic liquid crystals using the tensorial Landau-de Gennes (LdG) theory provides detailed insights into the structure and energetics of the enormous variety of possible topological defect configurations that may arise when the liquid crystal is in contact with colloidal inclusions or structured boundaries. However, these methods can be computationally expensive, making it challenging to predict (meta)stable configurations involving several colloidal particles, and they are often restricted to system sizes well below the experimental scale. Here we present an open-source software package that exploits the embarrassingly parallel structure of the lattice discretization of the LdG approach. Our implementation, combining CUDA/C++ and OpenMPI, allows users to accelerate simulations using both CPU and GPU resources in either single- or multiple-core configurations. We make use of an efficient minimization algorithm, the Fast Inertial Relaxation Engine (FIRE) method, that is well-suited to large-scale parallelization, requiring little additional memory or computational cost while offering performance competitive with other commonly used methods. In multi-core operation we are able to scale simulations up to supra-micron length scales of experimental relevance, and in single-core operation the simulation package includes a user-friendly GUI environment for rapid prototyping of interfacial features and the multifarious defect states they can promote. To demonstrate this software package, we examine in detail the competition between curvilinear disclinations and point-like hedgehog defects as size scale, material properties, and geometric features are varied. We also study the effects of an interface patterned with an array of topological point-defects.Comment: 16 pages, 6 figures, 1 youtube link. The full catastroph
    corecore