6 research outputs found

    A Deductive Approach for Fault Localization in ATL Model Transformations

    Get PDF
    International audienceIn model-driven engineering, correct model transformation is essential for reliably producing the artifacts that drive software development. While the correctness of a model transformation can be specified and checked via contracts, debugging unverified contracts imposes a heavy cognitive load on transformation developers. To improve this situation, we present an automatic fault localization approach, based on natural deduction, for the ATL model transformation language. We start by designing sound natural deduction rules for the ATL language. Then, we propose an automated proof strategy that applies the designed deduction rules on the postconditions of the model transformation to generate sub-goals: successfully proving the sub-goals implies the satisfaction of the postconditions. When a sub-goal is not verified, we present the user with sliced ATL model transformation and predicates deduced from the postcondition as debugging clues. We provide an automated tool that implements this process. We evaluate its practical applicability using mutation analysis, and identify its limitations

    Incremental Deductive Verification for Relational Model Transformations

    Get PDF
    International audienceIn contract-based development of model transformations, continuous deductive verification may help the transformation developer in early bug detection. However, because of the execution performance of current verification systems, re-verifying from scratch after a change has been made would introduce impractical delays. We address this problem by proposing an incremental verification approach for the ATL model-transformation language. Our approach is based on decomposing each OCL contract into sub-goals, and caching the sub-goal verification results. At each change we exploit the semantics of relational model transformation to determine whether a cached verification result may be impacted. Consequently, less postconditions/sub-goals need to be re-verified. When a change forces the re-verification of a postcondition, we use the cached verification results of sub-goals to construct a simplified version of the postcondition to verify. We prove the soundness of our approach and show its effectiveness by mutation analysis. Our case study presents an approximate 50% reuse of verification results for postconditions, and 70% reuse of verification results for sub-goals. The user perceives about 56% reduction of verification time for postconditions, and 51% for sub-goals

    Certifying a Rule-Based Model Transformation Engine for Proof Preservation

    Get PDF
    International audienceExecutable engines for relational model-transformation languages evolve continuously because of language extension, performance improvement and bug fixes. While new versions generally change the engine semantics, end-users expect to get backward-compatibility guarantees, so that existing transformations do not need to be adapted at every engine update.The CoqTL model-transformation language allows users to define model transformations, theorems on their behavior and machine-checked proofs of these theorems in Coq. Backward-compatibility for CoqTL involves also the preservation of these proofs. However, proof preservation is challenging, as proofs are easily broken even by small refactorings of the code they verify.In this paper we present the solution we designed for the evolution of CoqTL, and by extension, of rule-based transformation engines. We provide a deep specification of the transformation engine, including a set of theorems that must hold against the engine implementation. Then, at each milestone in the engine development, we certify the new version of the engine against this specification, by providing proofs of the impacted theorems. The certification formally guarantees end-users that all the proofs they write using the provided theorems will be preserved through engine updates. We illustrate the structure of the deep specification theorems, we produce a machine-checked certification of three versions of CoqTL against it, and we show examples of user theorems that leverage this specification and are thus preserved through the updates

    CoqTL: A Coq DSL for Rule-Based Model Transformation

    Get PDF
    International audienc

    A framework for model transformation verification

    No full text
    A model transformation verification task may involve a number of different transformations, from one or more of a wide range of different model transformation languages, each transformation may have a particular transformation style, and there are a number of different verification properties which can be verified for each language and style of transformation. Transformations may operate upon many different modelling languages. This diversity of languages and properties indicates the need for a suitably generic framework for model transformation verification, independent of particular model transformation languages, and able to provide support for systematic procedures for verification across a range of languages, and for a range of properties. In this paper we describe the elements of such a framework, and apply this framework to some example transformation verification problems. The paper is novel in covering a wide range of different verification techniques for a wide range of MT languages, within an integrated framework

    A framework for model transformation verification

    Get PDF
    A model transformation verification task may involve a number of different transformations, from one or more of a wide range of different model transformation languages, each transformation may have a particular transformation style, and there are a number of different verification properties which can be verified for each language and style of transformation. Transformations may operate upon many different modelling languages. This diversity of languages and properties indicates the need for a suitably generic framework for model transformation verification, independent of particular model transformation languages, and able to provide support for systematic procedures for verification across a range of languages, and for a range of properties. In this paper we describe the elements of such a framework, and apply this framework to some example transformation verification problems. The paper is novel in covering a wide range of different verification techniques for a wide range of MT languages, within an integrated framework
    corecore