
HAL Id: hal-02333564
https://hal.archives-ouvertes.fr/hal-02333564

Submitted on 25 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CoqTL: A Coq DSL for Rule-Based Model
Transformation

Zheng Cheng, Massimo Tisi, Rémi Douence

To cite this version:
Zheng Cheng, Massimo Tisi, Rémi Douence. CoqTL: A Coq DSL for Rule-Based Model Transforma-
tion. Software and Systems Modeling, Springer Verlag, In press, pp.1-15. �10.1007/s10270-019-00765-
6�. �hal-02333564�

https://hal.archives-ouvertes.fr/hal-02333564
https://hal.archives-ouvertes.fr

Software & Systems Modeling manuscript No.
(will be inserted by the editor)

CoqTL: A Coq DSL for Rule-Based Model
Transformation

Zheng Cheng · Massimo Tisi · Rémi
Douence

Received: date / Accepted: date

Abstract In model-driven engineering, model transformation (MT) verification is
essential for reliably producing software artifacts. While recent advancements have
enabled automatic Hoare-style verification for non-trivial MTs, there are certain
verification tasks (e.g. induction) that are intrinsically difficult to automate. Existing
tools that aim at simplifying the interactive verification of MTs typically translate
the MT specification (e.g. in ATL) and properties to prove (e.g. in OCL) into an
interactive theorem prover. However, since the MT specification and proof phases
happen in separate languages, the proof developer needs a detailed knowledge
of the translation logic. Naturally, any error in the MT translation could cause
unsound verification, i.e. the MT executed in the original environment may have
different semantics from the verified MT.

We propose an alternative solution by designing and implementing an internal
domain specific language, namely CoqTL, for the specification of declarative MTs
directly in the Coq interactive theorem prover. Expressions in CoqTL are written
in Gallina (the specification language of Coq), increasing the possibilities of reusing
native Coq libraries in the transformation definition and proof. CoqTL specifications
can be directly executed by our transformation engine encoded in Coq, or a
certified implementation of the transformation can be generated by the native
Coq extraction mechanism. We ensure that CoqTL has the same expressive power
of Gallina (i.e. if a MT can be computed in Gallina, then it can also be represented
in CoqTL). In this article, we introduce CoqTL, evaluate its practical applicability
on a use case, and identify its current limitations.

Zheng Cheng
ICAM, LS2N (UMR CNRS 6004), Nantes, France
E-mail: zheng.cheng@icam.fr

Massimo Tisi
IMT Atlantique, LS2N (UMR CNRS 6004), Nantes, France
E-mail: massimo.tisi@imt-atlantique.fr

Rémi Douence
IMT Atlantique, LS2N (UMR CNRS 6004), Nantes, France
E-mail: remi.douence@imt-atlantique.fr

2 Zheng Cheng et al.

Keywords Model-Driven Engineering · Model Transformation · Domain-specific
Language · Interactive Theorem Proving · Coq

1 Introduction

Model-driven engineering (MDE), i.e. software engineering centered on software
models and MTs, is widely recognized as an effective way to manage the complexity
of software development. With the increasing complexity of MTs (e.g., in automotive
industry [31], medical data processing [38], aviation [4]), it is urgent to develop
techniques and tools that prevent incorrect MTs from generating faulty models.
The effects of such faulty models could be unpredictably propagated into subsequent
MDE steps, e.g. code generation.

Deductive verification is a promising approach for quality assurance in MT:
correctness is specified by MT developers using contracts (i.e. pre/postconditions),
then the semantics of the MT language together with contracts and metamodels
are encoded into a deductive theorem prover. Thanks especially to recent advancements
in SMT solvers, automatic deductive verification is giving good results in several
scenarios [7,6,10,27]. However, because of the general undecidability, interactive
deductive verification is inevitable for complex tasks (for instance, automatic
deductive theorem provers usually lack support for induction, or finding witnesses
for existential quantifiers).

Coq is an interactive theorem prover. The user can use Coq to write mathematical
definitions, executable algorithms and theorems together with an environment for
semi-interactive development of proofs (in the sense that routine proofs can be
automatically performed while difficult proofs require human guidance). It has
been used to prove non-trivial mathematical theorems, or as an environment for
developing formally certified software and hardware (e.g. [25,16]). Moreover, a
certified executable program (e.g., in OCaml, Haskell) can be generated from a
Coq function by the native Coq extraction mechanism. While not strictly needed
for understanding this paper, we refer the reader to [29] for an introduction to the
Coq system.

Previous work aiming at simplifying the interactive verification of MTs, has
already proposed translations from MT specifications (e.g. in MT languages like
ATL) and properties to prove (e.g. in OCL) into Coq. However, the practical
applicability of this translational approach is hampered by the fact that the two
phases of MT specification and correctness proof require developments in languages
(e.g. ATL+OCL and Coq, respectively) at two different levels of abstraction. The
proof developer needs a deep knowledge of the translation logic to be able to write
meaningful proofs. Any change in the MT code propagates through the translator,
and it is difficult to predict the proof steps that will be invalidated. Naturally, any
error in the MT translation could cause unsound verification, i.e. the MT executed
in the original environment may have different semantics from the verified MT.
Certifying that the semantics of the MT language has being correctly axiomatized
in the back-end theorem prover is a hard task, and very few attempts exist [10,1].

Coq includes Gallina, a functional programming language with pattern matching
and a rich type system, well suited as a platform for embedding domain-specific
programming languages (DSLs) (e.g. [12]). In this work, we draw on this aspect
of Coq and propose a DSL, namely CoqTL, to turn Coq into a tool for developing

CoqTL: A Coq DSL for Rule-Based Model Transformation 3

certified MTs. We argue that using an internal DSL for the MT specification phase
simplifies the iterative process of MT development and proof in MDE. Moreover,
expressions in CoqTL are directly written in Gallina, increasing the possibilities
of reuse of sophisticated native Coq libraries during the transformation definition
and proof.

Our main contributions are:

– We design and implement CoqTL, to our knowledge the first DSL for rule-based
MT in Coq (Section 3.2). The language is both functional and declarative in
style, its syntax and semantics is inspired from ATL [21] (hence it should
be familiar also to users of other rule-based MT languages, like ETL [22],
or RubyTL [14]). Thus, CoqTL aims to lighten the cognitive load of MT
developers while building certified MTs in Coq.

– We design and implement a transformation engine in Coq that interprets
programs written in CoqTL to transform models (Section 3.4). The engine
includes an on-the-fly parser that transforms the domain-specific syntax into
a Coq data structure to interpret. The parser is transparently invoked by the
Coq Notation mechanism, so that any existing Coq development environment
is able to support the domain-specific CoqTL syntax without requiring ad-hoc
modifications.

– CoqTL has the same expressive power of Gallina: if a MT can be computed in
Gallina, then it can also be represented in CoqTL. We provide a constructive
proof for this result in Section 3.5. Gallina is not Turing-complete, since it does
not allow for nonterminating computation. However the class of computable
functions in Gallina is very large (any function that can be shown to be total in
ZFC with countably many inaccessibles can be defined in Gallina [39]), hence
CoqTL can represent all transformations of any practical interest.

We show the practical applicability of CoqTL in proving MTs (Section 4.1), by
using it to specify a sample transformation, prove non-trivial contracts over it and
automatically extract a certified implementation. We also show the effectiveness of
CoqTL in specifying MTs, by comparing the effort to implement sample transformations
using CoqTL, ATL and pure Gallina (Section 4.2). We make CoqTL publicly
available as open source1. The repository contains also the example and proofs
described in this paper.

This paper extends an article contributed to the ICMT 2018 conference [34]
that introduced the fundamental design of CoqTL. Here we extend CoqTL by
adding iterative rules (Section 3.3 and 3.4). This extension has primary importance,
since it increases the expressive power of CoqTL to its theoretical maximum: we
can now prove that the extended version of CoqTL reaches the same expressive
power as Gallina in representing computable MTs (Section 3.5). We also add new
case studies to exemplify the effectiveness of CoqTL in specifying MTs w.r.t. to
ATL and standard Gallina (Section 4.2).

Paper organization. We motivate our work by a sample transformation in
Section 2. Section 3 illustrates our design of CoqTL in detail. In Section 4 we
discuss the applicability of CoqTL. Section 5 compares our work with related
research, and Section 6 draws conclusions and lines for future work.

1 CoqTL (online). https://github.com/atlanmod/CoqTL

https://github.com/atlanmod/CoqTL

4 Zheng Cheng et al.

Fig. 1 A simplified structural metamodel for class diagrams (left), and relational schemas
(right)

2 Class to Relational in CoqTL

We consider a simplified MT from class diagrams to relational schemas (arguably,
the Hello World transformation in the MT community). The example is intentionally
minimal, so that it can be completely illustrated within this paper. However we
believe it to be easily generalizable by the reader to more complex scenarios. The
structure of the involved metamodels is shown in Fig. 1.

The left part of Fig. 1 shows the simplified structural metamodel of class
diagrams. Each class diagram contains a list of named classes with identities. Each
class contains a list of named and typed attributes with unique identities. In this
simplified model we do not consider attribute multiplicity (i.e., all attributes are
single-valued). Primitive data types are not explicitly modeled, thus we consider
every attribute without an associated type to have primitive data type. A derived
feature identifies which attributes are derived from other values. The simplified
structural metamodel of relational schemas is shown on the right part of Fig. 1.
Tables contain Columns, Columns can refer to other Tables in case of foreign keys.

In Listing 1 we use the CoqTL language to specify how to transform class
diagrams to relational schemas (we refer to Grammar 1 for the concrete syntax of
CoqTL). A transformation is a Coq Definition. First, we declare that a transformation
named Class2Relational is to transform a model conforming to the Class metamodel
to a model conforming to the Relational metamodel, and we name the input model
as m (lines 2- 3).

Then, the transformation is defined via two rules in a mapping style: one maps
Classes to Tables, another one maps non-derived Attributes to Columns. Each rule
in CoqTL has a from section that specifies the input pattern to be matched in the
source model. A boolean expression in Gallina can be added as guard, and a rule is
applicable only if the guard evaluates to true for a certain assignment of the input
pattern elements. Each rule has a to section which specifies elements and links to
be created in the target model (output pattern) when a rule is fired. The to section
is formed by a list of labeled outputs, each one including an element and a list of
links to create. The element section includes standard Gallina code to instantiate
the new element specifying the value of its attributes (line 11). The links section
contains standard Gallina code to instantiate links related to the previous element
(lines 14-16).

For instance in the Class2Table rule, once a class c is matched (lines 6 to 7),
we specify that a table should be constructed by the constructor BuildTable, with

CoqTL: A Coq DSL for Rule-Based Model Transformation 5

1 Definition Class2Relational :=
2 transformation from ClassMetamodel to RelationalMetamodel
3 with m as ClassModel := [
4

5 rule Class2Table
6 from
7 c class Class
8 to [
9 “tab” :

10 t class Table :=
11 BuildTable newId (getClassName c)
12 with [
13 ref TableColumns :=
14 attrs ← getClassAttributes c m;
15 cols ← resolveAll Class2Relational m “col” Column (singletons attrs);
16 return BuildTableColumns t cols
17]
18];
19

20 rule Attribute2Column
21 from
22 a class Attribute from ClassMetamodel
23 when (negb (getAttributeDerived a))
24 to [
25 “col” :
26 c class Column :=
27 BuildColumn newId (getAttributeName a)
28 with [
29 ref ColumnReference :=
30 cl ← getAttributeType a m;
31 tb ← resolve Class2Relational m “tab” Table [cl];
32 return BuildColumnReference c tb
33]
34]
35].

Listing 1 Class2Relational MT in CoqTL

a newly generated id and the same name of c (line 11)2. While the body of target
element creation (line 11) can contain any Gallina code, it is type-checked against
the class signature of target element (line 10), i.e. in this case it must return a
Table.

In order to link the generated table t to the columns it contains, we get the
attributes of the matched class (line 14), resolve them to their corresponding
Columns, generated by any other rule (line 15), and construct new set of links
connecting the table and these columns (line 16). While this is standard Gallina
code, we use for this example an imperative style with a monadic notation (←)
that makes the sequential code clearer in this case3. The resolveAll function will
only return the correctly resolved attributes. In particular derived Attributes do
not generate Columns (i.e. they are not matched by Attribute2Column), so they
will be automatically filtered out by resolveAll. The result of this Gallina code (i.e.
the constructed links) are type-checked against the ref signature of target element
(i.e. in this case they must have type TableColumns, as specified at line 13).

2 Detailed semantics of constructors and accessors in the expression code can be found in
the metamodel interface illustrated in Section 3.1.

3 ← is our notation for option monad, its intuitive semantics is: if the right-hand-side of the
arrow is not None, then assign it to the variable in the left-hand side and evaluate the next
line, otherwise return None

6 Zheng Cheng et al.

1 Theorem Table_name_definedness :
2 ∀ (cm : ClassModel) (rm : RelationalModel),
3 (* transformation *)
4 rm = execute Class2Relational cm
5 →
6 (* precondition *)
7 (∀ (i : Class), In i (allModelElements cm)→ length (getClassName i)>0)
8 →
9 (* postcondition *)

10 (∀ (o : Table), In o (allModelElements rm)→ length (getTableName o)>0).

Listing 2 Name definedness theorem for the Class2Relational transformation

In the Attribute2Column rule we can notice the presence of a guard. When
the Attribute is not derived, a Column is constructed with the same name of the
Attribute and a fresh identifier. If the original attribute is typed by another Class,
we build a reference link to declare that the generated Column is a foreign key
of a Table in the schema. This Table is found by resolving (resolve function) the
Class type of the attribute.

To make sure Class2Relational is correctly implemented, there are many deductive
approaches have been proposed [7,6,10,27]. They aim to certify transformations
and prevent them generating faulty models, thereby giving more confidence for
the subsequent MDE steps, e.g. code generation. However, these approach are
hampered by the two phases of MT specification and correctness proof require
developments in languages (e.g. ATL+OCL and Coq, respectively) at two different
levels of abstraction. Besides, the proof developer needs a deep knowledge of the
translation logic to be able to write meaningful proofs. Any change in the MT code
propagates through the translator, and it is difficult to predict the proof steps that
will be invalidated.

CoqTL naturally enables deductive verification of MTs. Users can write theorems
with the full power of Coq that apply pre/postconditions (correctness conditions,
a.k.a. contracts [26], tracts [5]) to the MT. For example, Listing 2 defines a theorem
stating that if all elements contained in the input model have not-empty names,
by executing the Class2Relational MT, all generated elements in the output model
will also have not-empty names. Interactively proving this simple theorem in Coq
takes 56 lines of routine proof code (this short proof can be even automated by
using modern automatic theorem provers [6,10]).

To illustrate more complex theorems, we prove that our transformation preserves
unreachability. (Un)reachability is an important property for several models, e.g.
one may typically need to demonstrate that error states in generated state machines
are not reachable. In our simple Class2Relational example, one can inductively
define reachability for classes (similarly for tables), i.e. a class is reachable from
itself, and two classes are reachable if they are transitively linked by attributes.
We can define an unreachability preservation theorem as follows: if a certain class
is not reachable from a given class, their corresponding tables will not be reachable
from each other. Interactively proving this theorem in CoqTL needs more than a
thousand lines of proof code. The major difficulty comes from choosing the right
induction strategy, and to our knowledge, the automatic proof of similar theorems

CoqTL: A Coq DSL for Rule-Based Model Transformation 7

is not supported by existing work. The full proof in Coq is available on the paper
website.

3 The Design of CoqTL

CoqTL is an internal DSL for MT in Coq. In this section, we describe four main
parts of its design:

– (Section 3.1) Metamodels and models are encoded as graph structures that can
be automatically translated from/to EMF.

– (Section 3.2) Transformation specifications are encoded as a data structure
wrapped up in a user-friendly domain specific syntax.

– (Section 3.3) Within the transformation specifications, conditional repetitive
generation of target-pattern instances is described by iterative mapping rules.

– (Section 3.4) A transformation engine executes the transformation specifications
against input models.

Finally, we constructively prove that CoqTL has the same expressive power as full
Gallina in the specification of computable MTs (Section 3.5).

3.1 Metamodels and Models

Our encoding of metamodels in Coq is based on inductive data types, as analogous
encodings in related work. However, since expressions in CoqTL are written in
native Gallina, transformation developers will need to directly access the metamodel
interface in the expression code. As a consequence, a clear design requirement for
the metamodel encoding in CoqTL is to provide the simplest native representation.

As an example, Listing 3 shows the basic definitions for encoding the Relational
metamodel of Fig. 1. Each metaclass is represented by an inductive data type,
with a single constructor whose arguments are the attributes of the metaclass.
References between metaclasses are represented as separate inductive types, with
a constructor requiring the source and target elements as arguments. Optional or
multi-valued attributes and references are respectively represented using the option
and list Coq types in the appropriate constructor argument (e.g. at line 15).

Constructing any model requires providing one list of model elements and
one of links, as specified by the Model type in the CoqTL library (shown in
lines 23-26 in the listing). These lists are typed by generic ModelElement and
ModelLink types, that are meant to be the sum types for elements and links
of the specific metamodel. For defining the type of Relational model, we first
define the two sum types RelationalModelElement, sum of Table and Column, and
RelationalModelLink, sum of TableColumns and ColumnReference4. The RelationalModel
type is obtained by parameterizing Model with these sum types.

We create accessors for every attribute and reference of each metaclass. Notice
that while attribute accessors need only to inspect the element passed as argument
to retrieve the attribute value (e.g., getTableId and getTableName at lines 37-41),
reference accessors need to pass through the list of links to find the ones connected

4 For simplicity here we omit the definition of sum types, that requires familiarity with
dependent types

8 Zheng Cheng et al.

1 (*** Metamodel classes and references ***)
2

3 Inductive Table : Set :=
4 BuildTable :
5 (* id *) nat →
6 (* name *) string → Table.
7

8 Inductive Column : Set :=
9 BuildColumn :

10 (* id *) nat →
11 (* name *) string → Column.
12

13 Inductive TableColumns : Set :=
14 BuildTableColumns:
15 Table → list Columns → TableColumns.
16

17 Inductive ColumnReference : Set :=
18 BuildColumnReference:
19 Column → Table → ColumnReference.
20

21 (*** Model (from CoqTL library) ***)
22

23 Inductive Model (ModelElement: Type) (ModelLink: Type): Type :=
24 BuildModel:
25 list ModelElement →
26 list ModelLink → Model ModelElement ModelLink.
27

28 (*** Relational Model ***)
29

30 Inductive RelationalModelElement : Set := ... (* sum type for elements *)
31 Inductive RelationalModelLink : Set := ... (* sum type for links *)
32

33 Definition RelationalModel := Model RelationalModelElement RelationalModelLink.
34

35 (*** Table accessors ***)
36

37 Definition getTableId (t : Table) : nat :=
38 match t with BuildTable id _ ⇒ id end.
39

40 Definition getTableName (t : Table) : string :=
41 match t with BuildTable _ n ⇒ n end.
42

43 Definition getTableColumns (t : Table) (m : RelationalModel) :
44 option (list Columns) := ...

Listing 3 Some basic definitions for the Relational models in Coq

to the element in parameter. Thus, reference accessors need to have the whole
model as extra parameter (e.g., getTableColumns in the listing).

Listing 3 includes only a small portion of the encoding of the Relational
metamodel in Fig. 1. The full encoding takes over 300 lines of Gallina code, and
includes a reflective API. Briefly, metamodel classes are reified in a RelationalMetamodelClass
type (with values corresponding to Table and Column), that is used as argument
to reflective functions. The reflective API can be used for obtaining the metaclass of
an element, checking that an element is an instance of a metaclass, and boxing/unboxing

CoqTL: A Coq DSL for Rule-Based Model Transformation 9

a generic element from/to a specific metaclass. Similar functions are available for
links.

We provide automatic translators from EMF models/metamodels5. While our
representation allows us to encode any model/metamodel, our current translator
does not automatically handle several features that are found in EMF (or similar
modeling frameworks), that need to be manually encoded. In particular,

– No automatic support is provided for metaclass inheritance: the instance of
a superclass can be provided as parameter of a subclass constructor, but the
two instances (of superclass and subclass) need to be managed separately.
This require transformation developers to be more careful in specifying pattern
matching of rules.

– Constraints for reference multiplicity or strong containment are not directly
carried to our Coq encoding, but can be encoded manually by users via extra
pre/postconditions. As a result, unless these constraints are explicitly stated
as assumptions in proofs, transformation developers cannot assume models are
born with them by default. Moreover, compared to the solution that taking
these extra constraints as axioms, we think our current solution is more viable
since it avoids of the issue of axiom inconsistency (which causes all theorems
being trivially proven).

– Bidirectional references currently have no special treatment: both sides are
encoded as separate references, that need to be separately assigned in the
transformation code. While such design results more verbose transformation
definition, it makes its semantics more explicit and clearer.

– Finally, differently from EMF, identifiers are considered as normal attributes
and elements are considered equal when all their attributes are. This decision
makes rewriting in proofs more natural.

3.2 Transformation Specification

The main part of the CoqTL design is the transformation specification as a
data structure wrapped up in a user-friendly domain specific syntax. Grammar 1
describes the concrete syntax of CoqTL in EBNF. With respect to what we already
discussed in Section 2, the grammar shows that CoqTL can specify either: 1) simple
mapping rules that transform a single source pattern instance to a single target
pattern instance, or 2) iterative mapping rules that transform a single source
pattern instance to multiple target pattern instances (see Section 3.3 for more
detail). In addition, as indicated by the header production rule, CoqTL currently
supports only transformations from a single source model to a single target model.

The way we implement the concrete syntax of CoqTL relies on the Notation
facility of Coq. A notation is a symbolic abbreviation to denote a Gallina expression,
and is one of the main commands that modifies the way Coq parses and prints the
representation of expressions.

For example, the first notation shown in Listing 4 implements the production
rules link-def and link-decl in Grammar 1. After the declaration of this notation,
when the expression on the left-hand-side is matched, it is expanded in memory

5 EMF model/metamodel translators. https://github.com/atlanmod/CoqTL/tree/master/
fr.inria.atlanmod.coqtl.generators

https://github.com/atlanmod/CoqTL/tree/master/fr.inria.atlanmod.coqtl.generators
https://github.com/atlanmod/CoqTL/tree/master/fr.inria.atlanmod.coqtl.generators

10 Zheng Cheng et al.

〈transformation〉 ::= 〈header〉 ‘:=’ ‘[’ 〈rule-list〉 ‘]’

〈header〉 ::= ‘transformation’ ‘from’ 〈id〉 ‘to’ 〈id〉 ‘with’ 〈id〉 ‘as’ 〈id〉

〈rule-list〉 ::= 〈rule〉 ‘;’ 〈rule-list〉 | 〈rule〉

〈rule〉 ::= ‘rule’ 〈id〉 ‘from’ 〈input-pattern〉 ‘for’ 〈iteration〉 ‘to’ 〈output-pattern〉
| ‘rule’ 〈id〉 ‘from’ 〈input-pattern〉 ‘to’ 〈output-pattern〉

〈input-pattern〉 ::= 〈elem-decl-list〉 ‘when’ 〈gallina-expr〉 | 〈elem-decl-list〉

〈elem-decl-list〉 ::= 〈elem-decl〉 ‘,’ 〈elem-decl-list〉 | 〈elem-decl〉

〈elem-decl〉 ::= 〈id〉 ‘class’ 〈id〉

〈iteration〉 ::= 〈id〉 ‘in’ 〈gallina-expr〉

〈output-pattern〉 ::= ‘[’ 〈output-list〉 ‘]’

〈output-list〉 ::= 〈output-elem〉 ‘;’ 〈output-list〉 | 〈output-elem〉

〈output-elem〉 ::= 〈string〉 ‘:’ 〈elem-def 〉 ‘with’ ‘[’ 〈link-def-list〉 ‘]’

〈elem-def 〉 ::= 〈elem-decl〉 ‘:=’ 〈gallina-expr〉

〈link-def-list〉 ::= 〈link-def 〉 ‘;’ 〈link-def-list〉 | 〈link-def 〉

〈link-def 〉 ::= 〈link-decl〉 ‘:=’ 〈gallina-expr〉

〈link-decl〉 ::= ‘ref’ 〈id〉

Grammar 1 Concrete syntax of the CoqTL language in EBNF

1 (* Output Link Definition *)
2 Notation "’reference’ reftype ’from’ tinstance ’:=’ refends" :=
3 (BuildOutputPatternLinkDefinition tinstance reftype refends)
4 (right associativity, at level 60).
5

6 (* Output Pattern Element *)
7 Notation "’output’ elid ’element’ elname ’class’ eltype
8 ’from’ tinstance := eldef ’links’ refdef" :=
9 (BuildOutputPatternElement eltype elid eldef (fun elname ⇒ refdef))

10 (right associativity, at level 60).

Listing 4 A few notations for CoqTL

to the right-hand-side. A notation allows also the specification of associativity and
precedence levels, to solve parsing ambiguities. Notations can be seen as a very
limited compiler, that compiles in one pass without memory. For this reason they
strongly limit the classes of DSLs that can be implemented. In the implementation
of CoqTL every notation is simply translated into an appropriate constructor,
encapsulating the values matched by the notation (line 3). Whenever the notation
is matching the declaration of some variable that needs to be visible to the rest
of the code, we introduce a lambda expression as an argument of the constructor.
This is shown in the second notation in Listing 4, that implements the output-elem
production rule in the grammar. The created element elname needs to be visible in

CoqTL: A Coq DSL for Rule-Based Model Transformation 11

the following links section, so we store the content of this section in an anonymous
function with elname as argument (line 9).

The constructors used in our notations, like BuildOutputPatternLinkDefinition
in Listing 4 build a representation of the abstract syntax of the CoqTL program.
Hence CoqTL is a deeply embedded DSL for the rule structure part. CoqTL has
however shallow embedding of expressions, to allow the direct use of the Gallina
language for guards and output patterns (gallina-expr in the grammar).

Finally, CoqTL provides auxiliary functions meant to be used in Gallina expressions
for guards and output patterns. The most important is the function resolve (and its
corresponding multi-valued version, resolveAll) for element resolution. As illustrated
at lines 15 and 31 in Listing 1, its signature requires the following arguments:
the current transformation (Class2Relational), the source model (m), the label
associated to the required output element, useful for rules with multiple output
elements (“col”), the type of the expected result, useful for type checking (Column),
the source pattern to resolve (or the list of source patterns in case of resolveAll).
The main notable aspect in implementing the resolve function is that the matching
phase is provided as a new application of the transformation in a specific match
mode. While this choice negatively affects the global efficiency of the transformation,
it simplifies the development of proofs, because it does not require to introduce a
concept of transformation traces as side effects of the transformation execution.

3.3 Iterative Mapping Rules

Mapping rules (as found in several MT languages. e.g. ATL [21], ETL [22], QVTr [40],
and RubyTL [14]) express mappings from single source pattern instances to single
target pattern instances. However, not all computable MTs can be expressed purely
in this style. Let us consider a transformation that unfolds a given (potentially
cyclic) graph into a tree of a given height. We use the metamodel shown in Fig. 2
to represent graph (and tree) models, where each node can access its children
nodes through a uni-directional reference children. An example of application of
this transformation is shown in Fig. 3, where we specify as parameter that we want
to generate a target tree of height 2.

Node
+id: nat
+name: string

children

Fig. 2 A metamodel to represent graphs

The transformation algorithm starts at a given node, and keeps navigating the
children reference of the input graph. At every iteration it copies the visited input
nodes as children of the current output node. The recursion stops when the input
node is leaf node (i.e. it has no children) or the given maximum height has been
reached.

As we can see from Fig. 3, each node of the input graph needs to be replicated a
number of times that depends on the global graph topology. E.g.A is replicated into
A1 and A2 because it is reachable through two independent paths in the original

12 Zheng Cheng et al.

P

A B C

P1

A1 B2 C2

B1 A2 C1

Fig. 3 A sample cyclic graph (left) and its corresponding cycle-free tree (right)

graph. A recursive function that implements this logic can be easily expressed
in a functional language like Gallina. However, this transformation can not be
expressed in CoqTL when using only mapping rules that transform from a single
source pattern instance to a single target pattern instance.

To be able to define such kind of transformations, we need CoqTL to support
a form of conditional repetition, either through recursion or iteration. In a proof-
oriented language like CoqTL, we prefer iterative rule applications over recursive
ones, since they induce a simple traceability from output to input, i.e. the capability
to trace each target pattern instance back to the transformation state that triggered
its generation. In our experience, such kind of traceability is crucial for simplifying
proofs in MTs.

We include a primitive for iterative mappings in CoqTL. Specifically, rules
in CoqTL can optionally become iterative mapping rules by specifying a for
section, which is inspired by “foreach” constructs of general-purpose programming
languages. The primitive is structured as for i in coll where: coll is an expression
that computes a collection to be iterated on, and i is an iterator that indexes
the current iteration on the collection, which will be passed to the target pattern
generation (i.e. its value can be used when generating target elements/links). Each
iterative mapping rule semantically means that: for each matched source pattern
instance, a collection is computed by the expression coll, and a target pattern
instance is constructed for each element of the collection, with i representing
the current value in the collection. Thus, each target pattern instance generated
by iterative rules can be traced back to a pair [source pattern instance, iterator
value] that generated it, which constitutes a simple traceability relation for target
elements.

In Listing 5, we demonstrate iterative mapping rules on the graph unfolding
algorithm. The transformation is made of a single Node2Node rule. The source
pattern matches all nodes (lines 6 - 7). The rule contains a for section that
calculates how many times each matched node needs to be replicated (lines 8
- 9).

A user-defined Gallina function allPathsTo computes the collection of all paths
in the original graph m, with at most length l (2 in this case), that starting by the
initial node of the graph arrive to the matched node n. Each path is a sequence

CoqTL: A Coq DSL for Rule-Based Model Transformation 13

1 Definition Graph2Tree :=
2 transformation from GraphMetamodel to GraphMetamodel
3 with m as GraphModel := [
4

5 rule Node2Node
6 from
7 n class Node
8 for
9 i in (allPathsTo m 2 n)

10 to
11 [
12 “n” :
13 n’ class Node :=
14 BuildNode (getNodeId n i) (getNodeName n)
15 with
16 [
17 ref NodeEdgesEReference :=
18 pth <− i;
19 children <− getNodeEdges n m;
20 iters <− Some (map (app pth) (singletons children));
21 children ’ <− resolveAllIter Graph2Tree m “n” Node
22 (singletons children)
23 iters ;
24 return BuildNodeEdges n’ children’
25]
26];
27].

Listing 5 Graph2Tree MT in CoqTL

of nodes, where children follow fathers. For a matched source pattern, the target
pattern specified in the to section (lines 11 - 26) will be created the number of
times calculated by the for section. For example, in Fig. 3(left), among all paths
with at most length 2 that start from the root node (7 paths in total), there are 2
paths that end with node A, i.e. P → A, and P → B → A. This triggers the two
replications of A in Fig. 3(right).

The design of iterative mapping rules is driven by three design decisions. First,
for each rule, the user can form the collection to be iterated on by specifying any
computation in Gallina. Thus, CoqTL provide a significant flexibility in selecting
the iteration collection that will facilitate the generation of target elements/links.

Second, because of the freedom in forming collections in the for section, any
Gallina type can be used for iterators and different rules do not necessarily have
the same iterator type. However, to enable a unified treatment by the engine, we
require the user to communicate to the engine a sum type for all iterators used
in its transformation, together with boxing/unboxing functions that cast to/from
the sum type. The sum type is not necessary when the transformation contains
just one iterator type: for instance in Listing 5, the transformation contains only
one rule (Node2Node), whose for section type is a list of Node.

Third, we require the user to provide a proof for decidable equality of the
used iterator types. For example, the transformation shown in Listing 5 requires
the user to provide a proof for decidable equality of lists of nodes, which can be
trivially proved on top of decidable equality of lists (by the standard Coq library),
and decidable equality of nodes (whose proof is automatically generated by our
metamodel translator). Our engine uses the proof of decidable equality to compare
iterator values in a generic way.

14 Zheng Cheng et al.

The element resolution function needs to be aware of iterative rules. We define
a new resolveIter function, that augments the signature of resolve with an extra
argument for an iterator value. The additional argument alters the semantics of
the resolve function, by constraining the resolution to the element generated on a
specified iteration (indexed by the given iterator).

The multi-valued version resolveAllIter is implemented in a similar way, as
demonstrated at lines 21-23 in Listing 5. It augments the signature of resolveAll
with an extra argument for a list of iterator values, which resolves to a set of
target elements. Each of them needs to be generated on the iteration indexed by
the iterator at the corresponding position in the given list of iterators.

While users can specify rules without for section, all rules in the CoqTL engine
are actually iterative. The CoqTL notations pads rules without for section with a
default one, computing a singleton collection of the default for section type. Thus,
when a mapping rule designed in this way is executed, each one of its matched
source patterns will iterate exactly once to generate a single target pattern.

3.4 Transformation Engine

The CoqTL transformation engine, performs an interpretation of the transformation
specification against an input model to generate an output model. Algorithm 1
illustrates in pseudo-code how our transformation engine works. This algorithm has
been influenced by the execution algorithm of ATL [21] (notably in the distinction
between a match/instantiate and an apply function), but is very different, having
the objective to simplify the proof development, at the cost of sacrificing execution
efficiency.

Our transformation engine is implemented in an execute function (called for
instance in Listing 2) that takes as input a transformation specification R and an
input model I (which contains elements Ie and links Il). The output is elements
Oe and links Ol, which form an output model.

First, the transformation engine records the maximum size (m) of input patterns
among all the rules in the transformation specification. This value is used to
calculate all the potential pattern instances P that the input model can produce
to be matched against the transformation specification, i.e. all the subsets of Ie
whose size is less or equal to m are enumerated.

Algorithm 1 Algorithm of the execute function

1: m ← maxArity(R)
2: P ← allPatterns(Ie, m)
3: for each p ∈ P do
4: rs ← findRules(R, p)
5: for each r ∈ rs do
6: col ← evalForSection(r, m, p)
7: for each i ∈ col do
8: Oe ← Oe ∪ instantiate(r, I, p, i)
9: Ol ← Ol ∪ apply(r, I, p, i)

10: end for
11: end for
12: end for

CoqTL: A Coq DSL for Rule-Based Model Transformation 15

Next, on line 3, the engine iterates on each potential pattern instance p, and
seeks for a list of rules rs in R that matches it. This differentiates from languages
like ATL, that allow for a single match of any given input pattern instance. The
rationale being that when we restrict a source pattern to be matched by one rule,
the engine can only produce either a single target pattern instance (as shown in
Algorithm 1), or a set of homogeneous target pattern instances (by iterative rules).
Multiple matching coupled with iterative rules, allow CoqTL to cover the most
general case, where a source pattern is transformed to a heterogeneous set of target
pattern instances.

For each rule r that matches the pattern instance p, its for section is evaluated
to a collection of iterator elements col. When iterating on col with iterator it, the
instantiation phase of r will be invoked to construct the corresponding output
elements of p and add them to the output model. By doing so, each output
element will always be generated from a target pattern on a certain iteration, thus
establishing a clear trace relation for proofs. Finally the apply phase is invoked, i.e.
to construct the corresponding output links and add them to the output model.

Notice that Gallina expressions for output links are only evaluated during the
apply phase. The developer may include in these expressions calls to the resolve,
resolveAll, resolveIter or resolveAllIter functions, whose evaluation requires the
execution of the instantiate phase. As mentioned in Section 3.2, in our solution
resolve depends on the result of the transformation execution in match mode. The
algorithm implemented in match is similar to Algorithm 1, notably without line 9
(that would make the whole computation recur indefinitely). Multiple executions of
the transformation for element resolution slow down the execution, but simplify the
proofs, since no explicit traces are necessary as applications of instantiate and apply
with identical inputs can be trivially checked for equality. Possible optimizations
are however the subject of future work.

Note that rules are applied in their definition order in the CoqTL file, but this
does not affect the result of the match phase, that produces a set of elements.
However, the order of the rules affects the final transformation result, since the
resolve function returns the target element generated by the first rule that matches
the given source pattern.

As shown by Algorithm 1, a CoqTL transformation is essentially a side-effect-
free functional program. The source model is read-only. The language allows for a
limited read access to the target model while it is being constructed. The attributes
of all the target elements can be read but the references can not be traversed.6

Deletions and modifications target elements after their creation are never allowed.
Such kind of limited read access is typical in relational transformation languages
like ATL.

CoqTL transformations can be directly executed using the CoqTL engine (via
“eval compute” command of Coq). This may be convenient during the transformation
development. Finally, using the native Coq extraction mechanism, the transformation
can be automatically extracted into a separate executable program in one of several
languages (e.g., OCaml, Haskell) for interoperability or performance. The possible
performance improvement is variable and depends on the Coq extractor and the
target language implementation.

6 Please refer to https://bit.ly/2Y7b3cW for an example of use of resolve to read a target
element.

https://bit.ly/2Y7b3cW

16 Zheng Cheng et al.

3.5 Expressive Power of CoqTL

The inclusion of iterative mapping rules have the important side effect of giving
to CoqTL the same expressive power of its host language, Gallina, in representing
computable MTs. Since the host language constitutes an upper bound to the
expressive power of the internal one, we effectively maximize the expressive power
of CoqTL. We prove this result by formally defining this concept as in Theorem 1,
and providing a constructive proof for it.

Theorem 1 Let fg : I → O be a function in Gallina that transforms an input
model of type I to an output model of type O, there exists a CoqTL specification
R : TrCoqTL, such that executing R on any input model m will produce a target
model that is isomorphic (∼=) to (fg m). That is:
∀ (fg : I → O), ∃ (R : TrCoqTL), ∀ (m : I), (fg m) ∼= (execute R m)

Proof Let fg be a MT purely encoded as a function in Gallina. We prove the
theorem by constructing a CoqTL specification R and proving that executing R
on any input model m will produce a target model that is isomorphic to (fg m).

The construction can be abstracted as in Listing 6. For each target type Ti

in O, we define a rule ri in R. The target metamodel has a finite set of types,
so we need to define a finite set of rules. In the from section for ri we just want
to guarantee that the rule is always executed exactly once for each non-empty
input model (the way we achieve it in Listing 6 is by matching the first element
of the input model through the hdElem function, as in line 9). The for section of
ri calls fg on the input model m and selects the output elements of type Ti from
the produced output model. Thus, when the for section of each ri iterates over
the specified collection (line 11), each iterator it represents a pre-computed output
element that needs to be created for this rule. The iterator it is passed to the to
section, that has only the task of copying it to the transformation output.

By encoding the MT specification R in this way, we can prove our theorem by
a case analysis on the input model m. When m is empty, none of the rules in R
would be matched, thus (execute R m) produces an empty target model as (fg m).
When m is not empty, each rule in R would be matched exactly once, whose for
section ensures that every element that is created by (fg m) will also be copied to
the output by (execute R m). ut

Existing model-transformation languages like ATL can represent all computable
model transformations. Instead Gallina is not Turing-complete, since it does not
allow for nonterminating computation. However the class of computable functions
in Gallina is very large (any function that can be shown to be total in ZFC with
countably many inaccessibles can be defined in Gallina [39]), hence CoqTL can
represent all transformations of any practical interest.

4 Practical Usage of CoqTL

In this section we consider two aspects of CoqTL: capacity of enabling practical
verification for MTs (Section 4.1), and effectiveness of writing MTs (Section 4.2).
Then, we conclude by a discussion of our case studies (Section 4.3). The artifacts to
reproduce the experiments and the raw results are available in https://github.

com/atlanmod/CoqTL.

https://github.com/atlanmod/CoqTL
https://github.com/atlanmod/CoqTL

CoqTL: A Coq DSL for Rule-Based Model Transformation 17

1

2 Definition hdElem (m : InputModel) := (hd (allInstances m)).
3

4 Definition R := transformation from I to O with m as InputModel := [
5 ri
6 from
7 e Class (Type (hdElem m))
8 when
9 e = (hdElem m)

10 for
11 it in (allInstancesOf (fg m) Ti)
12 to
13 [“Ti” :
14 e’ class Ti :=
15 (instantiation e’ Ti it)
16 with
17 [(initialization e’ Ti it)]] ;
18

19 ...
20]

Listing 6 Constructive proof template for Theorem 1

4.1 Proving theorems with CoqTL

To show that CoqTL can enable practical verification for MTs, we formulate 4
theorem proofs over the MT presented in Section 2. Some measures are shown in
Table 1, to give the reader an idea of the complexity of the proofs: lines of code
(LoC) and number of user-developed lemmas.

As a first theorem we prove that Class2Relational preserves id positivity, i.e.
if all identifiers in the source model are positive, then they also are in the target
model. In the first and second row we show two proofs for this theorem. In the
second proof we obtain a reduction of about 60% LoC, thanks to the use of a generic
lemma for transformation surjectivity, provided in the CoqTL library. This shows
that CoqTL enables the design and proof of generic lemmas that make interactive
verification more efficient and concise.

Transformation surjectivity states that for all elements contained in the output
model there has to exist a rule and a matching input pattern that created them.
Our design choices in CoqTL enable this kind of theorems: during the proof we
can refer to syntactic elements of the transformation (e.g. rules, input/output
patterns) by their type in the abstract syntax (e.g., OutputPatternLinkDefinition
in Listing 4), and quantify over them. Moreover we use the reflective model API
mentioned in Section 3.1 to reason on metamodel-agnostic properties.

The surjectivity lemma is also used in the third and fourth proof. In the third
row we prove the name definedness property shown in Listing 2, separately for all

Table 1 Theorem proofs on Class2Relational

Theorem LoC No. Lemmas
positive ids 180 4
positive ids surj 75 1
name definedness 89 2
unreachability preservation 1161 17

18 Zheng Cheng et al.

element types in source and target models. Finally by the fourth row, it is clear
that the unreachability preservation theorem (Section 2) is difficult to prove, and
shows the need of further work in proof engineering for MTs.

One road we want to follow is providing a complete library of generic lemmas
for CoqTL such as transformation surjectivity, to shorten proofs on CoqTL. Some
recurring proof patterns could be factorized into domain-specific automatic proof
tactics, aware of the CoqTL representation and properties. Another line could
be investigating a set of domain specific guidelines to construct proofs for MT
verification. For example, to prove that if two Tables are reachable, the Classes
that generated them are reachable too; we induct on the definition of reachablity.
However other induction strategies, e.g. on the structure of the model, may be
more efficient.

4.2 Writing and executing transformations in CoqTL

To have an idea of the effectiveness of CoqTL coding w.r.t. pure Gallina, we asked
an expert functional programmer to develop the Class2Relational transformation
as a function in Gallina and to prove the name definedness theorem. To ensure
a fair comparison, the independent expert is asked to work on the same data
representation of models/metamodels as presented in this work (Section 3.1), but
is free to chose any means to encode the MT and prove the theorem.

The final MT in standard Gallina is composed by a total of 3 recursive functions
encoding the transformation logic: one function that recursively transform class
model elements to relational model elements, plus two functions that transform
the bidirectional class model links to relational model links (one function for each
direction). The equivalent CoqTL code is more concise (1194 vs. 2015 characters).

However the most interesting finding comes from the analysis of the proof.
To prove the theorem, the Coq developer independently created and proved a
version of the surjectivity lemma, specific to Class2Relation. By using CoqTL the
developer would have simply been able to reuse the generic lemma provided in the
CoqTL library. This experiment exemplifies the proof reuse potential of CoqTL.

To show the effectiveness of CoqTL in writing MTs as a DSL, we specify 4
transformations using ATL and CoqTL: 1) the Class2Relational transformation
given in Section 2; 2) an extended version of the same transformation that has
specific treatment of attributes based on whether they are multi-valued; 3) the
transformation from hierarchical state machine to flattened state machine (HSM2FSM)
given in [2,6]; 4) the Graph2Tree transformation given in Section 3.3. The first
two transformations naturally encode mapping rules, while the difference being
more complex usage of resolve function in the second case study. The third one
demonstrates how to specify transformation in presence of inheritance in the
metamodels. The last transformation illustrates the power of iterative mapping
rules. Therefore, the chosen transformations demonstrate a complete coverage of
the current CoqTL language.

We first implement these 4 transformations using ATL and CoqTL respectively,
and ensure the correspondent ones are semantically equivalent. Table 2 shows meta
information in this process. The 2nd and 3rd columns give the size of source and
target metamodels respectively, in terms of number of classifiers, attributes and
references. The last two columns show the information on specified transformation

CoqTL: A Coq DSL for Rule-Based Model Transformation 19

in ATL and CoqTL respectively, in terms of number of rules, helpers and lines of
code in the transformation.

Table 2 Specifying transformations using ATL and CoqTL

Source Metamodel Target metamodel ATL CoqTL
(No. Class/Attr/Ref) (No. Rule/Helper/Line)

Class2Relational 2/5/2 2/4/2 2/0/16 2/0/36
Class2RelationalMV 2/5/2 2/4/2 3/0/35 3/0/79

Graph2Node 1/2/1 1/2/1 2/0/15 1/4/59
HSM2FSM 6/3/8 5/3/6 7/0/42 7/4/206

The main result from Table 2 is that ATL is still more concise than CoqTL
in specifying MTs. One reason for this conciseness is that ATL delegates several
low level model management operations to its underlying engine (e.g. bidirectional
reference bindings, resolution), whereas CoqTL needs to manage these operations
explicitly in the transformation logic. Moreover, ATL provides OCL libraries that
facilitates user in specifying MTs, whereas CoqTL developers need to build them
from scratch (by introducing CoqTL helpers). Work on a library for factorizing
functions typically used during specification is ongoing.

Although CoqTL is currently not designed to be a high performance language
for large scale MTs, we conduct a small experiment to give an idea of execution
time of CoqTL compared to ATL on the chosen 4 transformations. The experiment
is performed on a 4-core computer with 16 GB RAM running on a Windows
64bit operating system. We use ATL v3.8 on the standard EMFTVM engine, and
CoqTL is implemented on top of Coq v8.8.1. Each transformations is run against
two kinds of models: The first model has roughly 50 model elements, and 50 model
links. The second model has roughly 250 model elements, and 250 model links. To
measure execution time, we use the native profiler of ATL, and Coq native “Time”
command. Time is measured in milliseconds. To make the result more accurate,
we run the transformations 10 times, and calculate the average.

Table 3 Model transformation execution time in ATL and CoqTL (milliseconds)

Model1 (50 els) Model2 (250 els)
ATL CoqTL ATL CoqTL

Class2Relational 1 83 4 566
Class2RelationalMV 3 363 16 2177

Graph2Node N/A 816 N/A 16625
HSM2FSM 720 >600000 69227 >600000

The result of performance evaluation is shown in Table 3. We can see that ATL
is generally more than one hundred times faster than CoqTL to execute the given
transformations. CoqTL enumerates all the possible input pattern instances and
then it matches them against transformation rules, which significantly impacts
execution performance. Pattern matching in HSM2FSM is more complex than
the other case studies, hence enumerating all the possible input pattern instances
causes the transformation to exceed the imposed timeout (10 minutes). The Graph2Tree

20 Zheng Cheng et al.

transformation cannot be executed on the standard ATL engine, whereas CoqTL
has no trouble to execute it on reasonably-sized models.

4.3 Discussion

In our long experience in developing model transformations, it is not trivial to
guarantee the respect of given correctness criteria in all cases, even for simple
transformation tasks. We believe that the lack of popularity of traditional approaches
to theorem proving for model transformation is mainly caused by two issues that
are solved by CoqTL:

– Theorem proving on transformations requires switching between the level of
abstraction of models (e.g., in ATL, OCL, etc..) and the level of abstraction of
the theorem prover (e.g., in Coq, Isabelle). CoqTL avoids this yo-yo problem
by enabling the use of the same model-level primitives in the transformation
language and in proofs. For instance, during the proof users can directly
manipulate modeling elements (e.g. of type RelationalModel, Table, Column
from Listing 3) and transformation syntactic elements (e.g., of type Transformation,
Rule, OutputPatternElement from Grammar 1). Traditional approaches translate
modeling concepts in functional counterparts, with completely separated type
systems.

– The compilation of OCL expressions to Gallina is particularly problematic
(given the termination requirements of Gallina). CoqTL avoids the translation
issues by using directly Gallina as an expression language. This also allows
users to exploit the full set of existing Coq libraries for mathematical reasoning
during transformation.

While the concrete potential of CoqTL will only be demonstrated by an extensive
user evaluation, the aim of this paper is showing that CoqTL is a solution to these
two problems. In the evaluation we observe the practical applicability of CoqTL
in proving MTs, by using it to specify transformations, prove non-trivial contracts
over them and automatically extract certified implementations. We show that
CoqTL allows for concise specifications of MTs, when compared with pure Gallina,
while not reaching the compactness of ATL. We recognize the importance of a
traceability relation in proving properties of MTs, that can be naturally encoded
in CoqTL as generic reusable lemmas (transformation surjectivity).

The following aspects need particular attention:

Generality. More case studies are underway to further explore the full potential
of CoqTL in building certified MTs. The roadmap for future CoqTL development
includes also organizing more transformation language properties (e.g. additivity [20])
into an interface, which aims to make CoqTL proofs more accessible.

Usability. Currently, CoqTL depends on the experience of users in debugging
MTs/proofs in Coq. This can be time-consuming, also given the state of the
software engineering tools in the Coq ecosystem. We plan to produce tools that
would make debugging more user-friendly for CoqTL, like more meaningful error
report (based on our work on fault localization [11]), and counter-example generation
(e.g. by model finding [13] and random testing [3]).

CoqTL: A Coq DSL for Rule-Based Model Transformation 21

Performance. As discussed in Section 3.4, the main goal of CoqTL design is
simplifying proofs, and this comes with a significant tradeoff on pure execution
performance. However, to make it more appealing to practitioners, the performance
of CoqTL needs to be improved. In Section 4.2, we identify some performance
problems. In current work we are investigating solutions to improve performance
without complicating proofs: our strategy is decoupling proofs from implementation
optimization by providing a stable specification of CoqTL in the form of a set of
theorems.

5 Related Work

There are many automatic theorem proving approaches for MTs (e.g. [7,6,10,27]).
However, interactive theorem proving is inevitable for more serious verification
tasks. In this section, we focus on recent advancements of MT verification based
on interactive theorem proving. To our knowledge, none of the existing works
designs and implements DSLs for MT within interactive theorem provers.

Yang et al. interactively verify that a particular MT, i.e. from AADL to
TASM language, is semantic preserving [41]. The approach is based on providing a
translational semantics of both languages as timed transition systems in Coq and
then reasoning on their equivalence. CoqTL could be used to simplify this kind of
work.

Most previous works focus on giving a translational semantics of a MT language
towards the target theorem prover. Generally they do not investigate a way to
formally ensure that the semantics of the MT language has been axiomatized
correctly in the back-end theorem prover. Calegari et al. encode ATL MTs and
OCL contracts into Coq to interactively verify that the MT is able to produce
target models that satisfy the given contracts [8]. In [32], a Hoare-style calculus is
developed by Stenzel et al. in the KIV prover to analyze transformations expressed
in (a subset of) QVT Operational. UML-RSDS is a tool-set for developing correct
MTs by construction [23]. It chooses well-accepted concepts in MDE to make their
approach more accessible by developers to specify MTs. Then, the MTs are verified
against contracts by translating both into interactive theorem provers.

Kezadri et al. defines the Coq4MDE framework to formally embed some key
aspects of MDE in Coq [17]. We have a similar abstraction of metamodels as
graphs. While our understanding is that Coq4MDE is capable of embedding MT
languages and enabling MT verification, no specific work has been proposed. We
expect an evaluation in the future to compare the complexity of MT verification
between the two works.

Poernomo and Terrell follow the classical approach in type theory to formally
specify MTs as ∀∃ types in interactive theorem provers [30]. Their approach does
not target any specific MT languages. In addition, although their work does not
propose a generic MT engine as we presented here, a corresponding executable MT
program can be extracted once the MT is proved. The approach is further extended
by Fernández and Terrell on using co-inductive types to encode bi-directional or
circular references [15]. We also plan to investigate how co-inductive types can
cooperate with our encoding and proofs (e.g. guardedness issues of co-recursive
functions might arise because the syntactic criterion applied by the Coq system is
too rigid [28]).

22 Zheng Cheng et al.

Tisi et al. use mapping rules with lazy rules in ATL to generate potentially
infinite number of elements, and combine with a lazy execution strategy, driven
by external model-consumption events to determine when to stop generation [35].
However, the main problem with recursion to support conditional repetitions
is that it is difficult to establish traceability, i.e. difficult to track each target
pattern back to a source pattern and a transformation state that generate it.
Consequently, proofs that depend on traceability would become more challenging
than our iterative design.

We particularly focus on DSL design for mapping style rule-based MT languages.
There are many other MT languages with well-founded semantics, but targeting
different theoretical background / paradigm than our concern in this work, e.g.
graph transformation languages [24,36,33], or bi-directional MT languages [18,
19]. However, we are interested in whether our approach can be systematically
migrated to these languages for their DSL design in Coq.

6 Conclusion

In conclusion, we present CoqTL, to our knowledge the first DSL in Coq for
MTs and their verification, that strengthens the safety of MDE. CoqTL is both
functional and declarative in style, providing a familiar environment for transformation
developers in Coq. Its main primitives to express MTs are iterative mapping
rules that specify conditional repetitive generation of target pattern from source
pattern. CoqTL has the same expressive power as Gallina in specifying MTs,
but with a user-friendly rule-based concrete syntax to lighten the cognitive load
of MT developers. Inside rules, the Gallina specification language can be used to
express complex transformation logic, which also increases the possibilities to reuse
native Coq libraries in the transformation definition and proof. The underlining
transformation engine of CoqTL is implemented in Coq, allowing the execution
of transformations directly within Coq. We show the practical applicability of
CoqTL in proving MTs, by using it to specify a sample transformation, prove
non-trivial contracts over it and automatically extract a certified implementation.
We also show the effectiveness of CoqTL in specifying MTs, by comparing the
implementation of a sample transformation using CoqTL and pure Gallina.

Our future work will focus on the issues we identified in different points of
our discussion. We plan to improve the performance of the CoqTL engine (e.g.
by advanced model index / query methods as in [37,9]) without hampering its
capability of enabling simple proofs. We want to develop a theorem library on
top of CoqTL to facilitate MT verification, including transformation-agnostic
lemmas such as transformation surjectivity, and domain-specific proof tactics to
automatize recurring proof steps. We aim to investigate whether there are domain-
specific guidelines to construct proofs for MT verification. Last, we want to improve
interoperability between CoqTL and common MDE tools such as EMF, for industry
readiness.

References

1. Ab.Rahim, L., Whittle, J.: A survey of approaches for verifying model transformations.
Software & Systems Modeling 14(2), 1003–1028 (2015)

CoqTL: A Coq DSL for Rule-Based Model Transformation 23

2. Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.M.: Barriers to
systematic model transformation testing. Communications of the ACM 53(6), 139–143
(2010)

3. Berghofer, S., Nipkow, T.: Random Testing in Isabelle/HOL. In: 2nd International
Conference on Software Engineering and Formal Methods. pp. 230–239. IEEE, Beijing,
China (2004)

4. Berry, G.: Synchronous design and verification of critical embedded systems using SCADE
and Esterel. In: 12th International Workshop on Formal Methods for Industrial Critical
Systems, pp. 2–2. Springer, Berlin, Germany (2008)

5. Burgueño, L., Troya, J., Wimmer, M., Vallecillo, A.: Static fault localization in model
transformations. IEEE Transactions on Software Engineering 41(5), 490–506 (2015)

6. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-shelf’
SMT solvers. In: 15th International Conference on Model Driven Engineering Languages
and Systems. pp. 198–213. Springer, Innsbruck, Austria (2012)

7. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL transformations using
transformation models and model finders. In: 14th International Conference on Formal
Engineering Methods. pp. 198–213. Springer, Kyoto, Japan (2012)

8. Calegari, D., Luna, C., Szasz, N., Tasistro, Á.: A type-theoretic framework for certified
model transformations. In: 13th Brazilian Symposium on Formal Methods. pp. 112–127.
Springer, Natal, Brazil (2011)

9. Cheng, L., Kotoulas, S.: Scale-Out Processing of Large RDF Datasets. IEEE Transactions
on Big Data 1(4), 138–150 (2015)

10. Cheng, Z., Monahan, R., Power, J.F.: A sound execution semantics for ATL via translation
validation. In: 8th International Conference on Model Transformation. pp. 133–148.
Springer, L’Aquila, Italy (2015)

11. Cheng, Z., Tisi, M.: Slicing ATL model transformations for scalable deductive verification
and fault localization. International Journal on Software Tools for Technology Transfer
20(6), 645–663 (2018)

12. Chlipala, A.: The Bedrock structured programming system: Combining generative
metaprogramming and hoare logic in an extensible program verifier. In: 18th ACM
SIGPLAN International Conference on Functional Programming. pp. 391–402. ICFP ’13,
ACM, Boston, Massachusetts, USA (2013)

13. Cuadrado, J.S., Guerra, E., de Lara, J.: Uncovering errors in ATL model transformations
using static analysis and constraint solving. In: 25th IEEE International Symposium on
Software Reliability Engineering. pp. 34–44. IEEE, Naples, Italy (2014)

14. Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: RubyTL: A practical, extensible
transformation language. In: 2nd European Conference on Model Driven Architecture:
Foundations and Applications. pp. 158–172. Springer, Bilbao, Spain (2006)

15. Fernández, M., Terrell, J.: Assembling the proofs of ordered model transformations. In:
10th International Workshop on Formal Engineering approaches to Software Components
and Architectures. pp. 63–77. EPTCS, Rome, Italy (2013)

16. Gu, R., Shao, Z., Chen, H., Wu, X., Kim, J., Sjöberg, V., Costanzo, D.: CertiKOS:
An extensible architecture for building certified concurrent os kernels. In: 12th USENIX
Conference on Operating Systems Design and Implementation. pp. 653–669. USENIX
Association, Berkeley, CA, USA (2016)

17. Hamiaz, M.K., Pantel, M., Combemale, B., Thirioux, X.: A formal framework to prove
the correctness of model driven engineering composition operators. In: International
Conference on Formal Engineering Methods (2014)

18. He, X., Hu, Z.: Putback-based bidirectional model transformations. In: 2018 ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. pp. 434–444. ACM, FL, USA (2018)

19. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K.: GRoundTram: An integrated
framework for developing well-behaved bidirectional model transformations. In: 26th
IEEE/ACM International Conference on Automated Software Engineering. pp. 480–483.
ACM, KS, USA (2011)

20. Hidaka, S., Jouault, F., Tisi, M.: On additivity in transformation languages. In: 20th
International Conference on Model Driven Engineering Languages and Systems. pp. 23–
33. ACM/IEEE, Austin, TX, USA (2017)

21. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science
of Computer Programming 72(1-2), 31–39 (2008)

24 Zheng Cheng et al.

22. Kolovos, D.S., Paige, R.F., Polack, F.A.: The Epsilon transformation language. In:
1st International Conference on Model Transformations, pp. 46–60. Springer, Zürich,
Switzerland (2008)

23. Lano, K., Clark, T., Kolahdouz-Rahimi, S.: A framework for model transformation
verification. Formal Aspects of Computing 27(1), 193–235 (2014)

24. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-formalism and Meta-modelling. In:
5th International Conference on Fundamental Approaches to Software Engineering. pp.
174–188. Springer, Grenoble, France (2002)

25. Leroy, X.: Formal certification of a compiler back-end or: Programming a compiler with a
proof assistant. SIGPLAN Notices 41(1), 42–54 (2006)

26. Meyer, B.: Applying design by contract. Computer 25(10), 40–51 (1992)
27. Oakes, B.J., Troya, J., Lúcio, L., Wimmer, M.: Fully verifying transformation contracts

for declarative ATL. In: 18th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems. pp. 256–265. IEEE, Ottawa, ON (2015)

28. Picard, C., Matthes, R.: Coinductive graph representation: the problem of embedded lists.
Electronic Communications of the EASST 39 (2011)

29. Pierce, B.C., de Amorim, A.A., Casinghino, C., Gaboardi, M., Greenberg, M., Hriţcu, C.,
Sjöberg, V., Yorgey, B.: Software Foundations. Electronic textbook (2017)

30. Poernomo, I., Terrell, J.: Correct-by-construction model transformations from partially
ordered specifications in Coq. In: 12th International Conference on Formal Engineering
Methods. pp. 56–73. Springer, Shanghai, China (2010)

31. Selim, G., Wang, S., Cordy, J., Dingel, J.: Model transformations for migrating legacy
models: An industrial case study. In: 8th European Conference on Modelling Foundations
and Applications. pp. 90–101. Springer, Lyngby, Denmark (2012)

32. Stenzel, K., Moebius, N., Reif, W.: Formal verification of QVT transformations for code
generation. Software & Systems Modeling 14, 981–1002 (2015)

33. Taentzer, G.: AGG: A graph transformation environment for modeling and validation of
software. In: 2nd International Workshop on Applications of Graph Transformations with
Industrial Relevance. pp. 446–453. VA, USA (2003)

34. Tisi, M., Cheng, Z.: Coqtl: An internal DSL for model transformation in coq. In: 11th
International Conference on Model Transformation. pp. 142–156. Springer, Toulouse,
France (2018)

35. Tisi, M., Perez, S.M., Jouault, F., Cabot, J.: Lazy execution of model-to-model
transformations. In: 14th International Conference on Model Driven Engineering
Languages and Systems. pp. 32–46. ACM/IEEE, Wellington, New Zealand (2011)

36. Varró, D., Balogh, A.: The Model Transformation Language of the VIATRA2 Framework.
Science of Computer Programming 68(3), 214–234 (2007)

37. Varró, G., Varró, D., Friedl, K.: Adaptive graph pattern matching for model
transformations using model-sensitive search plans. In: 1st International Workshop on
Graph and Model Transformations. pp. 191–205. Elsevier, Brighton, United Kingdom
(2006)

38. Wagelaar, D.: Using ATL/EMFTVM for import/export of medical data. In: 2nd Software
Development Automation Conference. Amsterdam, Netherlands (2014)

39. Werner, B.: Sets in types, types in sets. In: Proceedings of TACS’97. pp. 530–546. Springer-
Verlag (1997)

40. Willink, E., Hoyos, H., Kolovos, D.: Yet another three QVT languages. In: 6th International
Conference of Model Transformations. pp. 58–59. Springer, Budapest, Hungary (2013)

41. Yang, Z., Hu, K., Ma, D., Bodeveix, J.P., Pi, L., Talpin, J.P.: From AADL to timed abstract
state machines: A verified model transformation. Journal of Systems and Software 93, 42
– 68 (2014)

	Introduction
	Class to Relational in CoqTL
	The Design of CoqTL
	Metamodels and Models
	Transformation Specification
	Iterative Mapping Rules
	Transformation Engine
	Expressive Power of CoqTL

	Practical Usage of CoqTL
	Proving theorems with CoqTL
	Writing and executing transformations in CoqTL
	Discussion

	Related Work
	Conclusion

