
HAL Id: hal-01435974
https://hal.archives-ouvertes.fr/hal-01435974

Submitted on 16 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental Deductive Verification for Relational Model
Transformations

Zheng Cheng, Massimo Tisi

To cite this version:
Zheng Cheng, Massimo Tisi. Incremental Deductive Verification for Relational Model Transforma-
tions. ICST 2017 : 10th IEEE International Conference on Software Testing, Verification and Valida-
tion, Mar 2017, Tokyo, Japan. �10.1109/ICST.2017.41�. �hal-01435974�

https://hal.archives-ouvertes.fr/hal-01435974
https://hal.archives-ouvertes.fr

Incremental Deductive Verification for Relational
Model Transformations

Zheng Cheng and Massimo Tisi
AtlanMod Team (Inria, IMT Atlantique, LS2N), France

Email: {zheng.cheng, massimo.tisi}@inria.fr

Abstract—In contract-based development of model transfor-
mations, continuous deductive verification may help the trans-
formation developer in early bug detection. However, because
of the execution performance of current verification systems,
re-verifying from scratch after a change has been made would
introduce impractical delays. We address this problem by propos-
ing an incremental verification approach for the ATL model-
transformation language. Our approach is based on decomposing
each OCL contract into sub-goals, and caching the sub-goal
verification results. At each change we exploit the semantics
of relational model transformation to determine whether a
cached verification result may be impacted. Consequently, less
postconditions/sub-goals need to be re-verified. When a change
forces the re-verification of a postcondition, we use the cached
verification results of sub-goals to construct a simplified version
of the postcondition to verify. We prove the soundness of our
approach and show its effectiveness by mutation analysis. Our
case study presents an approximate 50% reuse of verification re-
sults for postconditions, and 70% reuse of verification results for
sub-goals. The user perceives about 56% reduction of verification
time for postconditions, and 51% for sub-goals.

I. INTRODUCTION

Model-driven engineering (MDE), i.e. software engineering
centered on software models and their transformation, is
widely recognized as an effective way to manage the com-
plexity of software development. One of the most widely used
languages for model transformation (MT) is the AtlanMod
Transformation Language (ATL) [18]. Like several other MT
languages, ATL has a relational nature, i.e. its core aspect is
a set of so-called matched rules, that describe the mappings
between the elements in the source and target model.

With the increasing use of ATL MTs in safety-critical
domains (e.g., in automotive industry [31], medical data
processing [33], aviation [5]), it is urgent to develop tech-
niques and tools that prevent incorrect MTs from generating
faulty models. The effects of such faulty models could be
unpredictably propagated into subsequent MDE steps, e.g.
code generation. Typically correctness is specified by MT
developers using contracts ([8]–[10], [12], [15], [20], [27],
[28]). Contracts are pre/postconditions on the MT to express
conditions under which the MT is considered to be correct. In
the context of MDE, the contracts are usually expressed in the
OMG’s Object Constraint Language (OCL) for its declarative
and logical nature.

In [12], we developed the VeriATL verification system to
deductively verify the correctness of ATL transformations [18]
w.r.t. given contracts. We also enabled automatic fault localiza-

tion for VeriATL to facilitate debugging, based on natural de-
duction and program slicing. To illustrate VeriATL, let us con-
sider a typical workflow in model transformation verification.
A developer develops a model transformation P, and specifies
a set of contracts (in terms of pre/postconditions) to ensure
its correctness. Next, VeriATL is automatically executed at
the back-end to facilitate fault localization. It decomposes
each contract into a proof tree using the designed natural
deduction rules and static analysis of the transformation P.
The leaves of the proof tree are a set of verification sub-goals
S. Then, the verifier reports to the developer of unverified
postconditions and sub-goals. The developer continues to work
on the model transformation P. Each change to P launches the
back-end verifier, which verifies the new model transformation
P’ against the same set of contracts. The static analysis of P’
causes VeriATL to decompose each of the contracts into a new
set of sub-goals S’ to verify, and the cycle goes on.

In this paper we argue that the practical applicability of
VeriATL in such workflow strongly depends on the possibility
to compute the impact of a change on the verification of
postconditions/sub-goals. Intuitively, we want to accelerate the
verification after the change by 1) re-using the verification
results of postconditions/sub-goals that are not impacted by
the change, 2) re-verifying only the impacted part of the
postcondition.

Our contributions in this work are at two levels:
• On a fine-grained level, we aim to efficiently verify the

set of sub-goals, by reusing the cached verification result
of the sub-goals that are not impacted by the change.
Specifically, we propose an algorithm that computes the
relevant rules that potentially affect the verification result
of each sub-goal. Then, the algorithm checks whether a
given change is operated on these relevant rules. If not,
we can safely reuse the cached verification result. We
prove the soundness of this algorithm.

• On a coarse-grained level, we aim to efficiently verify
each postcondition. We start from an algorithm which
has the same idea of checking whether a given change
affects the relevant rules for a postcondition. Moreover,
if the cached verification result of a postcondition cannot
be simply reused, we propose to verify a corresponding
simplified postcondition. We compute each simplified
postcondition by using the cached verification results
of sub-goals to populate the proof tree of the original
postcondition using three-valued logic (Kleene’s strong

Figure 1. The Entity-Relationship and Relational metamodels

three-valued logic [19]). We argue that the simplified
postcondition we synthesize represents the impacted part
of the postcondition and is easier to verify than the
original one. The soundness of this algorithm is also
proved.

We show the effectiveness of our algorithms by mutation
analysis. The evaluation of our case study shows an approx-
imate 50% reuse of the verification result for postconditions,
and 70% reuse of the verification result for sub-goals. Conse-
quently, we gain about 56% reduction of verification time for
postconditions, and 51% for sub-goals.

Paper organization. We give the background of our work
and problem statement in Section II. Section III illustrates
our incremental approach for model transformation verification
in detail. Section IV proves its soundness. The evaluation is
presented in Section V. Section VI compares our work with
related research, and Section VII draws conclusions and lines
for future work.

II. BACKGROUND

To give a background of the ATL language and its verifica-
tion system VeriATL that we developed, we use the ER2REL
transformation as our running example. It translates Entity-
Relationship (ER) models into relational (REL) models. Both
the ER schema and the relational schema have commonly
accepted semantics, and thus it is easy to understand their
metamodels (Fig. 1): In a ER model, a named ERSchema
contains a set of named Entities and Relships. Each Relship
has two or more RelshipEnds, each pointing to an Entity.
Both Entities and Relships can contain named ERAttributes,
including a key attribute for each Entity. In a REL model, a
RELSchema contains Relations that are made of RELAttributes
(relations and attributes may typically correspond to tables and
columns in a relational database).

A. Specifying OCL Contracts

We consider a contract-based development scenario where
the developer first specifies correctness conditions for the to-
be-developed ATL transformation by using OCL contracts. In
Listing 1 we show three sample pre/postconditions on name
uniqueness, that are common semantics of ER and relational
schema. Two OCL preconditions specify that within an Entity,
attribute names are unique (Pre1), and within a Relship,
attribute names are unique (Pre2). One OCL postcondition
requires that within a Relation, attribute names are unique
(Post1).

1 context ER!EREntity def: Pre1() :
2 ER!EREntity−>allInstances()−>forAll(e | e.attrs−>forAll(a1 |
3 e. attrs−>forAll(a2 | a1<>a2 implies a1.name<>a2.name));
4

5 context ER!ERRelship def: Pre2() :
6 ER!ERRelship−>allInstances()−>forAll(r | r.attrs−>forAll(a1
7 r . attrs−>forAll(a2| a1<>a2 implies a1.name<>a2.name));
8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 context REL!RELRelation def: Post1():

10 REL!RELRelation−>allInstances()−>forAll(r | r.attrs−>forAll(a1 |
11 r . attrs−>forAll(a2 | a1<>a2 implies a1.name<>a2.name));

Listing 1. The OCL contracts for ER and REL

B. Developing the ATL Transformation

Then, the developer implements the ATL transformation
ER2REL (a snippet shown in Listing 2). The transformation
is defined via a list of ATL matched rules in a mapping
style. The first three rules map respectively each ERSchema
element to a RELSchema element (S2S), each Entity element
to a Relation element (E2R), and each Relship element to a
Relation element (R2R). The remaining three rules generate a
RELAttribute element for each Relation element created in the
REL model.

Each ATL matched rule has a from section where the source
pattern to be matched in the source model are specified. An
optional OCL constraint may be added as the guard, and a rule
is applicable only if the guard evaluates to true on the source
pattern. Each rule also has a to section which specifies the
elements to be created in the target model (target pattern).
The rule initializes the attribute/association of a generated
target element via the binding operator (<-). An important
feature of ATL is the use of an implicit resolution algorithm
during the target element initialization. For example, for the
binding schema <- s.schema in the E2R rule on line 10
of Listing 2, the resolution algorithm finds that the S2S
rule matches the right hand side of the binding. Thus, its
corresponding RELSchema element (created by the S2S rule)
is returned by the algorithm, which is used to initialize left
hand side of the binding1.

C. Formally Verifying the ATL Transformation

The source and target EMF metamodels and OCL contracts
combined with the developed ATL transformation form a
Hoare-triple which can be used to verify the correctness of the
ATL transformation, i.e. MM, Pre, Exec ` Post. The Hoare-
triple semantically means that, assuming the semantics of
the involved EMF metamodels (MM) and OCL preconditions
(Pre), by executing the developed ATL transformation (Exec),
the specified OCL postcondition has to hold (Post).

In our previous work, we have developed the VeriATL ver-
ification system that allows such Hoare-triples to be soundly
verified [12]. Specifically, the VeriATL system describes in
Boogie [3] what correctness means for the ATL language in
terms of structural Hoare-triples. Then, VeriATL delegates to
Boogie the task of interacting with the SMT solver Z3 [26] for

1While not strictly needed for understanding this paper, we refer the reader
to [18] for a full description of the ATL language.

2

1 module ER2REL;
2 create OUT : REL from IN : ER;
3

4 rule S2S {
5 from s: ER!ERSchema
6 to t : REL!RELSchema (name<−s.name)}
7

8 rule E2R {
9 from s: ER!Entity

10 to t : REL!Relation (name<−s.name, schema<−s.schema) }
11

12 rule R2R {
13 from s: ER!Relship
14 to t : REL!Relation (name<−s.name, schema<−s.schema) }
15

16 rule EA2A {
17 from att : ER!ERAttribute, ent : ER!Entity (att . entity =ent)
18 to t : REL!RELAttribute (name<−att.name, isKey<−att.isKey, relation<−ent)}
19

20 rule RA2A {
21 from att : ER!ERAttribute, rs : ER!Relship (att . relship =rs)
22 to t : REL!RELAttribute (name<−att.name, isKey<−att.isKey, relation<−rs) }
23

24 rule RA2AK {
25 from att : ER!ERAttribute, rse : ER!RelshipEnd (att . entity =rse . entity and

att . isKey=true)
26 to t : REL!RELAttribute (name<−att.name, isKey<−att.isKey,

relation<−rse.relship)}

Listing 2. A snippet of the ER2REL model transformation in ATL

proving these Hoare-triples. The axiomatic semantics of EMF
metamodels and the OCL language are encoded as Boogie
libraries in VeriATL. These libraries can be reused in the
verifier designs of MT languages other than ATL.

In our example VeriATL successfully reports that the OCL
postcondition Post1 is not verified by the ATL MT shown
in Listing 2. This means that the transformation does not
guarantee that names of the attributes within each Relation
are unique in the output model.

D. Localizing the Fault

To alleviate the cognitive load on developers investigating
why a transformation is incorrect, in previous work we have
provided VeriATL with fault localization capabilities by using
natural deduction and program slicing [14]. Specifically, we
proposed a set of sound natural deduction rules for the ATL
language, including rules for propositional logic such as ∀i
(introduction rule for ∀), and ∨e (elimination rule for ∨) [16],
but also transformation-specific rules based on the concept of
static trace (i.e. inferred information among types of generated
target elements and the rules that potentially generate these
types). We show the natural deduction rules that are specific
to ATL in Appendix A.

Then, we proposed an automated proof strategy that applies
the designed deduction rules on the input OCL postcondition
to generate a proof tree. The leaves in the tree are the sub-goals
to prove. Each sub-goal contains a list of hypotheses deduced
from the original postcondition, and a sub-case of the original
postcondition to be verified.

Next, we use hypotheses (in particular, hypotheses about
static trace) in the sub-goals to slice the original MT into
simpler transformation contexts. We then form a new Hoare-
triple for each sub-goal consisting of the semantics of meta-
models, original OCL preconditions, sliced transformation

Post1

I1 I2
TPe2

I1_1 S17

TPe2

I2_1

I2_1_3

S34
∀e, e,VTRe1

∀i, ⇒i,TRe1

......

...

...

...

...
S28

...
I2_1_1

S18... ...

...

...

...
I1_1_3

∀e, e,VTRe1

......

...

...

...

...

...
I1_1_1

S1... ...

...

...

...

...

Figure 2. The proof tree w.r.t. Post1

1 context ER!ERSchema inv Pre1, Pre2
2

3 rule R2R { ... }
4 rule RA2AK { ... }
5

6 context FSM!RELRelation inv S28:
7 ∗hypothesis∗ var r ,a1,a2
8 ∗hypothesis∗ REL!RELRelation.allInstances ()−>includes(r)
9 ∗hypothesis∗ r . attrs−>includes(a1)

10 ∗hypothesis∗ r . attrs−>includes(a2)
11 ∗hypothesis∗ a1 <> a2
12 ∗hypothesis∗ genBy(r,R2R)
13 ∗hypothesis∗ r . attrs . size () > 0
14 ∗hypothesis∗ genBy(a1,RA2AK)
15 ∗hypothesis∗ genBy(a2,RA2AK)
16 ∗goal∗ a1.name <> a2.name

Listing 3. The problematic transformation scenario of the ER2REL
transformation w.r.t. Post1

context (Exectrace), its hypotheses and its conclusion, i.e. MM,
Pre, Exectrace, Hypotheses ` Conclusion. We send these new
Hoare-triples to VeriATL to check. Notice that successfully
proving these new Hoare-triples implies the satisfaction of
the original OCL postcondition. If any of these new Hoare-
triples is not verified, the original OCL preconditions, the
corresponding sliced transformation context, hypotheses and
conclusion of the Hoare-triple are constructed as a problematic
transformation scenario to report back to the developer for
fault localization.

In our running example, our fault localization approach
generates the user with a proof tree and three problematic
transformation scenarios. The proof tree (Fig. 2) is shortened
for presentation. We also label the edges of the proof tree
with the applied deduction rules for understandability. For
demonstration purpose in Listing 3 we only show one of the
problematic transformation scenarios (S28 in Fig. 2).

The scenario consists of the original preconditions (abbre-
viated at the top), a slice of the transformation (abbreviated in
the middle) and a sub-goal with the derived hypotheses and
conclusion from the original postcondition (at the bottom).
Notice that the genBy(i, R) predicates used in the hypotheses
come from the application of our natural deduction rules. They
specify that a model element i is generated by the rule R. This
kind of hypotheses in the sub-goals help us slice the original
MT into simpler transformation contexts.

The scenario in Listing 3 contains the following informa-

3

tion, that we believe to be valuable in identifying and fixing
the fault:
• Transformation slicing. The only relevant rules for the

fault captured by this problematic transformation scenario
are R2R and RA2AK (lines 3 - 4).

• Debugging clues. The error occurs when a Relation r
is generated by the rule R2R (line 12), and when its
attributes include two unique elements a1 and a2 (lines 9,
10 and 11) that are generated by the rule RA2AK (lines
14 and 15).

By analyzing the problematic transformation scenario in
Listing 3, the transformation developer observes that two
Entities linked by the same Relship in the source model might
have the key attribute with the same name. This would cause
their corresponding RELAttributes, generated by the RA2AK
rule, to have the same name, and thus falsifying Post1.

E. Problem Statement

In our view, fixing bugs is an interactive process that
involves several changes to the model transformation rules
(e.g. add, delete and modify rule). Each of these changes
requires VeriATL to re-verify the contracts and generated sub-
goals. Depending on the engaged task, the developers might
expect VeriATL to provide prompt re-verification result of
either postconditions, or sub-goals, or both. For example:
• Prompt re-verification of postconditions would be bene-

ficial when the user wants to know whether all contracts
become verified after the fix;

• Prompt re-verification of sub-goals would be necessary
when the bug is not yet fixed and the user needs the fault
localization capability.

A delay in any of these cases can lead to wasted effort. There-
fore, our quest in this work is to investigate whether incremen-
tal verification allows VeriATL to meet these expectations of
the developer. By incremental verification, we mean the ap-
proach of caching the verification result of postconditions/sub-
goals, determine when the cache can be reused, and then
incrementally re-verify the postconditions/sub-goals that are
not reused. Moreover, when incrementally re-verifying the
postconditions, we aim to reduce their complexity by con-
structing simplified postconditions to verify.

For example, our approach aims to determine that, when
modifying the RA2A rule, the verification result of the sub-
goal S28 for Post1 can be reused; or that when modifying the
S2S rule, the verification result of Post1 does not change; or
that when modifying the guard of the R2R rule, we can verify
the simplified postcondition I2 shown in Listing 4 instead of
the postcondition Post1.

III. INCREMENTAL VERIFICATION FOR VERIATL

Before diving into the details of our algorithms for in-
cremental verification for VeriATL, we first introduce some
terminology:
• Initial transformation P. The model transformation before

modification.

1 context ER!ERSchema inv Pre1, Pre2
2

3 rule E2R { ... } rule R2R { ... }
4 rule EA2A { ... } rule RA2A { ... } rule RA2AK { ... }
5

6 context REL!RELRelation inv I2:
7 ∗hypothesis∗ var r ,a1,a2
8 ∗hypothesis∗ REL!RELRelation.allInstances ()−>includes(r)
9 ∗hypothesis∗ r . attrs−>includes(a1)

10 ∗hypothesis∗ r . attrs−>includes(a2)
11 ∗hypothesis∗ a1 <> a2
12 ∗hypothesis∗ genBy(r,R2R)
13 ∗goal∗ a1.name <> a2.name

Listing 4. Verifying the simplified postcondition of Post1

• Evolved transformation P’. The model transformation
after modification.

• Transition operators op. We define a list of transition
operators that modifies P to P’ (Section IV-A).

• Proof Tree: as described in Section II-D, we have
designed an automated proof strategy that applies the
designed natural deduction rules on the input OCL
postcondition. The goal is to deduce more information
from the postcondition as hypotheses, and simplify the
postcondition as much as possible. Executing our proof
strategy generates a proof tree. The non-leaf nodes are
intermediate results of rule applications. The leaves in
the tree are the sub-goals to prove. Each sub-goal consists
of a list of hypotheses and a conclusion to be verified.
Dependencies among these sub-goals are shown by the
edges in the tree.

• Static trace information T : SubGoal×MT → {Rule},
which returns a set of ATL matched rules that possi-
bly generate the types for the target elements referred
by each sub-goal. This can be obtained by statically
analyzing the hypotheses of each sub-goal. For exam-
ple, for the sub-goal S28 shown in Listing 3, T(S28,
ER2REL)={R2R,RA2AK}.

• Cache of postconditions C1 : MT × OCL → Bool,
which stores the verification result of each postcondition
of the given model transformations. In practice, we com-
pute an unique identifier for each model transformation,
which is used in our caching mechanism. Two syntac-
tically identical model transformations have the same
identifier.

• Cache of sub-goals C2 :MT×OCL×SubGoal→ Bool,
which stores the verification result of each sub-goals for
each postcondition of the given model transformations.

The incremental verification for VeriATL is supported by
two algorithms (Algorithm 1 and Algorithm 2). Both algo-
rithms accept 4 arguments: an initial transformation P, its
evolved transformation P’, the transition operator op that
changes P to P’ and the postcondition post to be (re-)verified.

If the evolved transformation P’ is invalid, e.g. it contains
conflicting rules (two ATL matched rules conflict when a set
of source elements can match the source pattern of both rules).
or is syntactically incorrect, then the incremental verification
is stopped (and is restarted when the developer constructs a

4

valid transformation by further modifications).
(Re-)verify sub-goals. Algorithm 1 is specialized to effi-

ciently fill in and reuse from the cache of sub-goals. It first
decomposes the post in P’ by using a set of natural deduction
rules we designed. The result of this decomposition is a proof
tree, where the leaf nodes in the tree are the sub-goals we are
interested in.

Next, we check if any sub-goal is impacted by the change,
by computing the intersection between the relevant rules of a
sub-goal and the rule that the transition operator performed on
(δr(op)). Here, the relevant rules of a sub-goal are captured
by the static trace information referred by the sub-goal (T(s,
P’)).

Thus, the verification result of a sub-goal can be reused
only when it has been cached, and none of its relevant rules
are touched by the transition operators. Otherwise, its re-
verification is expected (lines 2 - 5). In practice, we consider
a given sub-goal is cached when a sub-goal with the exact
match of hypotheses and conclusion of the given sub-goal is
found in the cache.

Algorithm 1 Incremental verification algorithm for sub-goals
(P, P’, op, post)

1: for each s ∈ leaves(decompose(P’, post)) do
2: if s ∈ dom(C2[P][post]) ∧ T(s, P’) ∩ δr(op) = ∅ then

3: C2[P’][post][s] ← C2[P][post][s]
4: else
5: C2[P’][post][s] ← verify(s, P’)
6: end if
7: end for

(Re-)verify postconditions. Algorithm 2 is specialized to
efficiently verify the postconditions. It can be summarized as:
when verifying a postcondition, reuse the cached postcondi-
tion if possible and verify the simplified postcondition when
necessary.

The first task in Algorithm 2 is to determine if the cache of
the postcondition can be reused:

• First, we decompose the sub-goals of post in P and P’,
and then compute the relevant rules in P and P’ that
potentially affect the verification result of post as the
union of the static trace information referred by the sub-
goals (lines 3 - 4).

• Next, we check the intersection between the relevant
rules for post and the rule that the transition operator
operated on (δr(op)). Thus, the verification result of
a postcondition can be reused only when it has been
cached, and its sub-goals are referring the same set of
relevant rules in P and P’, and none of these rules are
touched by the transition operators (lines 5 - 6).

If the cache of the postcondition cannot be reused, we label
(populate) the whole proof tree for post in P’ with verification
result (Tree’v), using three-valued logic [19] and the cached
verification result for sub-goals (lines 8):

Post1(U)

I1(T) I2(U)

TPe2

I1_1(T) S17(T)

TPe2

I2_1(U)

I2_1_3(U)

S34(U)

∀e, e,VTRe1

∀i, ⇒i,TRe1

......

...

...

...

...S28(U)

...
I2_1_1(U)

S18(U)

...

...

...
I1_1_3(T)

∀e, e,VTRe1

......

...

...

...

...

...I1_1_1(T)

S1(T)... ...

...

...

...

...

Figure 3. The proof tree w.r.t. Post1 after the guard of the R2R rule is modified
and populated with verification results using three-valued logic

• First, we populate the leaves of Tree’v . This process is
similar to Algorithm 1. If a leaf sub-goal has been cached,
and none of its relevant rules are touched by the transition
operators, then the cached verification result of the sub-
goal is attached to the sub-goal in Tree’v . Otherwise, we
attach UNKNOWN to the leaf sub-goal in Tree’v .

• Then, we populate the rest of Tree’v in a bottom-up
manner using three-valued logic.

Next, we find a simplified postcondition (Definition 1) in
Tree’ to verify.

Definition 1. Simplified postcondition. A node in a proof
tree populated with three-valued logic is named simplified
postcondition if its verification result is UNKNOWN, and
if verifying the Hoare-triple it represents (and consequently
repopulate the proof tree) would make the verification result
of the root of the proof tree to be a non UNKNOWN value.

A sub-node has more hypotheses and simpler conclusion
than its parent node (which is the intention of our automated
decomposition). Thus, we want to find a simplified postcon-
dition in the proof tree to reduce the complexity of verifying
the original postcondition. Ideally, the simplified postcondition
should be as deep as possible in the proof tree. Therefore,
we design the findSimplifiedPost function for this job: the
function traverses the proof tree in a top-down manner; when
it encounters a node n labeled with UNKNOWN verification
result, it looks at the verification results of the children nodes
of n. If there is exactly one child c labeled with UNKNOWN,
we recursively apply the findSimplifiedPost function on the
sub-tree with root c. Otherwise, we return n.

For example, assuming that we are modifying the guard
of the rule R2R, the proof tree w.r.t. to Post1 populated with
verification results is shown in Fig. 3 (the verification results
are attached on each node, where T stands for TRUE and U
for UNKNOWN). The findSimplifiedPost function would return
the simplified postcondition I2 shown in Listing 4.

Finally, we construct a Hoare-triple for the simplified post-
condition to check, i.e. MM, Pre, Exectrace, Hypotheses `
Conclusion. When the simplified postcondition is not a leaf
node in the proof tree, we defensively use the union of static
trace information of the leaf nodes in the proof tree (R’) to

5

construct the sliced transformation context.
When the simplified postcondition is checked, we update

its verification result in Tree’v , and repopulate the tree. The
verification result of the original postcondition is the label at
the root of the Tree’v .

Algorithm 2 Incremental verification algorithm for postcon-
ditions (P, P’, op, post)

1: Tree ← decompose(P, post)
2: Tree’ ← decompose(P’, post)
3: R ←

⋃
si∈leaves(Tree)

T(si, P)

4: R’ ←
⋃

si∈leaves(Tree′)

T(si, P’)

5: if post ∈ dom(C1[P]) ∧ R=R’ ∧ R’∩ δr(op) = ∅ then
6: C1[P’][post] ← C1[P][post]
7: else
8: Tree’v ← populate(Tree’, C2[P][post])
9: Node’ ← findSimplifiedPost(Tree’v)

10: Node’v ← verify(Node’, P’)
11: Tree’v ← repopulate(Node’v , Tree’v)
12: C1[P’][post] ← result(root(Tree’v))
13: end if

IV. SOUNDNESS OF THE INCREMENTAL VERIFICATION

In what follows, we prove the soundness of our incremental
verification approach.

A. Transition Operators

The transition operators that are used to transit from an
initial transformation to its evolved transformation are shown
in Fig. 4. Any modifications on the relational aspect of ATL
can be represented as a sequence of applications of these
operations. Some explanations are in order:
• The add operator adds an ATL rule named R that

transforms the source pattern elements srcs to the target
pattern elements tars. Initially, the add operator sets the
guard of the added rule to false to prevent any potential
rule conflict. The bindings for the specified target pattern
elements are empty. The operator has no effect if the
rule with specified name already exists in the initial
transformation.

• The delete operator deletes a rule named R. It has no
effect if the rule with the specified name does not exist
in the initial transformation.

• The setguard operator strengthens/weakens the guard of
the rule R by replacing its guard with the OCL expression
cond. It has no effect if a rule with the specified name
does not exist in the initial transformation.

• The bind operator modifies the way of binding the
structural feature sf of the target element tar in the rule
R to the binding OCL expression b. It has no effect if
the rule with specified name does not exist in the initial
transformation. If the sf or the tar does not exist in R,
the bind operator adds a new binding.

〈operator〉 ::= add from srcs to tars as R
| delete R
| setguard cond in R
| bind sf with b of tar in R

Figure 4. The abstract syntax of transition operators

B. Execution Semantics Preservation

The essential idea of our incremental verification for ATL is
based on the concept of execution semantics preservation. To
verify a postcondition in a initial transformation P, the Hoare-
triple H: MM, Pre, Exec ` Post is constructed. Once the P is
evolved to P’ by applying our transition operator, we obtain a
new Hoare-triple H’: MM, Pre, Exec’ ` Post. Clearly, if the
execution semantics of P Exec is semantically equivalent to
the execution semantics of P’ Exec’, the verification result of
H can be reused for H’. The same idea supports reusing the
verification result of sub-goals.

However, execution semantics preservation is too restrictive
for reusing the verification result of postcondition/sub-goals.
In our experience, we find that there are many cases when the
execution semantics of initial transformation is not strictly pre-
served by the evolved transformations, but the re-verification
is not needed.

Therefore, we propose an approach to relax the role of
execution semantics preservation in reusing the verification
result of postconditions/sub-goals. Our approach is based
on the definition of weak execution semantics preservation
(Definition 2). Given a postcondition/sub-goal, our approach
checks whether the evolved transformation weakly preserves
the execution semantics of the corresponding initial transfor-
mation for that postcondition/sub-goal. In the affirmative case,
the postcondition/sub-goal does not need to be re-verified.

Definition 2. Weak execution semantics preservation for
postconditions/sub-goals. When the relevant rules (i.e. static
trace information) of a postcondition/sub-goal in the initial
and evolved transformations are the same, and these relevant
rules do not intersect with the rule that the transition operator
operated on, we say that the evolved transformation weakly
preserves the execution semantics of the initial transformation
for the postcondition/sub-goal.

We briefly demonstrate the execution semantics of ATL
(details can be found in [12]), which helps us to prove
the soundness of our approach for incrementally verifying
postconditions/sub-goals.

Execution semantics of ATL. The execution semantics
of an ATL matched rule consists of matching semantics and
applying semantics. The matching semantics of a matched rule
involves:

• Executability, i.e. the rule does not conflict with any other
rules of the developed transformation.

• Matching outcome, i.e. all the source elements that satisfy
the source pattern, their corresponding target elements of

6

target pattern have been created.
• Frame condition, i.e. nothing else is changed in the target

model except the created target elements.
Take the S2S rule in the ER2REL transformation for exam-

ple, its matching semantics specifies:
• Before matching the S2S rule, the target element gener-

ated for the ERSchema source element is not yet allocated
(executability).

• After matching the S2S rule, for each ERSchema element,
the corresponding RELSchema target element is allocated
(matching outcome).

• After matching the S2S rule, nothing else is modified ex-
cept the RELSchema element created from the ERSchema
element (frame condition).

The applying semantics of a matched rule involves:
• Applying outcome, i.e. the created target elements are

initialized as specified by the bindings of the matched
rule.

• Frame condition, i.e. nothing else is changed in the
target model except the initializations made on the target
elements.

Take the S2S rule in the ER2REL transformation for exam-
ple, its applying semantics specifies:
• After applying the S2S rule, for each ERSchema element,

the name of its corresponding RELSchema target element
is equal to its name (applying outcome).

• After applying the S2S rule, nothing else is modified,
except the value of the name for the RELSchema element
that created from the ERSchema element (frame condi-
tion).

C. Soundness Proof

Theorem 1. Soundness of Incremental Verification for Sub-
goals. For a given sub-goal, if the evolved transformation
weakly preserves the execution semantics of the corresponding
initial transformation for this sub-goal, such sub-goal does not
need to be re-verified in the evolved transformation.

Proof. We assume our automatic proof strategy can ensure the
completeness of the static trace information of each sub-goal
(i.e. every target types referred by each sub-goal and every
rule that may generate them are correctly identified).

We induct on the type of transition operator op that modifies
the initial transformation P to the evolved transformation P’.
By hypothesis, P’ weakly preserves the execution semantics
of P for the sub-goal s, and the op is one of the following:
• add operator. The guard of the added rule is false.

Thus, in this case, the execution semantics of the evolved
transformation is semantically (strongly) equivalent to the
initial transformation. Thus, s does not need to be re-
verified.

• delete operator. The deleted rule is not referred by the
static trace information of s in P and P’ (Definition 2).
Strictly speaking, this would potentially result in a differ-
ent applying semantics of the referred rules in the static

trace information of s in P’. For example, assuming the
static trace information of a sub-goal includes only the
rule E2R, deleting the rule S2S would alter the applying
outcome of the E2R rule, since the binding schema <-
s.schema cannot be resolved any more. However, each
sub-goal essentially specifies a condition that sets of
target elements should satisfy. The fact that the deleted
rule is not referred by the static trace information of a
sub-goal means that it does not generate target elements
that affect the sub-goal (because of the independence
among ATL matched rules, i.e. each rule has no effects to
the target elements generated by other rules [32]). Thus,
the deleted rule is irrelevant to the verification result of
s, so that s does not need to be re-verified.

• setguard operator. Potentially, the rule that the set-
guard operated on could conflict with any of the rules
referred by the static trace information of s in P. Conse-
quently, the executability of those referred rules could be
altered. However, our incremental verification approach
applies only to valid transformation, which are free from
rule conflicts. This guarantees that the setguard operator
preserves the executability of the referred rules in the
static trace information of s. Clearly, when P’ is valid,
the matching semantics of the rules in the static trace
information of s is not affected by the setguard operator
(because neither the matching outcome nor the frame
condition of referred rules are affected). Similar to the
delete operator, the fact that the modified rule is not
referred by the static trace information of s implies
proving that s does not depend on the execution semantics
of the guard-modified rule. Thus, s does not need to be
re-verified in this case.

• bind operator. When the rule of the modified binding is
referred by the static trace information of s, this implies
proving that s depends on the execution semantics of
the binding-modified rule (but not necessarily on the
modified binding). In this case, we defensively re-verify
the sub-goal. However, similar to the delete operator, the
fact that the rule of the modified binding is not referred
by the static trace information of s implies proving that
s does not depend on the execution semantics of the
binding-modified rule. Thus, s does not need to be re-
verified in this case.

To prove the soundness of incremental verification for
postconditions, it is sufficient to prove three lemmas: (a)
Lemma 1 ensures the soundness of reusing the cache for
postconditions. (b) Lemma2 ensures the soundness of veri-
fying each simplified postcondition. (c) Lemma3 ensures the
soundness of repopulating the verification result of the proof
tree.

Lemma 1. Soundness of reusing the cache for postcondi-
tions. For a given postcondition, if the evolved transformation
weakly preserves the execution semantics of the corresponding
initial transformation for this postcondition, such postcondition
does not need to be re-verified in the evolved transformation.

7

Proof. We have ensured the soundness of our natural deduction
rules by comparing them with the operational semantics of the
ATL language. This guarantees the generated sub-goals are a
sound abstraction of their corresponding original postcondi-
tion. Moreover, because we assumed that our automatic proof
strategy can ensure the completeness of the static trace infor-
mation of each sub-goal, we conclude that the union of the
static trace information for each sub-goals of a postcondition
contains all the rules that might affect the verification result
of such postcondition. Then, the rest of the proof is similar to
the inductive proof of Theorem 1.

Lemma 2. Soundness of verifying the simplified postcondi-
tion. When the Hoare-triple MM, Pre, Exectrace, Hypotheses
` Conclusion is verified, it implies the Hoare-triple MM, Pre,
Exec, Hypotheses ` Conclusion is verified.

Proof. Similar to the proof for the Lemma1.

Lemma 3. Soundness of repopulating the verification
result of the proof tree. After verifying the simplified
postcondition and repopulating the verification results of the
proof tree, the verification result of the root of the proof
tree is equivalent to the verification result of the original
postcondition.

Proof. Straightforwardly proved by Lemma2, Definition 1 and
the soundness of our natural deduction rules (which ensures
the soundness of proof tree derivation).

V. EVALUATION

In this section, we evaluate the practical feasibility and
performance of our incremental verification approach for the
ATL language. The section concludes with a discussion of the
obtained results and lessons learnt.

A. Research questions

We formulate two research questions to evaluate the correct-
ness and efficiency of our incremental verification approach:

(RQ1) Can our approach efficiently verify postconditions
when a model transformation is modified?

(RQ2) Can our approach efficiently verify sub-goals of post-
conditions when a model transformation is modified?

B. Evaluation Setup

To answer our research questions, we use the HSM2FSM
transformation with 14 preconditions and 6 postconditions
as our case study [4], [8]. Our evaluation consists of two
settings. In the first setting, the initial transformation is the
original HSM2FSM transformations where all the specified
postconditions are verified. Then, we individually generate
6 evolved transformations by applying 6 kinds of transition
operators. These transition operators are defined in [7], [25] for
mutation analysis [17] to systematically inject faults. Thus, the
first setting spans on a range of activities (including extension,
maintenance and refactoring) that are encountered when devel-
oping model transformations. Prompt re-verification result of
postconditions is important under each of these circumstances,

to provide the developer with valuable feedback such as
whether new faults are introduced.

In the second setting, the initial transformation is the
HSM2FSM transformation with all 6 kinds of mutation op-
erators applied on it (HSM2FSMm). Then, we individually
generate 6 evolved transformations by reversing the applied
mutation operators (reversing one per evolved transformation).
Thus, the second setting simulates a range of activities that are
encountered when debugging model transformations. Prompt
re-verification result of postconditions/sub-goals are important
under each of these circumstances, to provide the developer
with valuable feedback such as whether all bugs are fixed, or
which sub-goals remain unverified.

Then, we evaluate the two settings using 3 verification
systems: (a) ORG. The original VeriATL verification system,
which encodes the axiomatic semantics of the ATL language
(version 3.7). It is based on the Boogie verifier (version 2.2)
and Z3 (version 4.3). (b) ORGl. VeriATL with fault localiza-
tion capability. (c) INC. VeriATL with incremental verification
capability (INCp for incremental verification of postconditions,
and INCs for incremental verification of sub-goals). Moreover,
as our incremental approach for postconditions refers the cache
of sub-goals (Algorithm 2), we also evaluate its performance
based on whether the full cache of sub-goals (Caches) is
available or not.

The evaluation is performed on an Intel 3 GHz machine with
8 GB of memory running the Windows operating system. All
of our verification system, fault localization and incremental
verification approaches are implemented in Java. We kindly
refer to our online repository for the complete artefacts used
in our evaluation [13].

C. Evaluation Results

Table I summarizes the results for the first evaluation setting.
Three columns in the table require some explanations: (a)
the first column lists the identifiers of the initial and evolved
transformations2; (b) the seventh column records the number
of postconditions whose verification result are reused when
the cache of sub-goals is not available during the verification
process, the number of postconditions whose verification result
are reused when the cache of sub-goals are presented during
the verification process (shown in the brackets), and the total
number of postconditions; (c) the last column records the
number of sub-goals whose verification result are reused,
and the total number of sub-goals that are checked during
the verification process (Chks). There are sub-goals that are
generated but not checked. This is because we check sub-goals
only when its corresponding postcondition is not verified.

The verification time (i.e. the time spent by the Boogie
verifier to get the verification result) shown in Table I clearly

2The naming convention for evolved transformations is the mutation
operator Add(A) / Del(D) / Modify(M), followed by the mutation operand
Rule(R) / Guard(G) / Binding(B), followed by the position of the operand in
the original transformation setting. For example, MB6 stands for the mutant
which modifies the binding in the sixth rule, which is the initial HSM2FSM
transformation applied with the transition operator bind.

8

demonstrates that using our incremental approaches to verify
postconditions and sub-goals are consistently faster than using
the original and fault localization approaches. For example, by
verifying the simplified postconditions, we cut the verification
time for postconditions by about 50%. This positively confirms
our two research questions. One of the implications is that
the developer would learn sooner the changes’ effects on
the postconditions while editing the model transformation to
guide the next changes. Another implication is that the fast
turnaround verification time of sub-goals would help the devel-
oper quickly comprehend what kind of fault is introduced. In
our experience, this results in a better user experience, which
could not be achieved without caching.

We can see that in 3 out 6 cases (DB3, MB6, MG6), the
verification time using the incremental approach for sub-goals
are almost the same (or faster) as in the original approach.
This suggests that we might generate many sub-goals for
postconditions; however verifying these sub-goals does not
necessarily take longer than verifying the postconditions. As
an extra benefit, we can get more detailed information from
the sub-goals for fault localization.

The last two columns of Table I shed more light on
why our incremental approach is so effective for verify-
ing postconditions/sub-goals. Around 33% to 50% results of
postconditions are reused from the cache of postconditions.
Moreover, the last column shows that among 179 checked sub-
goals, 131 of them are reused from cache (73%).

We also observe little cache reuse in the AR case, especially
when w.r.t. the cache of sub-goals. By manual inspection, we
find that this is because the hypotheses of newly generated
sub-goals is slightly different to the one of the sub-goals
in cache. This suggests some further optimization based on
semantic analysis. For example, if we have a Hoare-triple for
a sub-goal s in the initial transformation (MM, Pre, Exectrace,
Hypotheses ` Conclusion), and a Hoare-triple for a sub-
goal s’ in the evolved transformation (MM, Pre, Exectrace,
Hypotheses’ ` Conclusion), and if we can prove Hypotheses’
implies Hypotheses; then, we can safely reuse the verification
result of s for s’. However, determining the general verification
cost of such kind of optimization requires further investigation.

Table II summarizes the results for the second evaluation
setting, which is structured as in Table I. One of the main
differences between the two tables is that we can witness con-
sistent spikes of verification time for sub-goals when using the
fault localization approach. This is because the transformations
of the second setting have more unverified postconditions than
the first setting, which results in more checked sub-goals. This
is a clear disadvantage for fixing faults because the developer
has to suffer from the slow response of the verification tool.

The results show that our incremental approach for sub-
goals saves about 64% verification time than the fault local-
ization approach. The fact that 71% (228/323) of checked
sub-goals are reused from the cache explains the efficient
verification time. However, as there are more checked sub-
goals, we find less cases where the verification time of
incremental approach for sub-goals is almost the same as in

the original approach.
Another main difference is that the cache of sub-goals plays

an important role when incrementally verifying postconditions
in the second setting. Intuitively, as we have more unverified
postconditions in the second setting, we have more unverified
sub-goals. Consequently, we find 8 cases (23 - 15) in which,
after repopulating the proof tree with the verification result of
sub-goals, the verification result of the root of the proof tree
can be immediately computed without verifying any simplified
postcondition (since UNKNOWN ∧ FALSE = FALSE). How-
ever, one thing to notice is that to benefit from the cache of
sub-goals, the developer has to wait until it is finished (even
partially).

Table I
EVALUATION RESULTS FOR THE 1ST SETTING

Verification Time (in seconds) Number of

ORG
INCp

Caches? ORGl INCs
Reuse

/ Totalp
Reuses
/ ChksN Y

HSM2FSM 21 21 21 21 21 N/A N/A
DB3 19 10 9 35 21 2 (2) / 6 11 / 16
MB6 20 9 8 41 17 3 (3) / 6 24 / 28
AG2 21 10 10 42 26 2 (2) / 6 13 / 19
MG6 23 10 9 55 22 3 (3) / 6 28 / 34
DR1 14 6 6 33 26 3 (3) / 6 48 / 60
AR 24 11 11 66 57 2 (2) / 6 7 / 22

TOTAL 121 56 53 272 169 15 (15) / 36 131 / 179

Table II
EVALUATION RESULTS FOR THE 2ND SETTING

Verification Time (in seconds) Number of

ORG
INCp

Caches? ORGl INCs
Reuse

/ Totalp
Reuses
/ ChksN Y

HSM2FSMm 20 20 100 100 100 N/A N/A

DB3−1 18 11 8 105 40 2 (4) / 6 31 / 46
MB6−1 18 9 4 106 21 3 (5) / 6 39 / 46
AG2−1 17 12 8 107 39 2 (4) / 6 31 / 46
MG6−1 18 9 4 103 22 3 (5) / 6 39 / 46
DR1−1 28 8 8 111 38 3 (3) / 6 79 / 93
AR−1 14 9 9 70 55 2 (2) / 6 7 / 46
Total 113 58 41 602 215 15 (23) / 36 228 / 323

D. Discussion
In summary, through our evaluation, we simulate two com-

mon settings for developing and fixing model transformations.
We gain confidence that our incremental approach would
consistently provide efficient verification result of postcondi-
tions and sub-goals when a model transformation is modified.
However, there are some lessons we learned:

Completeness. Theoretically, our approach could report in-
conclusive simplified postconditions/sub-goals when the orig-
inal postcondition should be verified (i.e. incompleteness).
We manually checked that our approach is complete for our
evaluation, and identify two possible sources of incomplete-
ness: (a) the limits of the underlying SMT solver [21]. (b)
unsuccessful application of natural deduction rules by the de-
signed automated proof strategy [14]. We plan to design more

9

natural deduction rules for ATL and a smarter automated proof
strategy to contribute to the completeness of the approach. We
also envision enabling interactive theorem proving when we
can not perform automatic verification.

Usability. Currently, the cache for postcondition and sub-
goals are always computed for our incremental approach.
Then, the developer needs to decide whether to use one/ei-
ther/neither of them in the evolved transformation. The future
plan is to integrate our incremental approach into Eclipse
IDE to make it more user-friendly (making it a one-button
technology). For example, once the developer requests to
verify&cache the postconditions, a new background thread
could spawn to verify&cache sub-goals. Meanwhile, all the
background threads that verify&cache sub-goals of previous
evolved transformations should give their priority to the newly
spawned background thread.

Coverage. In this work we consider the relational aspect of
the ATL language, i.e. ATL matched rules, in non-refinement
mode, one-to-one mappings of (possibly abstract) classifiers
with the default resolution algorithm of ATL. The non-
recursive helpers are supported by inlining them into the
developed MT. The imperative and recursive aspects of ATL
can be integrated into our approach by learning from the
state-of-the-art incremental verification techniques for general-
purpose programming languages (Section VI).

VI. RELATED WORK

Incremental verification for general programming languages
has drawn the attention of researchers in recent years to
improve user experience of program verification. Bobot et al.
design a proof caching system for the Why3 program verifier
[6]. In Why3, a proof is organized into a set of sub-proofs
whose correctness implies the correctness of the original proof.
Bobot et al. encrypt the sub-proofs into strings. When the
program updates, the new sub-proofs are also encrypted and
looking for the best matches in the old sub-proofs. Then, a new
sub-proof is heuristically applied with the best matched old
sub-proof’s proof effort to make the verification more efficient.

Leino and Wüstholz design a two level caching for the
proofs in the Dafny program verifier [22]. First, a coarse-
grained caching that depends on the call graph of the program
under development, i.e. a caller program does not need to be
re-verified if its callee programs remain unchanged. Second, a
fine-grained caching that depends calculating the checksum of
each contract. The checksum of each contract is calculated by
all statements that the contract potentially depends on. Thus,
if the checksum does not change, the re-verification is not
needed. Moreover, the authors also use explicit assumptions
and partial verified checks to generate extra contracts. If they
are proved, the re-verification is not needed.

Logozzo et al. design the Clousot verifier [23]. Clousot
captures the semantics of a base program by execution traces
(a.k.a semantic conditions). Then, these conditions are inserted
into the new version of the program as assumptions. This tech-
nique is used to incrementally prove the relative correctness
between base and new version of programs.

The Proofcert project aims at sharing proofs across several
independent tools by providing a common proof format [24],
which would allows an orchestra of tools to collectively prove
the correctness of computer systems more automatically.

All the works we just discussed are designed to make the
verification of imperative or functional programs faster. Our
approach complements these works by focusing on a different
program paradigm, i.e. relational programs. The incremental
verification of each paradigm has an importance of its own.
Moreover the verification of hybrid languages would need
to integrate techniques from several works. For instance the
imperative and functional parts of the ATL language could
benefit from the mentioned works.

Formula-based debugging is an active topic of research [30].
Among these, Qi et al. develop a tool called DARWIN to
debug evolving programs [29]. We both reuse some of the
information from previous versions of program. However, in
the work by Qi et al., calibrating is the main responsibility of
this reuse to search a new execution path that helps debugging.
The role of reuse in our work is for incremental verification.

In addition, according to surveys [1], [2], [11], incremental
verification has not been adapted in the model transformation
verification. We hope that our approach would be useful in
this context.

VII. CONCLUSION AND FUTURE WORK

In summary, in this work we propose an incremental verifi-
cation approach to improve the performance of deductive ver-
ification for the ATL language. Our approach caches the ver-
ification result of postconditions/sub-goals, determines when
the cache can be reused, and then incrementally re-verifies
the postconditions/sub-goals that are not reused. Moreover,
when incrementally re-verifying the postconditions, we reduce
the re-verification complexity by constructing a simplified
postconditions to verify. We prove the soundness of our
approach and show its effectiveness by mutation analysis. Our
evaluation shows an approximate 50% reuse of verification
result for postconditions, and 70% reuse of verification result
for sub-goals. Consequently, we gain about 56% reduction of
verification time for postconditions, and 51% for sub-goals.

In future work we plan to complete the coverage of the
ATL language (including functional and imperative parts) and
develop the tooling to make verification usable during ATL
development. We plan also to evaluate a proactive approach
to further improve the performance of incremental verification,
by prioritizing the verification of the subgoals that will be most
probably impacted by the following change.

ACKNOWLEDGMENT

The present work has been supported by the MONDO (EU
ICT-611125) project.

10

REFERENCES

[1] Ab.Rahim, L., Whittle, J.: A survey of approaches for verifying
model transformations. Software & Systems Modeling 14(2), 1003–1028
(2015)

[2] Amrani, M., Lucio, L., Selim, G., Combemale, B., Dingel, J.,
Vangheluwe, H., Le Traon, Y., Cordy, J.R.: A tridimensional approach
for studying the formal verification of model transformations. In: 5th In-
ternational Conference on Software Testing, Verification and Validation.
pp. 921–928. IEEE Computer Society, Washington, DC, USA (2012)

[3] Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.:
Boogie: A modular reusable verifier for object-oriented programs. In:
4th International Conference on Formal Methods for Components and
Objects. pp. 364–387. Springer, Amsterdam, Netherlands (2006)

[4] Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.M.:
Barriers to systematic model transformation testing. Communications of
the ACM 53(6), 139–143 (2010)

[5] Berry, G.: Synchronous design and verification of critical embedded
systems using SCADE and Esterel. In: 12th International Workshop
on Formal Methods for Industrial Critical Systems, pp. 2–2. Springer,
Berlin, Germany (2008)

[6] Bobot, F., Filliâtre, J.C., Marché, C., Melquiond, G., Paskevich, A.:
Preserving user proofs across specification changes. In: 5th International
Conference on Verified Software: Theories, Tools, Experiments. pp.
191–201. Springer, Menlo Park, CA, USA (2014)

[7] Burgueño, L., Troya, J., Wimmer, M., Vallecillo, A.: Static fault lo-
calization in model transformations. IEEE Transactions on Software
Engineering 41(5), 490–506 (2015)

[8] Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using
‘off-the-shelf’ SMT solvers. In: 15th International Conference on Model
Driven Engineering Languages and Systems. pp. 198–213. Springer,
Innsbruck, Austria (2012)

[9] Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL
transformations using transformation models and model finders. In: 14th
International Conference on Formal Engineering Methods. pp. 198–213.
Springer, Kyoto, Japan (2012)

[10] Calegari, D., Luna, C., Szasz, N., Tasistro, Á.: A type-theoretic frame-
work for certified model transformations. In: 13th Brazilian Symposium
on Formal Methods. pp. 112–127. Springer, Natal, Brazil (2011)

[11] Calegari, D., Szasz, N.: Verification of model transformations: A survey
of the state-of-the-art. Electronic Notes in Theoretical Computer Science
292(0), 5–25 (2013)

[12] Cheng, Z., Monahan, R., Power, J.F.: A sound execution semantics
for ATL via translation validation. In: 8th International Conference on
Model Transformation. pp. 133–148. Springer, L’Aquila, Italy (2015)

[13] Cheng, Z., Tisi, M.: Incremental deductive verification for relational
model transformations [online]. available: https://github.com/veriatl/
genTool (2016)

[14] Cheng, Z., Tisi, M.: A deductive approach for fault localization in ATL
model transformations. In: 20th International Conference on Fundamen-
tal Approaches to Software Engineering. Uppsala, Sweden (2017)

[15] Combemale, B., Crégut, X., Garoche, P., Thirioux, X.: Essay on seman-
tics definition in MDE - an instrumented approach for model verification.
Journal of Software 4(9), 943–958 (2009)

[16] Huth, M., Ryan, M.: Logic in Computer Science: Modelling and
Reasoning About Systems. Cambridge University Press (2004)

[17] Jia, Y., Harman, M.: An analysis and survey of the development of
mutation testing. IEEE Transactions on Software Engineering 37(5),
649–678 (2011)

[18] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transfor-
mation tool. Science of Computer Programming 72(1-2), 31–39 (2008)

[19] Kleene, S.C.: Introduction to Metamathematics. North-Holland (1962)
[20] Lano, K., Clark, T., Kolahdouz-Rahimi, S.: A framework for model

transformation verification. Formal Aspects of Computing 27(1), 193–
235 (2014)

[21] Leino, K.R.M.: This is Boogie 2. http://research.microsoft.com/en-us/
um/people/leino/papers/krml178.pdf. Microsoft Research, Redmond,
USA (2008)

[22] Leino, K.R.M., Wüstholz, V.: Fine-grained caching of verification re-
sults. In: 27th International Conference on Computer Aided Verification.
pp. 380–397. Springer, San Francisco, CA, USA (2015)

[23] Logozzo, F., Lahiri, S.K., Fähndrich, M., Blackshear, S.: Verification
modulo versions: Towards usable verification. In: Proceedings of the

35th ACM SIGPLAN Conference on Programming Language Design
and Implementation. pp. 294–304. ACM, New York, NY, USA (2014)

[24] Miller, D., Pimentel, E.: A formal framework for specifying sequent
calculus proof systems. Theoretical Computer Science 474, 98–116
(2013)

[25] Mottu, J.M., Sen, S., Tisi, M., Cabot, J.: Static analysis of model
transformations for effective test generation. In: 23rd International
Symposium on Software Reliability Engineering. pp. 291–300. IEEE,
Dallas, TX (2012)

[26] de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: 14th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. pp. 337–340. Springer, Budapest, Hungary
(2008)

[27] Oakes, B.J., Troya, J., Lúcio, L., Wimmer, M.: Fully verifying transfor-
mation contracts for declarative ATL. In: 18th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems. pp.
256–265. IEEE, Ottawa, ON (2015)

[28] Poernomo, I., Terrell, J.: Correct-by-construction model transformations
from partially ordered specifications in Coq. In: 12th International Con-
ference on Formal Engineering Methods. pp. 56–73. Springer, Shanghai,
China (2010)

[29] Qi, D., Roychoudhury, A., Liang, Z., Vaswani, K.: DARWIN: An ap-
proach to debugging evolving programs. ACM Transactions on Software
Engineering and Methodology 21(3) (2012)

[30] Roychoudhury, A., Chandra, S.: Formula-based software debugging.
Communications of the ACM (2016)

[31] Selim, G., Wang, S., Cordy, J., Dingel, J.: Model transformations for
migrating legacy models: An industrial case study. In: 8th European
Conference on Modelling Foundations and Applications. pp. 90–101.
Springer, Lyngby, Denmark (2012)

[32] Tisi, M., Perez, S.M., Choura, H.: Parallel execution of ATL trans-
formation rules. In: 16th International Conference on Model-Driven
Engineering Languages and Systems. pp. 656–672. Springer, Miami,
FL, USA (2013)

[33] Wagelaar, D.: Using ATL/EMFTVM for import/export of medical data.
In: 2nd Software Development Automation Conference. Amsterdam,
Netherlands (2014)

APPENDIX A: NATURAL DEDUCTION RULES SPECIFIC TO
ATL

x.a : T T ∈ cl(MMT)

x.a ∈ All(T) ∨ unDef(x.a)
TPe1

x.a : Seq T T ∈ cl(MMT)

(|x.a| > 0 ∧ ∀i · (i ∈ x.a ⇒ i ∈ All(T) ∨ unDef(i))) ∨ |x.a| = 0
TPe2

T ∈ cl(MMT) trace(T) = {R1, ..., Rn} i ∈ All(T)

genBy(i, R1) ∨ ... ∨ genBy(i, Rn)
TRe1

T ∈ cl(MMT) trace(T) = {R1, ..., Rn} i : T unDef(i)

¬(genBy(i, R1) ∨ ... ∨ genBy(i, Rn))
TRe2

Notations. Each rule has a list of hypotheses and a conclusion,
separated by a line. We use standard notation for typing (:) and
set operations. Some special notations in the rules are T for a
type, MMT for the target metamodel, Rn for a rule n in the
input ATL transformation, x.a for a navigation expression, and
i for a fresh variable / model element. In addition, we introduce
the following auxiliary functions: cl returns the classifier types
of the given metamodel, trace returns the ATL rules that
generate the input type (i.e. the static trace), genBy(i,R) is
a predicate to indicate a model element i is generated by
the rule R, unDef(i) abbreviates i.oclIsUndefined() and All(T)
abbreviates T.allInstances().

11

https://github.com/veriatl/genTool
https://github.com/veriatl/genTool
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf

