2 research outputs found

    D13.3 Overall assessment of selected techniques on energy- and bandwidth-efficient communications

    Get PDF
    Deliverable D13.3 del projecte europeu NEWCOM#The report presents the outcome of the Joint Research Activities (JRA) of WP1.3 in the last year of the Newcom# project. The activities focus on the investigation of bandwidth and energy efficient techniques for current and emerging wireless systems. The JRAs are categorized in three Tasks: (i) the first deals with techniques for power efficiency and minimization at the transceiver and network level; (ii) the second deals with the handling of interference by appropriate low interference transmission techniques; (iii) the third is concentrated on Radio Resource Management (RRM) and Interference Management (IM) in selected scenarios, including HetNets and multi-tier networks.Peer ReviewedPostprint (published version

    A framework for energy-efficient design of 5G technologies

    No full text
    International audienceThis paper considers the problem of energy efficiency maximization in the uplink of a cluster of multiple-antenna coordinated access points. A framework for energy efficiency optimization is developed in which the signal-to-interference-plus-noise ratio takes a more general expression than existing alternatives so as to encompass most 5G candidate technologies. Two energy efficiency optimization problems are formulated, also considering QoS constraints: 1) network global energy efficiency maximization; 2) worst-case energy-efficient design. These fractional, non-convex problems are tackled by means of fractional programming coupled with sequential convex optimization , and two low-complexity resource allocation algorithms are designed, which are guaranteed to converge to Karush-Kuhn-Tucker points of the non-convex problems. Numerical results show that the proposed algorithm can efficiently balance between the goals of maximizing the energy efficiency and meeting the QoS constraints. Moreover, it is shown that a small sum-rate reduction allows large energy savings
    corecore