38,144 research outputs found

    Planning Based System for Child-Robot Interaction in Dynamic Play Environments

    Get PDF
    This paper describes the initial steps towards the design of a robotic system that intends to perform actions autonomously in a naturalistic play environment. At the same time it aims for social human-robot interaction~(HRI), focusing on children. We draw on existing theories of child development and on dimensional models of emotions to explore the design of a dynamic interaction framework for natural child-robot interaction. In this dynamic setting, the social HRI is defined by the ability of the system to take into consideration the socio-emotional state of the user and to plan appropriately by selecting appropriate strategies for execution. The robot needs a temporal planning system, which combines features of task-oriented actions and principles of social human robot interaction. We present initial results of an empirical study for the evaluation of the proposed framework in the context of a collaborative sorting game

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Learning style and learning strategies in a multimedia environment

    Get PDF
    There is a growing realization that it may be expeditious to combine elements from different theories of learning when trying to derive a coherent and usable policy towards computerā€mediated learning. Consideration of the subtle distinction between Computerā€Aided Learning (CAL) and Computerā€Aided Instruction (CAI) conform the basis of a possible classification of computerā€mediated learning, and hence of multimedia tools. This classification enables the development of a continuum upon which to place various strategies for computerā€mediated learning, and hence a means of broadly classifying multimedia learning tools

    Ontology mapping: the state of the art

    No full text
    Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the tasks envisaged by a distributed environment like the Semantic Web. Multiple ontologies need to be accessed from several applications. Mapping could provide a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners. Developing such mapping has beeb the focus of a variety of works originating from diverse communities over a number of years. In this article we comprehensively review and present these works. We also provide insights on the pragmatics of ontology mapping and elaborate on a theoretical approach for defining ontology mapping

    Multi-agent systems for power engineering applications - part 2 : Technologies, standards and tools for building multi-agent systems

    Get PDF
    This is the second part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examined the potential value of MAS technology to the power industry, described fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications, and presented a comprehensive review of the power engineering applications for which MAS are being investigated. It also defined the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented. Given the significant and growing interest in this field, it is imperative that the power engineering community considers the standards, tools, supporting technologies and design methodologies available to those wishing to implement a MAS solution for a power engineering problem. The paper describes the various options available and makes recommendations on best practice. It also describes the problem of interoperability between different multi-agent systems and proposes how this may be tackled
    • ā€¦
    corecore