
Fractal-Based Re-Design

A thesis submitted to the
University of Wales, Cardiff

for the degree of

Doctor of Philosophy

by

Yan Wu, BEng.

Manufacturing Engineering Centre
Cardiff University
United Kingdom

2006

UMI Number: U584963

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584963
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Thesis Summary

Engineering conceptual design is a knowledge-intensive process that generates solutions

to a product specification. It is a process that can benefit from past experience o f similar

designs. In reality however, designers often have limited time to build up the necessary

experience and are, in any event, unlikely to become experts in all relevant fields. Hence

there is a need to capture, store and reuse valuable knowledge. Currently available

conventional CAD systems offer limited possibilities for the re-use o f existing designs.

Techniques from the field o f Artificial Intelligence (AI) may be applied to aid the

conceptual design phase, which is known as the area of intelligent computer-aided design.

The aim of this work is to identify and externalise design knowledge using a fractal-like

model, to understand the role of design knowledge in conceptual design and to use design

knowledge as a guide for every stage o f concept development. This research provides a

framework for supporting conceptual design, which uses the techniques o f Case-Based

Reasoning (CBR) and fractal theory, for reasoning about the design and development of

computer-based design aids.

The framework is comprised of three parts. The first is case representation. This research

proposes a new representation technique, Fractal-like Design Modelling (FDM), which

integrates design knowledge in a graph-based form and has fractal-specific characteristics.

The second is case retrieval. Based on FDM, the similarity between a new design and the

existing designs is assessed by concurrently applying a feature-based similarity measure

and a structure-based similarity measure. The third is case adaptation. With the help of

fractal characteristics, an approach of adaptive design is developed by performance

revision and by goal-oriented substitution. These three parts work together to achieve an

automated, case-based, conceptual design method: Fractal-Based Re-design.

Dedication

This dissertation is dedicated to my family for their support during this work.

Acknowledgements

I would like to thank my supervisor Prof. D. T. Pham for his excellent supervision,

continuous encouragement, and support. He is a brilliant supervisor.

iv

Declaration/Statements

Declaration

This work has not previously been accepted in substance for any degree and is not

concurrently submitted in candidature for any degree.

Date.3..!./.(..’?../o*....

Statement 1

This thesis is being submitted in partial fulfilment o f the requirements for the degree o f

PhD.

Dat

Statement 2

This thesis is the result o f my own independent work/investigation, except where

otherwise stated. Other sources are acknowledged by explicit references.

Signed. rrr....................... Dat

Statement 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and for

inter-library loan, and for the title and summary to be made available to outside

organisations.

Signed Date. .3. . ! . { ?

V

Contents

Abstract ii

Dedication iii

Acknowledgements iv

Declaration v

Contents vi

List of Figures x

List of Tables xiii

Abbreviations xiv

List of Symbols xvi

Chapter 1 - Introduction 1

1.1 Overview 1

1.2 Engineering design and product development 1

1.3 Research topic 3

1.4 Research objectives 5

1.5 Outline o f the thesis 5

Chapter 2 - Literature Review 8

2.1 Overview 8

2.2 A review o f conceptual design research 9

2.2.1 Engineering design 9

2.2.2 Conceptual design 17

2.2.3 Intelligent design 18

2.2.3.1 Conceptual design modelling 20

2.2.3.2 Concept generation 33

2.2.3.2.1 Creative design 34

2.2.3.3 Concept selection 36

2.2.4 Artificial Intelligence techniques in design 37

2.2.5 Discussion 42

vi

2.3 A review o f Case-Based Reasoning for design 43

2.3.1 Represent a design case 45

2.3.2 Existing approaches to measuring similarity 49

2.3.3 Existing methods of adaptation 52

2.3.4 Discussion 56

2.4 Fractal based thinking 57

2.5 Summary 61

Chapter 3 - Fractal-like Design Modelling Using Attributed Graphs 63

3.1 Preliminaries 63

3.2 Fractal-like design modelling 63

3.2.1 Representing a design case in attributed graphs 64

3.2.2 Representing knowledge related to design objects 66

3.2.3 Representing design knowledge related to the design process in a fractal

model 72

3.2.4 An illustrative example 80

3.3 Characteristics of FDM 84

3.3.1 Self-similarity 84

3.3.2 Self-organisation 86

3.3.3 Goal-orientation 86

3.3.4 Dynamism 87

3.4 Discussion 87

3.5 Summary 90

Chapter 4 - Similarity Assessment on Attributed Graphs in Design Case

Retrieval 91

4.1 Preliminaries 91

4.2 Compared model generation 92

4.3 Similarity measure 93

4.3.1 Structure-based similarity measure (Ss) 95

4.3.2 Feature-based similarity measure (Sj) 100

4.3.3 Similarity assessment 106

4.4 An illustrative example 110

4.5 Discussion 120

4.6 Summary 122

Chapter 5 - Fractal-based Adaptation and Fractal-Based Re-design 123

5.1 Preliminaries 123

5.2 Fractal-based adaptation 124

5.2.1 Performance revision 126

5.2.1.1 An illustrative example 129

5.2.2 Goal-oriented substitution 134

5.2.2.1 An illustrative example 139

5.3 Fractal-Based Re-design (FBR) 143

5.4 Discussion 145

5.5 Summary 146

Chapter 6 - A Case Study of Fractal-Based Re-design in Automotive Body

Design 147

6.1 Preliminaries 147

6.2 Automotive body design 147

6.3 A case study o f Fractal-Based Re-design in automotive body design 148

6.4 Discussion 163

6.5 Summary 165

Chapter 7 - Conclusions 166

7.1 Preliminaries 166

7.2 Conclusions 166

7.3 Contributions 169

7.4 Recommendations 170

Appendix A An overview of the ICAD system

viii

172

Appendix B Code for case base 175

Appendix C Code for similarity measure and case retrieval 187

Appendix D Code for performance retrieval 193

Appendix E Code for goal-oriented substitution 198

Appendix F Code for Fractal-Based Re-design 208

References 227

ix

List of Figures

Chapter 2

Figure 2.1: Layout o f axiomatic design process 13

Figure 2.2: The Pahl and Beitz model of the design process 16

Figure 2.3: A generalisation of feature-based representation 47

Figure 2.4: A feature-based representation of a bolt design 48

Figure 2.5: A graph-based representation of a bolt design 48

Figure 2.6: Similarity among graphs 53

Figure 2.7: Conceptual structure of FrMS 59

Chapter 3

Figure 3.1 (a): A function model o f a car body 69

Figure 3.1(b): Representation o f a function model of a car body in case base 69

Figure 3.2(a): A feature model of a car body 70

Figure 3.2(b): Representation of a feature model o f a car body in case base 70

Figure 3.3(a): A structure model o f a car body 73

Figure 3.3(b): Representation of an assembly model o f a car body in case base 74

Figure 3.4: An illustration of a basic fractal unit 77

Figure 3.5: An example o f representing an engine compartment as a fractal 78

Figure 3.6: An overview o f the fractal structure 79

Figure 3.7: A structure o f a fractal-like design model 81

Figure 3.8: An example of representing a car body as a fractal-like design model 82

Figure 3.9: Self-similar fractals with different internal structures 85

Figure 3.10: A summary of fractal-like design model 89

Chapter 4

Figure 4.1: A compared model 94

Figure 4.2: Obtaining the subordinate relationships 98

Figure 4.3: Structure-based similarity measure on function model 98

Figure 4.4: Structure-based similarity measure on structure model 99

Figure 4.5: Features for comparison 101

x

Figure 4.6: Tolerance band 101

Figure 4.7: Grades for features 101

Figure 4.8: Feature-based similarity measure on feature model 103

Figure 4.9: Feature-based similarity measure on optional features 104

Figure 4.10: Feature-based similarity measure 105

Figure 4.11: Similarity assessment 108

Figure 4.12: An illustration of similarity assessment method 109

Figure 4.13: Car body represented by style lines 111

Figure 4.14: Input tolerance band 112

Figure 4.15: Input weights for features 112

Figure 4.16: Structure models o f dO, d l ,d 2 116

Figure 4.17: Weights for feature-based similarity measure 118

Figure 4.18: Weights for structure-based similarity measure on function model 118

Figure 4.19: Weights for structure-based similarity measure on structure model 118

Figure 4.20: The retrieved case d l 119

Chapter 5

Figure 5.1: Comparison o f performance 127

Figure 5.2: The process of performance revision 131

Figure 5.3: Performance selection 132

Figure 5.4: Re-design case selection 132

Figure 5.5: An illustration of the process o f re-design 133

Figure 5.6: The process o f input goal propagation 136

Figure 5.7: The process o f generation of simplified GDG 137

Figure 5.8: Definition o f generation of substitution 138

Figure 5.9 (a): Structure o f the goals of a case of a saloon car body 140

Figure 5.9 (b): The goals o f a case of a saloon car body 141

Figure 5.10: The GDG of a case o f a saloon car body 142

Figure 5.11: The framework of FBR 144

xi

Chapter 6

Figure 6.1 (a): The model of automotive body in the case base :Cb001 149

Figure 6.1 (b): The model of automotive body in the case base: Cb002 150

Figure 6.1 (c): The model of automotive body in the case base: Cb003 151

Figure 6.1 (d): The model of automotive body in the case base: Cb004 152

Figure 6.1 (e): The model of automotive body in the case base: Cb005 153

Figure 6.1 (f): The model o f automotive body in the case base: Cb006 154

Figure 6.1 (g): The model of automotive body in the case base: Cb007 155

Figure 6.2: Inputs to query the FBR system 159

Figure 6.3: Selection o f retrieval or adaptation 159

Figure 6.4: The result o f retrieval 160

Figure 6.5: Selection o f adaptation methods 160

Figure 6.6: Tracing simplified GDG in lisp-listener 161

Figure 6.7: The result o f adaptation 162

xii

List of Tables

Table 4.1: Comparison of the feature models of dO and d land o f dO and d2

using Sf 111

Table 4.2: Comparison o f the optional features of dO and d l and o f dO and d2

using Sf 114

Table 4.3: Summary o f comparison results 114

Table 6.1: A design specification for the automotive design 158

Table 6.2: Detail o f goal-oriented adaptation 161

Table 6.3: Comparison o f the design specification and result o f adaptation 164

xiii

Abbreviations

ABG Archi Bond Graph

ACM Artifact-Centered Modelling

AI Artificial Intelligence

AIM-D Axiomatic Information Model for Design

ARIZ Algorithm for Inventive Problem Solving

BFU Basic Fractal Unit

B-rep Boundary Representation

CAD Computer-Aided Design

CBR Case-Based Reasoning

CN Customer Needs

CSG Constructive Solid Geometry

CSP Constraint Satisfaction Problem

CUP Conceptual Understanding and Prototyping

DMT Design Mereotopology

DP Design Parameters

DS Design Schematics

EDIT Engineering Design Integrated Taxonomy

FBS Function-Behaviour-Structure

FDM Fractal-like Design Modelling

FEBS Function-Environment-Behavior-Structure

FR Functional Requirements

FrMS Fractal Manufacturing System

GA Genetic Algorithm

GDG Goal Dependency Graph

ICAD Intelligent Computer-Aided Design

IDL ICAD Design Language

MPG Model Process Graph

MT Mereotopology

PV

STEP

VR

Process Variable

STandard for the Exchange of Product model data

Virtual Reality

XV

List of Symbols

Ds Dissimilarity

!q Grades of features,

Ne Number of equal features

Nm Number of missing features

Nfeature Position of a design on the lists ranking its feature similarity with a

given design

Nfunctlori Position o f a design on the lists ranking its function similarity with a

given design

structure Position of a design on the lists ranking its structure similarity with a

given design

S Overall similarity measure

Sf Feature-based similarity

Ss Structure-based similarity measure

wj Weight for feature similarity measures

W2 Weight for function similarity measures

W3 Weight for structure similarity measures

xvi

Chapter 1

Introduction

1.1 Overview

This chapter briefly introduces the research presented in this thesis. The specific topic

o f the current research is discussed. This is followed by the objectives o f the research.

The chapter ends with a description o f the structure of the thesis.

1.2 Engineering design and product development

Engineering design is a systematic, intelligent generation and evaluation of

specifications for artefacts whose form and function achieve stated objectives and

satisfy specified constraints (Dym, 1994). Engineering design includes the roles of

marketing, finance, planning, and overall management. There are many different

models o f the engineering design process, but they all include the following elements

in some form or another (Kroll et al., 2001).

> A stage to identify and analyse a need prior to initiating conceptual design.

> A conceptual design stage to create new ideas that satisfy the need.
l

> Activities through which a concept is turned into an overall product or system

layout.

> A stage to finalise the design details.

Conceptual design is considered a very important phase of the product development

life cycle. It is a process o f generating and implementing the fundamental ideas that

characterise a product. Great opportunities exist at this stage. Conceptual design has a

powerful impact on manufacturing productivity and product quality, as many

manufacturing processes are indirectly determined at this stage. The concept

generated at this stage affects the basic shape generation and material selection of the

concerned product. It is difficult, or even impossible, to compensate for or to correct a

poor design concept formulated at the conceptual design phase in the subsequent

phase o f detailed design.

Computers, which have been widely used in many areas in engineering, e.g.

simulations, analysis, and optimisation, have few applications at the conceptual

design stage. This is because information at the early stage o f design is usually

imprecise and incomplete, making it difficult to utilise computer-based systems.

Artificial Intelligence (AI) is well suited to support conceptual design. The work in AI

has the following directions: pursuing systemic and intellectual integration; building

robots (both physical and computational); modelling rationality; supporting

collaboration; enhancing communication; obtaining the broad reaches of knowledge

needed for intelligent action; deepening the mathematical foundations o f the field. As

a result o f the application of AI techniques to conceptual design, an area o f research

known as intelligent design has emerged. This area of research examines how to

provide computer support for modelling and automating the cognitive processes and

knowledge representations which engineers apply to design problems.

1.3 Research topic

Engineering conceptual design is a knowledge-intensive process that generates

solutions to a product specification. It is a process that can benefit from past

experience o f similar designs. In reality, however, designers often have little time to

build up the necessary experience and are unlikely to become experts in all relevant

fields. Hence, there is a need to capture, store and reuse valuable knowledge. At

present, most common CAD systems can only help designers to construct geometric

models step by step. They offer few possibilities for the reuse o f existing designs

(Wang et al., 2002). The need for computational frameworks to enable engineering

product development, by effectively supporting the formal representation, capture,

retrieval and reuse o f product knowledge, becomes more critical (Szykman et al.,

2001).

Fractal theory, which has been adopted in the field of manufacturing system design

and analysis (Wamecke, 1993), promises to help address these design representation

3

and automation issues. The fractal structure has the potential to model combinations

o f different types o f knowledge for different purposes, while the fractal specific

characteristics can benefit the automation of the design process by providing design

knowledge as a guide. This research was aimed at developing a systematic approach

to intelligent design. In particular, the research was concerned with the application of

case-based reasoning and fractal theory to conceptual design. It targeted the

case-based design process and attempted to develop methods for providing computer

support to automate it.

As the core o f the system, a comprehensive design case representation, called

Fractal-like Design Modelling (FDM), has been introduced. The design model

integrates various aspects o f design information, including knowledge related to

design objects and design processes. Moreover, the design model has fractal

characteristics, which can greatly benefit the process o f case-based reasoning. The

model is employed to assess the similarity between a new design and the existing

designs, and to adapt a retrieved design to suit a new situation. The similarity of

design models is measured by considering both the features and the structures o f the

design. The obtained design model is then adapted by the guidance o f the integrated

design knowledge according to different purposes of re-design These include

performance revision and goal-oriented substitution. In addition, the research also

concerned user preference at every stage of the design process and attempted to

develop a tool that can fulfil the designer’s requirements.

4

1.4 Research objectives

The main objectives o f this research were:

1) To identify and externalise design knowledge using a fractal-like model.

2) To understand the role of design knowledge in conceptual design.

3) To use design knowledge as a guide for every stage of concept development.

4) To provide a framework for supporting conceptual design, using the techniques o f

case-based reasoning and fractal theory, for reasoning about design and

development o f computer-based design aids.

1.5 Outline of the thesis

This thesis comprises six chapters and six appendices. The remainder o f its structure

is as follows:

Chapter 2 reviews the background literature relevant to the work presented in the

thesis.

Chapter 3 presents a fractal-like design modelling technique for representing the

various aspects o f design knowledge in attributed graphs.

Chapter 4 describes an approach for measuring the similarity o f design models based

5

on the graph representation described in Chapter 3.

Chapter 5 addresses the fractal-based adaptation strategies and presents a systematic

approach for automating the adaptive design.

Chapter 6 presents a case study demonstrating the application o f the proposed

approach to a conceptual design problem.

Chapter 7 presents the conclusions o f the research and recommendations for further

study.

Appendix A provides an overview o f the ICAD system for conceptual design.

Appendix B gives the ICAD code for case representation.

Appendix C shows the ICAD code for the approach of graph-based similarity

measure and case retrieval.

Appendix D lists the ICAD code for the adaptation approach o f performance

retrieval.

Appendix E presents the ICAD code for the adaptation approach o f goal-oriented

substitution.

Appendix F contains the ICAD code for Fractal-Based Re-design, which integrates

case retrieval, performance revision, and goal-oriented substitution.

7

Chapter 2

Literature Review

2.1 Overview

This chapter surveys the background literature relevant to the work presented in this

thesis. The background o f conceptual engineering design is reviewed from four

perspectives. First, engineering design as an essential activity of product development

is reviewed. Next, the conceptual design stage as a part of the entire design process is

highlighted. At the same time, some critical issues of intelligent engineering design

are discussed. These include the modelling for conceptual design, concept generation,

and concept selection. Then some AI techniques applied in design are reviewed.

Case-Based Reasoning (CBR) techniques have been applied to many aspects o f the

engineering design problem. This chapter also reviews the literature on the application

o f CBR techniques to engineering design. It will be shown that, while CBR has been

applied to many aspects of design, there is considerable scope for research into using

CBR techniques to support the conceptual phase o f design. Finally, this chapter gives

an introduction to fractal theory and its relevance to this research.

2.2 A review of conceptual design research

2.2.1 Engineering design

The UK-based Institution of Engineering Designers and the engineering design

lecturer organisation SEED Ltd (Sharing Experience in Engineering Design) has

defined engineering design as follows (Hurst, 1999).

“Engineering design is the total activity necessary to establish and define solutions to

problems not solved before, or new solutions to problems which have previously been

solved in a different way. The engineering designer uses intellectual ability to apply

scientific knowledge and ensures the product satisfies an agreed market need and

product design specification whilst permitting manufacture by the optimum method.

The design activity is not complete until the resulting product is in use providing an

acceptable level ofperformance and with clearly identified methods o f disposal. ”

In other words, engineering design is such a process that uses scientific knowledge

and methodologies to create an engineering product or a plan. An engineering design

methodology provides knowledge including (Roozenburg & Eekels, 1995):

> Models o f design and development processes, representing the structure of

thinking and action in designing,

> Methods and techniques to be used within these processes, and

9

> A system of concepts and corresponding terminology.

The majority o f the authors of the established design methodologies present the

design activity as a linear process passing through a number o f discrete phases. For

example, French (French, 1985) splits the design process into four main phases:

analysis o f the problem, conceptual design, embodiment o f schemes, and detailing.

These phases are conducted one after the other in a logical sequence that leads the

designer from a need (or set o f requirements) to the final design solution. Feedback

loops are often added to allow a return to previous phases if required (Daniel et al.,

2004).

Two widely accepted methodologies o f the engineering design process are discussed

in this section.

Axiomatic design

Suh (Suh, 1990) argues that design involves four distinct aspects o f engineering and

scientific endeavour:

> The problem definition from a “fuzzy” array of facts and myths into a coherent

statement o f the problem;

> The creative process of devising a proposed physical embodiment of solutions;

> The analytical process of determining whether the proposed solution is correct or

10

rational;

> The ultimate check of the fidelity of the design product to the original perceived

needs.

Axiomatic design defines the design process as the creation o f synthesised solutions

that satisfy requirements by mapping within the four domains o f Customer Needs

(CN), Functional Requirements (FR), Design Parameters (DP), and Process Variables

(PV). The four-domain structure is schematically illustrated in Figure 2.1. As the

mapping process is non-unique, the final outcome of the design depends on a

designer’s individual creative process. Two design axioms are introduced as the

principles that the mapping technique must satisfy to produce a good design, and as a

basis for comparing and selecting designs (Suh, 1990):

> Axiom 1 The Independence Axiom — maintain the independence of FRs.

> Axiom 2 The Information Axiom — minimise the information content o f the

design.

Axiom 1 states that during the design process, when going from the FRs in the

functional domain to the DPs in the physical domain, the mapping must be such that a

perturbation in a particular DP must affect only its referent FR. Axiom 2 states that,

among all the designs that satisfy the Independence Axiom (Axiom 1), the one with

minimum information content is the best design. Based on the two axioms of design, a

number of derived corollaries are discussed in Suh’s book (Suh, 1990).

l i

As shown in Figure 2.1, axiomatic design views the design process as a stepwise

decomposition process where design functions are elaborated to more detailed

functions as the design progresses. In axiomatic design, the design process is not a

one step process unless only one decomposition is required. For each domain,

designers are encouraged to decompose the top level objects to detailed objects and

apply two design axioms along the way.

Systematic design

The theory of systematic design is based on the notion that the design process must be

carefully planned and systematically executed. According to Pahl and Beitz (Pahl &

Beitz, 1996), a systematic approach:

> Defines the goals by formulating the overall goal, the individual sub-goals and

their importance;

> Clarifies the boundary conditions by defining the initial and marginal constraints;

> Dispels prejudice to ensure the most wide-ranging possible search for solutions

and to avoid logical errors;

> Searches fo r variants, that is to find a number o f possible solutions or

combinations o f solutions from which the best can be selected;

> Evaluates based on the goals and the requirements;

> Makes decisions. This is facilitated by objective evaluations.

12

Customer Functional Physical Process

Abstract Domain Domain Domain Domain

Layer 1

Layer 2

Layer n

Detail

Figure 2.1: Layout o f axiomatic design process

13

According to the systematic design theory, the design process must be split, first into

phases and then into distinct steps, each with its own working methods. Pahl and

Beitz (Pahl & Beitz, 1996) defines the following four main phases for the design

process, as shown in Figure 2.2:

> Product planning and clarifying the task. Product planning, based on the

company’s goals, is the systematic search for, and the selection and development

of, promising product ideas. Clarification of the task is achieved by collecting

information about the requirements to be fulfilled by the product and by the

existing constraints together with their importance. This activity leads to the

formulation o f a requirements list.

> Conceptual design. This phase determines the principle solution. It is achieved by

abstracting the essential problems, establishing function structures, searching for

suitable working principles, and combining those principles into a working

structure. Conceptual design results in the specification o f principle.

> Embodiment design. In this stage, designers, starting from a concept (working

structure, principle solution), determine the construction structure (overall layout)

with technical and economic criteria. Embodiment design results in the

specification o f layout.

> Detail design. This is the phase of the design process in which the arrangement,

forms, dimensions, and surface properties of all the individual parts are finally

decided, the materials are specified, production possibilities are assessed, costs

14

are estimated, and all the drawings and other production documents are produced.

The result o f the detail design phase is the specification o f production.

Based on Pahl and Beitz’s theory, Aleixos et al. (Aleixos et al., 2004) proposed a new

five-step approach, which distinguishes in detail the tasks embedded in embodiment

design. The division separated the management of conceptual information from

transferring and integrating this conceptual data into a commercial CAD system tool.

This gives the possibility to try other alternative solutions without generating the final

design geometry.

15

In
fo

rm
at

io
n:

 A
da

pt
 t

he

re
qu

ire
m

en
ts

lis

t

Task
Market, company, economy

Requirements list
(Design specification)

Concept
(Principle solution)

Q.

o>Q.

Preliminary layout

Definitive layout

Product documentation

Prepare production & operating documents:
Elaborate detail drawing & parts lists
Complete production, assembly, transport & operating instructions
Check all documents

Define the construction structure:
Eliminate weak spots
Check for errors, disturbing influences & minimum costs
Prepare the preliminary parts list & production &
assembly documents

Develop the construction structure:
Carry out preliminary form design, material selection & calculation
Select best preliminary layouts
Refine & improve layouts
Evaluate against technical & economic criteria

Develop the principle solution:
Identify essential problems
Establish function structures
Search for working principles & working structures
Combine and firm up into concept variants
Evaluate against technical & economic criteria

Plan and clarify the task:
Analyse the market & the company situation
Find & select product ideas
Formulate a product proposal
Clarify the task
Elaborate a requirements list

O)c
'Ec
J5Q.
o
3

■oo

T Co3
(0o

■o £
C m(0 jS o

</>
f i

t
(03
Q.
Q)
O
Co
o

cO)
'25
o
T3

C
g>
'</>o■a
*->co
E
£on
E

HI

— c
iS -m Ws 4

c
o
oD13
2Q.
a)

JC.

Q.o

o
CL
o c •cQ.
(1) £

A o
c o

CL
O

Figure 2.2: The Pahl and Beitz model o f the design process (Pahl & Beitz 1996)
16

O
pt

im
is

at
io

n
of

the

la
yo

ut
,

fo
rm

s
an

d
m

at
er

ia
ls

2.2.2 Conceptual design

Conceptual design refers to the early stages of design, when major decisions are still

to be made. It takes the statement of the problem, brings engineering science, practical

knowledge, production methods, and commercial aspects together, and generates

broad solutions to it in a form referred to as “schemes” (French, 1985). It is the phase

where the most important decisions are taken and where there is the most scope for

striking improvements. Decisions made during conceptual design have significant

influence on the cost, performance, reliability, safety, and environmental impact of a

product. At this stage, information is very fuzzy and incomplete, which makes the

design process quite difficult and challenging. The tasks involved in conceptual

design are characterised by tentativeness, trial-and-error, exploration, ambiguity, and

imprecision (Nakakoji et al., 2001).

In modem industry, with companies participating in global design chains, product

design requires collaboration in a distributed environment. Extensive research has

been carried out to develop prototype systems and methodologies for collaborative

design (Kima et al., 2004; Sharma et al., 2006; Shyamsundar & Gadh, 2002). Work in

infrastructure design, communication algorithms and geometric computing algorithms

has been made to address the complexity of collaborative design activities and the

specific requirements of CAD systems. Huang et al. (Huang et al., 2003) developed a

system called ProDefine to support early product definition on the Internet. This

17

system supports collaboration, synchronously and/or asynchronously, through the

Internet. Chen et al. (Chen et al., 2004) developed an Internet-enabled real-time

collaborative assembly modelling system called e-Assembly. It allows geographically

dispersed designers to jointly build an assembly model in real time over a distributed

computing network such as the Internet. This e-Assembly system contributes to

identifying and resolving assembly induced design conflicts arising from the

outsourcing o f design activities in the early stages of team design. Some of the

previous work related to collaborative design has been reported in the literature (Fuh

& Li, 2005).

2.2.3 Intelligent design

It has been estimated that design decisions made in conceptual design account for

more than 75% of final product costs (Hsu & Liu, 2000). More importantly, a poorly

conceived design concept might never be compensated for by a good detailed design.

Researchers have focused their attention in developing tools and techniques that are

able to support conceptual design activity. A standard for a good design tool (problem

solver) has been defined as follows (Pahl & Beitz, 1996). The tool must:

> Have a sound and structured technical knowledge;

> Find an appropriate balance between concreteness and abstraction, depending on

the situation;

> Be able to deal with uncertainty and fuzzy data;

18

> Continuously focus on the goals while adopting flexible decision making

behaviour;

> Possess a further ability referred to as heuristic competence, which involves:

activating goal-directed creativity, recognising importance and urgency, planning,

guiding, and controlling their work.

Intelligent design is aimed at modelling and automating the cognitive processes and

knowledge representations which human engineers apply to design problems. The

cognitive processes include searching, reasoning or inference and optimisation.

Collaboratively they operate on environment artefacts to carry out routine and

creative design. The elements which make up an intelligent design theory include a

process model, a set of appropriate knowledge representations and a research

approach (Preston & Mehandjiev, 2004).

The process model contains several models which together explain different aspects

of the process. These are: Strategy (a textual description o f the process, in a manner

similar to a general paradigm such as learning, searching, game playing, evolutionary,

generative, or a stepwise approach), Descriptive (a textual and graphical description

of the process, showing its main features, knowledge and control flows, and its

general structure), Formal (these models provide mathematical rigor or make use of a

logic to formalise the process and associated terms), and Computable (usually an

algorithmic model, ready for translating it into supporting software).

19

Knowledge in design is used for manipulating design objects, for showing the next

stage in given situations, for producing and interpreting design specifications and for

controlling the design process. Representing knowledge relies on the developments

carried out: for example, function-based modelling, grammar and ontology,

geometry-based methods, a logical approach, graph-based modelling, generative

representation, the design rationale, rule-based systems.

The research approaches used by design researchers fall into the categories of concept

generation and concept selection

This section reviews the work in intelligent design from the following perspectives.

> Modelling the knowledge and complex interactions between various facets of a

product.

> Generation and selection of feasible solutions.

> Decision making and trade-off for the feasible solutions.

2.2.3.1 Conceptual design modelling

Designers have limited time to build up experience in all relevant fields. Hence, there

is a need to capture, store, and reuse knowledge. The goal o f any knowledge

representation is to enable and facilitate automated and semi-automated reasoning

processes (Bo & Salustri, 1999). There are two important issues for modelling

2 0

(Vancza, 1999): the models should be re-usable and shareable, and the models should

not only involve physical models, which cannot support commonsense reasoning and

efficient design problem solving. A few design modelling methods are reviewed in

this section.

Function-based modelling

Engineering design can be defined as mapping from a requirement specification at the

functional level into a set of attribute values of concrete products. Functionality plays

a crucial role in the conceptual design of engineering devices. Knowledge of

functionality is essential in a wide variety of design-related activities, such as the

specification, generation, modification, evaluation, selection, explanation and

diagnosis o f designs. Function-based design modelling helps guide, constrain and

solve the design problem by reasoning about the functions that the designs provide.

Function is often integrated into a complete design approach.

The most well-known approach is “Function-Behaviour-Structure (FBS)”. The FBS

scheme has been applied to support design synthesis based on function (Qian & Gero,

1996). This scheme uses the relationships between the physical structure, behaviour,

and functionality of designs to provide a basis for product development. The eight

processes depicted in the FBS framework are claimed to be fundamental for all

designs (Gero & Kannengiesser, 2004):

21

> Formulation transforms the design requirements, expressed in function, into

behaviour that is expected to enable this function.

> Synthesis transforms the expected behaviour into a solution structure that is

intended to exhibit this desired behaviour.

> Analysis derives the “actual” behaviour from the synthesised structure.

> Evaluation compares the behaviour derived from structure with the expected

behaviour to prepare the decision if the design solution is to be accepted.

> Documentation produces the design description for constructing or manufacturing

the product.

> Reformulation type 1 addresses changes in the design state space in terms of

structure variables or ranges of values for them if the actual behaviour is

evaluated as unsatisfactory.

> Reformulation type 2 addresses changes in the design state space in terms of

behaviour variables or ranges of values for them if the actual behaviour is

evaluated as unsatisfactory.

> Reformulation type 3 addresses changes in the design state space in terms o f

function variables or ranges of values for them if the actual behaviour is

evaluated as unsatisfactory.

Some researchers presented an extended model o f FBS, called the

Function-Environment-Behavior-Structure (FEBS) design model (Deng et al., 2000),

in which the newly added “environment” stands for those environmental elements

2 2

contributing to the functions of the design. Bo and Salustri (Bo & Salustri, 1999)

proposed a representation of product function, which has “function descriptor, input

descriptor, output descriptor, how link, why link and value”. O ’Sullivan (O'Sullivan,

1999, 2002) applied a function-means map to model functional design knowledge,

indicating how functions can be provided by physical means. Anthony et al. (Anthony

et al., 2001) developed an approach, Conceptual Understanding and Prototyping

(CUP), which integrates the description of formally represented engineering

knowledge (function and behavior) with 3D graphical conceptual modeling. Kitamura

and Mizoguchi (Kitamura & Mizoguchi, 2003) proposed an ontology-based method

for capturing the knowledge of function decomposition. How functional reasoning has

successfully established representation o f function in design has been reported in the

literature (Umeda & Tomiyama, 1997).

Geometry-based methods

In conceptual design various solutions are usually generated from a non-spatial

perspective and lack detailed geometric structure. However, geometry is also

important at the conceptual design stage. It is important to consider all critical

geometric and spatial relationships that are relevant.

Geometry modelling focuses on representing the structural aspects o f a product. Gero

and Jupp (Gero & Jupp, 2003; Jupp & Gero, 2004) developed an approach to shape

23

and spatial representation for architectural design and the 2D building plan. The core

idea is that design drawings can be uniquely characterised by the representation of

embedded shape and spatial features. Each embedded shape and spatial feature is

described by qualitative values and stored as a series of symbols in a ID string and

graphs.

STEP (STandard for the Exchange of Product model data) may also be considered as a

tool to support knowledge representation (Denkena et al., 2005). STEP has been

widely used for product data exchange and management. Its data models and methods

provide a common basis for integrated collaboration processes in enterprises,

allowing a holistic view that encompasses areas like design, engineering, testing,

manufacturing, and quality assurance.

The realised product o f engineering design is a 3D model. However, the traditional

2D modelling restrains the designer’s creativity and imagination and hampers

innovation. The development o f 3D modelling and virtual manufacturing provides a

good platform for conceptual design and innovation. Designers can start directly from

a 3D concept to implement conceptual design, decide the framework of the product,

then with the techniques of engineering analysis, simulation, Virtual Reality (VR), etc.,

analyse and evaluate the feasibility o f the solution and the quality and reliability of the

product. This design method makes full use of designer’s intelligence and creativity,

without the constraints of 2D modelling. With the newly available VR technology, it

24

is nowadays possible to build a design system that allows full three-dimensionality in

all stages of the design process (Arangarasan et al., 2000). Spacedesign (Fiorentino et

al., 2002) is an approach which uses task-specific configurations to support the design

workflow from concept to mock-up evaluation and review. The first-phase conceptual

design benefits from a workbench-like 3D display for free hand sketching, surfacing,

and engineering visualisation.

Recently, aesthetic criteria have caught more attention in CAD (Fiorentino et al., 2002)

(Juster et al., 2001). Aesthetic engineering and artistic shape optimisation (Sequin,

2005) needs more support from CAD tools. In a traditional CAD setting, a computer

primarily serves as a precise drafting and visualisation tool, permitting the designer to

view the emerging geometry from different angles and in different projections.

Nowadays, a computer actively supports the creation o f geometric shapes by

procedural means and can even optimise a surface by maximising some beauty

functionalities.

Grammar

Design grammar includes a vocabulary o f engineering entities, a set o f terminal

symbols, a design start symbol, and knowledge about valid configurations of

engineering entities (Andersson, 1993). There are two main categories of design

grammar: graph grammars and shape grammars.

25

Andersson (Andersson, 1993) introduced a structure and components o f a vocabulary

for conceptual design of mechanical products. The components o f this vocabulary

consist o f engineering concepts represented as engineering entities, using Conceptual

Graphs and classified into taxonomies. Each engineering entity is defined by its

position in the taxonomy and by a type description. This vocabulary can be utilised

for generating the resulting design descriptions of the conceptual design phase and for

representing both syntactic knowledge and interpretative knowledge. Semantics and

syntax have also been used by some researchers. Ding and Gero (Ding & Gero, 2001)

developed a syntax-semantics model to interpret style, with semantics to be the

implicit properties o f style and syntax to be the explicit representation of style. Deng

(Deng, 2002) proposed a semantic and syntactic representation of mechanical

function and behaviour.

Shape grammars derive designs in the language they specify by successive application

of shape transformation rules to some evolving shape, starting with an initial shape.

Shape grammars are essentially a rule set defining how shapes in a set can be

modified. In addition, shape grammars allow labels to be associated with shapes to

carry non-geometric information and guide the generation process. Finally, their

parametric nature allows the same small and finite rule set to generate an infinite

number of designs, allowing a generative system to explore a wide variety o f designs

(Agarwal & Cagan, 2000). Shape grammar has been used to represent engineering

knowledge and to analyse designs (Agarwal & Cagan, 2000). McCormack et al.

26

(McCormack et al., 2004) applied shape grammars as a method for encoding the key

elements of a brand into a repeatable language, which is used to generate products

consistent with the brand.

Ontology

Ontology is a set o f common terms and concepts that are general enough to describe

different types o f knowledge in different domains but specific enough for application

to particular design problems (Hsu & Woon, 1998). Noy and McGuinness (Noy &

McGuinness, 2001) defines an ontology as a formal explicit description of concepts in

a domain o f discourse (classes or concepts), properties o f each concept describing

various features and attributes o f the concept (slots or roles or properties), and

restrictions on slots (facets or role restrictions). Ontology, together with a set of

individual instances o f classes, constitutes a knowledge base. A design ontology has

an intentional semantic structure that defines and arranges all related notions (Horvath

et al., 1998).

A certain amount of research on the use of ontology in design has been conducted

(Setchi et al., 2005). Borst (Borst, 1997) developed an ontology collection called

PHYSSYS that covers a wide, multidisciplinary range of physical systems and their

engineering. This collection contains different types: highly generic ontologies

(mereology, topology, and systems theory), base ontologies valid for a whole field

27

(e.g. technical components, physical processes, representing natural categories or

viewpoints within a broad field), and domain ontologies (specialisations of base

ontologies to a specific domain, e.g. thermodynamics). Horvath et al. (Horvath et al.,

1998) introduced ontologies for formalising conceptual design concepts, which

include structure and shape as well as functionality. Kitamura and Mizoguchi

(Kitamura & Mizoguchi, 2003) developed functional ontologies including a

device-centered ontology and a functional concept ontology, aiming at systematisation

of functional knowledge for design. Ahmed (Ahmed, 2005) argued that the

descriptions o f designing a particular component or assembly could be classified in

four ways: steps o f the design process; components or assemblies; the function; the

issues; or any combination o f these. Based on this, he identified four taxonomies,

which are design process, product, functions, and issues. These form the taxonomies

for ontology for engineering design referred to as Engineering Design Integrated

Taxonomy (EDIT).

Logical approach

Salustri (Salustri, 1996) attempted to use logic to describe the structure o f design. He

developed a framework named Artefact-Centered Modelling (ACM) to partition the

problem of describing design into manageable components. ACM partitions the

overall design endeavour by abstracting both by function and by structure. These

abstractions form the axes of a two-dimensional matrix o f design aspects. Based on

2 8

the ACM, the Axiomatic Information Model for Design (AIM-D) was developed. It

provides formal bases for quantities, features, parts and assemblies, systems and

sub-assemblies, which help designers to think about design problems in a more

structured manner, and to form the logical foundations for tools to aid designers in

their daily task. Salustri (Salustri, 2002) introduced the use of a logical theory, Design

Mereotopology (DMT), in product modelling and spatial reasoning of designed

products. Mereotopology (MT) is a branch of logic dealing with the qualitative

formalisation o f two fundamental relationships between entities: parthood (i.e. one

entity being part o f another) and connection. DMT provides a framework for

improved understanding o f product modelling knowledge.

Graph-based modelling

Graphs are popular representations in the conceptual design stage. They have been

used to model all aspects of a product (Castano et al., 1998). Conceptual graphs can

represent both functional and manufacturing-related information. Conceptual graphs

have been applied for representing assemblies, components, features, low level

geometric objects, and constraints (Salomons et al., 1995). Qian and Gero (Qian &

Gero, 1996) used a graph, which consists o f five finite sets for elements, attributes,

relationships, operations, and processes, to describe a design structure. Al-Hakim et al.

(Al-Hakim et al., 2000) applied graph theory to represent a product and the

relationships between its components. Zha and Du (Zha & Du, 2001) utilised a

29

Knowledge Petri net graph with objects scheme to uniformly model a mechanical

system or an assembly and its design process. They represented the hybrid design

object model in terms of a four level hierarchy: function-behaviour, structure,

geometry, and feature. The structure model is described as a place-transition based

component-connector or part-joint multilevel hierarchical graph, while the functions,

behaviours, geometries, features, and constraints are embedded as objects in such a

hierarchy, and their causal relations are described by the corresponding Knowledge

Petri net graphs. Salustri and Parmar (Salustri & Parmar, 2003) introduced Design

Schematics (DS), which is a diagramming method intended to capture product

information at early design stages. It is based on concept maps. Gero and Tsai (Gero

& Tsai, 2004) used bond graphs as a foundation for the development of a

representation o f buildings and their uses, called Archi Bond Graphs (ABGs). Bond

graph modelling has also been applied to air pump system design (Seo et al., 2005).

Generative representation

Generative representation, which is different from the traditionally parameterised

representations, does not encode complete design concepts but rather rules on how to

develop, or “grow” these designs. This representation method has been mostly applied

to evolutionary design. This is because in evolutionary design, parameterised

representations are inadequate to seek novel designs, and they have some scaling-up

problems as the design application problems increase in size and complexity. These

30

generative representations (Kicinger et al., 2005b) improve the scalability of

evolutionary design systems and produce novel designs exhibiting interesting and

qualitatively different patterns from known designs (Kicinger et al., 2005c).

Design rationale

Design rationale encompasses a broad context surrounding product development

processes, including information about decisions, why they have been made, as well

as relationships or dependencies that may link decisions either to part of the product

representation (a function, artefact, etc.), or to other decisions (Szykman et al., 2001).

Design rationale is considered to play an important role in design modelling. A survey

on the research on design rationale has been reported (Hu et al., 2000).

There are two fundamental and complementary representations of design rationale.

First is the notion o f design rationale as the recording of the design intent of an

artefact. For example, in traditional mechanical design, rationale might include a

functional description, geometric or assembly constraints, and performance criteria.

Second is design rationale as a record of the design process, the communications

among agents, the decision-making that occurs as well as the decision-making

process.

A generic structure of design rationale systems consisting o f three main layers has

31

been identified as follows (Lee, 1997):

> Decision layer characterising the decision process. The decision layer contains

five sub-layers: argument, alternative, evaluation, criteria, and issue.

> Design artefact layer containing information relating the components of an

artefact and linking these to the decision layer.

> Design intent layer representing information about the design decisions, e.g.

requirements, strategies, and goals.

Model process history has also been integrated in the design modelling. Hayes and

Regli (Hayes & Regli, 2001) attempted to unite traditional CAD and solid model data

structures with a representation o f the temporal design process. They presented a

representational formalism called Model Process Graphs (MPGs). MPGs integrate a

model's description with a model of temporal changes that occur during the design

process. They argued that model process graphs can be used as a substrate on which

design history, intent, and rationale can be captured.

Other methods

A number o f conceptual design modelling methods have been reported in the

literature (Salustri, 2001, 2005; Seebohm & Wallace, 1998; Zavbi & Duhovnik, 2000).

Amongst the approaches taken are the use of natural language, physical laws, and

rule-based systems. These methods address different aspects o f the design modelling

32

of conceptual design and general engineering design.

2.2.3.2 Concept generation

An “ideal” approach for concept generation should be a process o f repeated

divergence and convergence (Liu et al., 2003). Liu et al. presented an approach

consisting o f a series of generation and evaluation rather than a single step of

generation and evaluation. Their approach consists of three levels o f solution

abstraction, namely topological solution, spatial configuration, and generic physical

embodiment level. Expansion o f solutions consists of three synthesis processes. The

processes o f narrowing down solutions involve applying sets o f heuristics to each

level. They argued that such an approach should increase the effectiveness of the

exploration o f concepts with minimum compromise to the richness of the solution

space explored.

Design can be divided into two groups: routine design and non-routine design.

Routine design is a design process based only on selection or on modification. In both

cases, no changes in the representation space occur. Non-routine or creative design is

a conceptual design process which is based on innovation, invention, or discovery. In

all these cases, changes in a representation space occur. Thus, there are two major

differences between the routine and creative design: the number o f changes o f the

representation space and the nature of inference. There are no changes in the

33

representation space for routine design, and at least one change for non-routine or

creative design. Routine design typically employs deductive inference (selection and

modification), while creative design employs inductive inference (innovation,

invention and/or discovery) (Arciszewski et al., 1995).

2.2.3.2.1 Creative design

Innovation plays an important role in conceptual design. The essence of innovation in

conceptual design is to discover new ideas, especially when the current products

cannot satisfy the user requirements. Creative design involves not just a search within

a defined space but also the introduction o f either new variables or new schemas - a

process called exploration (Gero, 1996). In other words, a design process is creative

when it explores not only the values o f attributes (decision variables) within

individual design spaces but also develops the number of these attributes, i.e. when

changes in the representation space occur.

According to the innovation levels, conceptual design can be distinguished by five

major paradigms (Arciszewski et al., 1995). This classification is based on the

taxonomy proposed by Altschuller (Altshuller, 1969) and modified and adapted by

Arciszewski et al.

> Selection: the design concept is produced by selecting it from a class of known

concepts in a given engineering domain.

34

> Modification: the design concept is produced as a combination and/or

modification of known design concepts from a given domain. The modification

process is based on a deterministic or random generation process.

> Innovation: the design concept is produced as a combination o f known concepts

from a given domain and other domains.

> Invention: the design concept is produced as a combination o f known concepts

from a given domain and from new concepts based on a new technology, which

have been recently introduced.

> Discovery: the design concept is produced as a combination o f known concepts

from a given domain and new concepts based on new scientific principles.

Redistribution o f functions is also considered a creative technique (French, 1985),

because redistribution of functions among parts can often make improvements in

schemes.

TRIZ, first developed by Altshuller (Altshuller, 1984), is a human-oriented

knowledge-base systematic methodology of inventive problem solving. TRIZ uses a

relatively small number of heuristics for solving inventive technical problems. These

main heuristics and instruments include Preliminary Analyses, Contradiction Matrix,

Separations Principles, Substance-Field Analysis, Standard Approaches to Inventive

Problems, Algorithm for Inventive Problem Solving (ARIZ), Agents Method, etc. The

detail of these has been reported (Mann, 2002; Savransky, 2000). Interest in the

35

principle of TRIZ has result in the development of a number o f approaches to

innovative design (Pham & Liu, 2006; Pham et al., 2006).

2.2.3.3 Concept selection

Concept selection is a decision making process in nature. A critical analysis and

evaluation o f current engineering design methodologies from a decision making

perspective has been reported in the literature (Ng, 2006). The selection procedure

usually involves two steps, namely elimination and preference.

A language-based framework (White, 1995) for the evaluation of product design has

been developed. Deng et al. (Deng et al., 2000) proposed a generic functional design

verification model for conceptual design. In their work, design verification is

achieved by identifying input and output design variables, developing a variable

dependency graph, propagating constraints over the variable dependency graph, and

checking the values o f the design variables against these constraints. Dezfuli (Dezfuli,

2001) proposed a value-based approach to conceptual design decision making. The

approach introduces the notion of design values and design objectives plus their

importance in guiding the design decision making process. Designers develop their

value structures through a design objective structuring process and use them to

identify, expand, and search through the design context space. The objective

structuring process provides valuable insights into the design process and points out

36

those aspects o f the requirements which are important for the designer. It also helps

the designer to avoid unnecessary searches among alternative concepts which do not

provide value to the design process. A framework was also developed for an

engineering conceptual design process based on some important properties of design

values and design objective structures. This framework provides the means for

designers to incorporate the uncertainties of design alternative concepts into the

process in a formal way and provides an evaluation method for designers to compare

different design concepts with each other in a more consistent way.

2.2.4 Artificial Intelligence techniques in design

Engineering design needs to be formulated and supported by specific design methods.

Design methods may help design in the following ways (French, 1985):

> By increasing insight into problems, and increasing the speed o f acquiring

insight;

> By diversifying the approach to problems;

> By reducing the size of the mental steps required in the design process;

> By prompting inventive steps, and reducing the chances of overlooking them;

> By generating design philosophies (synthesising principles, design rationales) for

the particular problem in question.

Artificial Intelligence (Al) has been playing an important role in the field of

37

engineering design. The scientific and practical aims of Al (Doyle & Dean, 1996) are:

constructing intelligent machines; formalising knowledge and mechanising reasoning;

using computational models to understand the psychology and behaviour of people,

animals and artificial agents; making working with computers as easy and as helpful

as working with skilled cooperative, and possibly expert people. Al can learn new

concepts, reason, and draw useful conclusions about a design problem; understand the

natural languages o f designers; perceive and comprehend a visual scene (Wang et al.,

2002).

This section reviews the use o f a few frequently used Al techniques in engineering

design.

Constraint satisfaction problem

Constraint processing is concerned with the development o f techniques for solving the

Constraint Satisfaction Problem (CSP). CSPs involve finding values for variables

subject to restrictions on which combinations of values are acceptable. A large

number of problems in engineering design can be formulated as CSPs. For design

problems, starting from a list of design requirements, design objectives and important

factors in a successful design are collected in an unstructured manner. Each

requirement can be formulated as a testable constraint rule. The advantage of CSP is

that it is a reasoning model that both provides modelling and solves a problem within

38

the same framework (Sqalli et al., 1999). O ’Sullivan proposed a constraint-based

approach to providing support to a designer during conceptual design (O'Sullivan,

1999, 2002).

There has also been a focus on research and applications that integrate CSP with CBR

(Sqalli et al., 1999). Purvis and Pu (Purvis & Pu, 1995) investigated a methodology

which formalises the adaptation process using constraint satisfaction techniques. They

represented each case as a primitive CSP with additional knowledge that facilitates

retrieving and applied an existing repair-based CSP algorithm to combine these

primitive CSPs into a globally consistent solution for the new problem.

Agent-based approach

Decomposition and parallel execution in collaborative design naturally lend

themselves to an agent-based approach. A design process can be considered as a

discrete-event system occurring as the result o f multiple "agents" acting towards a

common general goal, with each agent having its own priorities, context, and domain

knowledge (Salustri, 2000). Agents have incomplete information and limited

reasoning capabilities and resources. In a community of agents, there is no global

control and centralised data and the computations are asynchronous (Sycara, 1998).

The motivations for applying multi-agent systems are: to solve problems that are too

large for a centralised agent to solve, to provide solutions to problems that can

39

naturally be regarded as a society of autonomous interacting components-agents and

to provide solutions in situations where expertise is distributed. The concept and

technology of agents has given considerable support to distributed design.

Campell et al. (Campbell et al., 1999) introduced a new design generation theory

known as A-Design, which is an agent-based and adaptive strategy for performing

conceptual engineering design. The methodology has four distinct subsystems: an

agent architecture, a multi-objective design selection scheme, a functional

representation for electro-mechanical systems and an iterative-based algorithm for

evolving optimally directed design states. Cvetkovic and Parmee (Cvetkovic &

Parmee, 2002) presented the use o f software agents within an interactive evolutionary

conceptual design system. Several different agent classes are introduced, including

search agents, interface agents, and information agents.

Evolutionary algorithms

Genetic Algorithms (GAs) model natural selection and the process o f evolution.

Conceptually, genetic algorithms use the mechanisms of inheritance, genetic

crossover, and natural selection in evolving individuals that, over time, adapt to their

environment. They also can be considered as a search process, searching for better

individuals in the space of all possible individuals. Also, genetic algorithms have

increasingly been applied in engineering design. Basically, genetic algorithms have

40

been considered as tools for optimisation and parameter tuning in engineering design.

Genetic algorithms have been used to generate candidate solutions to particular types

of design problems. Several advanced genetic algorithms have been introduced, which

have proved to be efficient in solving difficult design problems (Renner & Ekart,

2003). A tool called Emergent Designer has been developed, which involves

evolutionary algorithms to represent engineering systems and their related design

processes (Kicinger, 2004; Kicinger et al., 2005a).

Machine learning

Both learning and conceptual design processes are based on performing various forms

of inference. All experience, therefore, from machine learning research that studies

learning as an inferential process is relevant to design and can be used for developing

a formal model o f design processes (Arciszewski et al., 1995).

Model-based reasoning

Model-based reasoning can guide the design process by evaluating partial designs, or

alternatively, can constrain the space of feasible design solutions (Vancza, 1999).

41

Rough set theory

Many approaches to the handling of incomplete information have been developed.

These include fuzzy set theory, rough set theory, and Dempster-Shafer theory of

evidence (Alisantoso et al., 2005). Alisantoso et al. (Alisantoso et al., 2005) proposed

a rough set-based approach to early design analysis.

2.2.5 Discussion

Conceptual design is a very important phase of engineering design process. It has

been shown in the previous sections that a number o f tools and techniques have been

developed to support conceptual design activity. However, most o f these tools and

techniques offer few possibilities for the reuse of existing designs. Case-Based

Reasoning (CBR) has the potential to support design by reminding designers of

previous solutions that could help in new situations (Maher et al., 1995). An

advantage of CBR is that it starts from once satisfactory solutions and most o f the

design knowledge is available after a design case has been retrieved. There is

considerable scope for research into using CBR techniques to support the conceptual

phase of design. Case-based approaches to supporting engineering design have been

reported in the literature and will be reviewed in the next section.

42

2.3 A review of Case-Based Reasoning for design

The reliance on past experience has motivated the use of Case-Based Reasoning

techniques. A CBR system stores past problem solving episodes as cases which can be

retrieved to help solve a new problem. CBR is based on two observations about the

nature o f the world: (1) the world is regular and similar problems have similar

solutions; and (2) the types of problems encountered tend to recur.

A number o f researchers have applied CBR to engineering design problems. Bilgic

and Fox (Bilgic & Fox, 1996) discussed similarity based retrieval in engineering

design. They focused on how requirements, i.e. goals and constraints, can be used to

dynamically retrieve relevant cases from a case library, and how cases in the library

should be represented to support this style of dynamic indexing. Leake et al. (Leake et

al., 1999) argued that CBR fits naturally into a new mode o f knowledge management

that not only tracks where documents are but tracks how they are used and where they

are needed to access multiple information sources to provide the right information at

the right time. They demonstrated their approach in automotive body design. CBR has

also been widely applied to various specific engineering problems. Qin and Regli

(Qin & Regli, 2000, 2003) presented a case study of how to apply CBR to a specific

engineering problem, mechanical bearing design. Waheed and Adeli (Waheed & Adeli,

2005) presented the use of CBR in steel bridge engineering. A few efforts have been

made to build a fully automated gripper design system based on CBR (Gourashi, 2003;

43

Pham et al., 2005).

Traditionally, CBR systems draw their cases from a single local case base tailored to

their task. However, when a system’s own set o f cases is limited, it may be beneficial

to supplement the local case base with cases drawn from external case bases for

related tasks. The effective use of external case bases requires strategies for

multi-case-base reasoning (MCBR): (1) for deciding when to dispatch problems to an

external case base, and (2) for performing cross-case-base adaptation to compensate

for differences in the tasks and environments that each case base reflects (Leake &

Sooriamurthi, 2002, 2003). Al-Shihabi & Zeid (Al-Shihabi & Zeid, 1998) used

multi-case adaptation and case built-in adaptation knowledge to produce a design plan

for a new design problem.

CBR has also been used in combination with other Al techniques. Rosenman

(Rosenman, 2000) developed a case-based model of design, using an evolutionary

approach, for the adaptation in spatial layout design. Saridakis et al. (Saridakis et al.,

2006) developed a system that retrieves existing design solutions, by using a fuzzy

case representations and neural-network-based retrieval mechanism. The system has

been used in structural design.

Representing a case, measuring the similarity of the cases and adapting a case are key

issues in CBR. These will be discussed in detail in the remaining of this section.

44

2.3.1 Represent a design case

One of the main difficulties in supporting conceptual design is the complexity o f

modelling the different aspects of a product. The common representation of a design

case includes feature-based representation, graph-based representation and geometric

representation.

Feature-based representation

Feature-based representation is the most common form of representation of a design

case. Each case is described by a set of attributes and each attribute takes a value. A

feature is an information unit describing a region o f interest of some characteristics of

a product. It can be an individual attribute, a set o f attributes or one or more derived

attributes. Attributes define the vocabulary for explaining a design; values identify the

specific information for each design. In most feature-based representation cases,

design is formalised as classes. A generalisation of this representation is shown in

Figure 2.3.

Bilgic and Fox (Bilgic & Fox, 1996) defined individual cases with a finite number of

attribute-value pairs and a retrieval context with a finite number o f constraints on the

attributes.

45

Figure 2.4 shows a design of a bolt which helps illustrate how this representation

paradigm is used. In the example, the list o f features determines how to describe a

bolt design. As shown in the figure, a bolt can be expressed by its nominal diameter,

material and so on. A specific bolt is determined by the specific values for each of the

attributes.

Graph-based representation

Graph-based representation focuses on the relationships between the elements of a

design. Usually, in a graph-based representation, nodes represent distinct features and

edges represent associations among features.

An example of a graph-based representation o f a bolt is shown in Figure 2.5. The

function and structure of a bolt is represented as labels of the nodes in the graph. The

links in the graph represent dependencies among function and structure. The attribute

“connecting components” is embodied by the values of head, shank, thread and end.

By representing a design case in this way, nodes and relationships between nodes

determine a bolt design.

46

Case-1

Class-1

Attributre-1: value-1;

Attribute-n: value-m;

Class-2

Attributre-1: value-1;

Attribute-n: value-n;

Class-I

Figure 2.3: A generalisation of feature-based representation

47

Case: Bolt 001

FUNCTION:

Function-1: Connecting components

Function-2: Tightening components

BEHAVIOUR

Maximum working load: 70550N

STRUCTURE

Nominal diameter: 33mm

Bolt head shape: cylindrical

Bolt head thickness: 25mm

Diameter of bolt head: 50mm

Diameter of shank: 27mm

Length of shank: 20mm

Length of thread: 32mm

Pitch of thread: 2mm

Material: steel

Figure 2.4: A feature-based representation of a bolt design

ThreadShank EndHead

Tightening componentsConnecting components

Figure 2.5: A graph-based representation of a bolt design

48

Geometric representation

Geometric representation is a direct way of carrying design information. It enables a

design to be described as a geometric model which includes 2D or 3D geometric

shapes. General representations of geometric shapes include: B-rep (Boundary

representation), CSG (Constructive Solid Geometry), variational geometry and feature

representations (Hsu & Woon, 1998). Geometric representation focuses on

representing the structural aspects of a product. It requires intuitive experience for the

user to understand and recognise the design. Francois and Medioni (Francois &

Medioni, 1996) presented a symbolic and structured shape description model which

can be used for the efficient indexing and retrieval of 2D or 3D generic object shapes.

Every representation technique has its own focus. In order to build a comprehensive

design model, it is necessary to integrate various aspects of design information.

2.3.2 Existing approaches to measuring similarity

Methods of similarity assessment have been reported in the literature (Smyth & Keane,

1998). Bridge (Bridge, 1998) classified the approaches to measuring the similarity of

object representation as geometric, structural, and feature-based.

49

Geometric approach

With a geometric approach, a set of features is extracted from the structural

representation, which is used as an ^-dimensional vector to which distance measures

can be applied. Assume there are two objects with n features each: 01(xl, x2...xn) and

0 2 (yl, y2...yn). Similarity between these two objects can be measured by calculating

the Euclidean d istance:^(x l-y l)2 + (x 2 -y 2)2 +... + (.xn -yri) • R estively simple distance

measures include the Euclidean distance, Manhattan distance, and Hausdorff distance

(Ohbuchi et al., 2002). Ohbuchi et al. employed the Euclidean distance and the

elastic-matching distance as the measures o f distance between pairs of feature vectors

in their work. They investigated this method to compare the shape similarity of 3D

models, which was to compute a set o f shape features from a given model, as well as

the distance between those pairs o f shape features.

Structural approach

With a structural approach, similarity is measured by graph matching (Bespalov et al.,

2003; El-Mehalawi & Miller, 2003; Hilaga et al., 2001; Iyer et al., 2003; Le et al.,

2004). Cost-based Distance Measurement is frequently adopted for this purpose

(Francois & Medioni, 1996; Papadopoulos & Manolopoulos, 1999). This method

involves modifying the graph for an object to transform it into the graph for the object

with which it is to be compared. The number of the required modifications is then

50

taken as the similarity measure. An example o f comparing graphs using this method is

illustrated in Figure 2.6. Three graphs G1, G2, and G3 are shown in the figure. It is

obvious that G1 is more similar to G2 than to G3. This is because only one edge needs

to be added to G1 in order to obtain G2, whereas one edge and one node are needed in

order to obtain G3.

Feature-based approach

In a feature-based approach, objects are represented by sets of features and measuring

similarity is based on feature commonality and differences. The similarity of the

features is usually measured by numerical weighting methods (Castano et al., 1998).

Weights are assigned to each feature and the similarity is the sum of a weighted

number of equal features. Bilgic and Fox (Bilgic & Fox, 1996) counted the

occurrences where the two cases satisfy the same constraints and normalised it using

the weights. Tversky's theory of similarity, as described in (Keane et al., 2001),

characterised the similarity between two entities, a and b, as being a weighted sum of

a function of the identical features o f a and b and a function of the distinctive features

in each o f the entities. The model is characterised as:

5 (a, b) = Of (A B) - a f (A - B) - (B - A),

where A and B represent the set of attributes that respectively make up the entities a

and b; (A <-> B) represents the set of attributes that are common to A and B; (A - B)

represents the distinctive features in A while (B - A) represents the distinctive features

51

in B; and 0, «, and /? are factors of importance.

The existing methods compare different aspects design. In order to have a

comprehensive similarity measure, it is helpful to involve various design knowledge

in the process of similarity assessment.

2.3.3 Existing methods of adaptation

In general, the methods relevant to case adaptation vary in different tasks or problems

to be solved. Adaptation can substitute some components o f a previous solution, or

modify the overall structure of an old solution. Existing methods of adaptation can be

classified as follows.

Human intervention

The simplest method o f adaptation is human intervention, in which the designers are

responsible for modifying the design according to their knowledge.

52

Figure 2.6: Similarity among graphs

Substitution method

As the name implies, this method relies on the substitution o f values or components

relevant to the new problem in the retrieved case. The structure o f the new solution

remains unchanged. Some researchers believe that substitution adaptation is the best

means for automatic knowledge acquisition (Jarmulak et al., 2001). Substitution

adaptation is applied for both nominal and numerical values and is suitable for

decomposable design problems, in particular formulation and configuration.

Transformation method

Transformation method deals with the structure of the solution. Rules or procedures

are used to transform a selected case into a new solution. It supports the

reorganisation o f solution elements and permits the addition and deletion of such

elements under certain conditions. Generally, transformational adaptation systems

employ a mixed set o f adaptation operators and transformation rules. Bergmann and

Wilke (Bergmann & Wilke, 1998) developed a formal model o f transformational

adaptation. The model is based on the “quality” of a solution to a problem, where

quality signifies a more general sense and denotes some kind o f appropriateness,

utility, or degree of correctness.

Derivational replay

Derivational replay assumes that the retrieved case includes the method or procedure

used to generate the solution in the case description and that the same method is

54

reused for the specifications of the new problem. Derivational replay has been applied

in some researchers’ work (Rivard & Fenves, 2000).

Multiple case combination

Recent research has demonstrated the power of delivering solutions through retrieval,

adaptation and subsequent composition of multiple cases. This leads to multiple case

combination, where design cases or components from multiple cases are combined to

provide new design solutions. Newer approaches indicate that it is helpful to compose

a solution from parts o f several old cases. This is possible if the solution consists of

different parts which can be adapted more or less independently. It will be effective if

few conflicts exist between these components so that a change in one component will

not have many side-effects on the other components.

Hierarchical adaptation

Hierarchical adaptation is another development o f adaptation (Bergmann & Wilke,

1995; Smyth & Cunningham, 1992). Cases are stored at several levels of abstraction

and the adaptation is performed in a top-down fashion. At first, the solution is adapted

at the highest level of abstraction. The solution is then refined in a stepwise manner

and the required details are added. Hierarchical adaptation reuses either a single case

or different cases for different levels of abstraction or refines different details o f the

solution.

55

Instead o f using these methods on their own, a combination o f these approaches is

often adopted.

Different strategies have been applied to guide the process of adaptation. The

strategies used for the modification and evaluation of a design case include constraint

satisfaction, model-based reasoning, rule-based reasoning, heuristic reasoning and

qualitative reasoning. Some researchers argue that the more radical the adaptation, the

greater the danger o f losing the quality of the original design, as adaptation changes a

once satisfactory design. Whatever adaptation strategies are used, extensive domain

specific knowledge is required to guide the process of adaptation.

2.3.4 Discussion

The application of CBR to many aspects of engineering design has been presented in

this section. It can be seen that representing a design, measuring similarity o f designs

and adapting a design all hinge on various aspects of design information. A

comprehensive design model is needed to integrate various aspects o f design

information, and design knowledge needs to be effectively used to measure the

similarity o f designs and to guide the process of adaptation. Fractal theory, which has

been adopted in the field o f manufacturing systems design and analysis (Wamecke,

1993), promises to help design modelling and the reuse o f design knowledge. An

introduction o f fractal based thinking is presented in the next section.

56

2.4 Fractal based thinking

The “fractal factory” idea was introduced by Wamecke (Wamecke, 1993). A fractal is

“an independently acting corporate entity whose goal and performance can be

precisely described”, and it has following characteristics:

> Self-similarity

Fractals are self-similar; each one performs services.

> Self-organisation

Operatively, procedures are optimally organised by applying suitable methods.

Tactically, fractals determine and formulate their goals in a dynamic process and

decide upon internal and external contacts. Fractals restructure, regenerate and

dissolve themselves.

> Self-optimisation

The system of goals, which arises from the goals of the individual fractals, is free

from contradictions and must serve the objective of achieving corporate goals.

> Goal-orientadon

Fractals are networked via an efficient information and communication system.

They themselves determine the nature and extent of their access to data.

> Dynamics and vitality

The performance of a fractal is subject to constant assessment and evaluation.

In recent years, the fractal factory idea has been applied in manufacturing systems. A

57

Fractal Manufacturing System (FrMS) (Ryu & Jung, 2003; Ryu et al., 2003) is based

on the concept o f autonomous cooperating agents referred to as fractals. A conceptual

structure of FrMS is shown in Figure 2.7. The major component of an FrMS is a Basic

Fractal Unit (BFU), which consists of five functional modules: observer, analyser,

resolver, organizer and reporter. A fractal architecture is a hierarchical structure built

on BFUs. The design of a basic unit incorporates a set of pertinent attributes that can

fully represent any level in the hierarchy. Theses attributes serve to describe a specific

structure and a functionality of a particular represented level, as well as its

coordination with adjacent levels (Tirpak et al., 1992). In other words, the term

“fractal” can represent an entire manufacturing factory at the top level or a machine at

the bottom level. Each BFU provides services with an individual goal and acts

independently. To function as a coherent whole, goal consistency is maintained by a

goal-formation process. BFUs resolve conflicts through cooperation and negotiation.

58

Control

Fractal
Manufacturing /

System

Input

Mechanism

Control

OutputIriput
W Fractal

Fractal 2

Fractal 3

Mechanism

Sub-unit
Level

Figure 2.7: Conceptual structure of FrMS (Ryu & Jung, 2003)

Engineering design is also fractal in nature because a design problem can be

considered as a consequence of “sub-designs” acting towards common general goals,

with each sub-design having its own context and knowledge. A design therefore has

the potential to be represented in a fractal-like form. This research takes the fractal

based approach from manufacturing and applies it in the design context. To represent

a design in a fractal-like form helps externalise design knowledge in a systematic way

and provide a basis to guide the generation of design concepts based on this design

knowledge. A fractal-like design model may be integrated with CBR to work in the

following ways.

> For design case representation. A fractal-like design model can represent the

various aspects of design knowledge in a well-structured way. A fractal structure

supports design concept generation and self-organisation of the design concept

structure.

> For design case retrieval, the similarity of design models can be measured by

incorporating design knowledge based on the fractal-like design model.

> For design case adaptation, a fractal-based adaptation approach can use design

knowledge such as performance and goals to guide the process o f adaptation. The

fractal specific characteristics such as self-similarity, self-organisation,

goal-orientation can also play an important role in the automation of the

adaptation process.

60

As noted before, successful conceptual design has a powerful impact on product

quality. It is this need which is a primary motivation for the research presented in this

thesis. The details o f the proposed fractal-based approach will be explained in the

subsequent chapters. The approach involves three elements:

> Design case representation. This research proposes a new representation

technique, Fractal-like Design Modelling (FDM), which integrates design

knowledge in a graph-based form, and has fractal-specific characteristics. This

will be discussed in Chapter 3.

> Design case retrieval. Based on FDM, a novel method of the similarity

assessment between a new design and the existing designs is developed. This will

be explained in Chapter 4.

> Design case adaptation. With the help of fractal characteristics, a new approach

to adaptive design is developed, which is called fractal-based adaptation. This

will be addressed in Chapter 5.

These three parts work together to achieve an automated, case-based, conceptual

design method: Fractal-Based Re-design.

2.5 Summary

In this chapter the research relevant to the work presented in this thesis has been

61

reviewed. The background of conceptual engineering design was reviewed from four

perspectives. Firstly, the literature on engineering design research was reviewed. Two

widely accepted models o f engineering design process were considered. Secondly,

conceptual design out of the engineering design process was highlighted. Thirdly,

intelligent design was reviewed from three perspectives: design modelling, concept

generation, and concept selection. Then some important AI techniques applied in

design were discussed. This chapter also reviews the literature on the application of

CBR techniques to engineering design. Finally, this chapter gives an introduction to

fractal theory and its relevance to this research.

62

Chapter 3

Fractal-like design modelling using attributed graphs

3.1 Preliminaries

This chapter presents a design modelling technique developed to represent design

knowledge. A new representation technique, Fractal-like Design Modelling (FDM) is

proposed, which integrates design knowledge in a graph-based form, and has fractal

specific characteristics. FDM is then used as the basis for assessing the similarity

between a new design and existing designs, and for adapting a retrieved design to suit

a new situation, which is presented later in this thesis.

The rest of the chapter is organised as follows: Section 3.2 explains fractal-like design

modelling in detail; Section 3.3 presents the characteristics of a fractal-like design

model which can help the process of design.

3.2 Fractal-like design modelling

Design modelling is a basis for case indexing, case retrieval and case adaptation.

63

Modelling the different aspects of a product is useful to support conceptual design. As

mentioned in Chapter 2, the common representations of a design case, e.g.

feature-based representation, graph-based representation and geometric representation,

have their own focuses. In order to build a comprehensive design model, it is

necessary to integrate various aspects of design knowledge.

Usually, design knowledge exists in a variety of forms. It can be related to design

objects or to a design process. The knowledge is generally used for manipulating

design objects, showing the next stage in given situations, producing and interpreting

design specifications and controlling the design process (Preston & Mehandjiev,

2004). In order to effectively support the process of conceptual design, different types

of design knowledge need to be defined and modelled in a formal way. This section

discusses how to model design knowledge. Section 3.2.1 describes how to represent a

design case. Representing the knowledge related to design objects is discussed in

Section 3.2.2, and representing the knowledge related to the design process is

discussed in Section 3.2.3.

3.2.1 Representing a design case in attributed graphs

Usually, a representation of an engineering design is a description o f an engineering

system expressed in terms of attributes (Arciszewski et al., 1995). Likewise, the

proposed fractal-like design model applies attributed graphs as a carrier to represent

64

design cases. Design knowledge is represented by nodes and relations o f the attributed

graphs. The function, feature and structure models consist o f primitive units

comprising Elements (E), Attributes (A) and Relationships (R), which make up a

graph. This is denoted as G = [E, A, R].

Element

An element is a basic unit. It is represented by a node of a graph. An element can be

either an abstract entity or a physical entity. For example, in a function model, an

element is a function, which is an abstract entity; whereas in a structure model, an

element is a physical part, which is a physical entity. An element is identified by its

label (name).

Attribute

Most elements have attributes, e.g., colour, shape, and material. Each attribute has a

value. The value may be numerical (e.g., the width of a chair), or nominal (e.g., the

material from which a chair is made can be wood or plastic).

65

Relationship

In addition to attributes, relations o f elements are also important to represent a design.

Relationships between elements are represented by edges in a graph and are described

with relation variables included in the data structure. If the elements are abstract

entities, the relationships will be abstract. For example, a seat’s function has two

abstract entities: to support the legs and to support the back. The relationship between

these two entities “and” is an abstract relationship. If the elements are real objects, the

relationships can be abstract or they can be positional relationships involving

numerical or nominal data. Some examples of the configuration of mechanical

components are shown as follows:

> A chair is composed o f a seat, a back, and four legs (abstract relationship);

> The legs are parallel to each other (nominal relationship);

> The back and the seat lie at an angle o f 60 degrees (numerical relationship).

Using these three primitive units, the models of a design case can next be explained.

3.2.2 Representing knowledge related to design objects

Generally, design knowledge is represented categorically. Coyne et al. (Coyne et al.,

1990) characterised design as concerned with design descriptions, a vocabulary of

elements, interpretations, and design knowledge in their symbolic model o f a design

66

system. Maher et al. (Maher et al., 1995) considered the content o f a design case to be

design drawings, requirements and solutions, or function-behaviour-structure. Bilgic

and Fox (Bilgic & Fox, 1996) defined three crucial elements which must be explicitly

represented in a case base, namely concepts (fit, form, function, behaviour, working

principle), issues, and requirements. It is believed that design needs a multiplicity of

representations (Dym, 1994). This research, therefore, proposes to represent different

aspects of design knowledge by three models: a “Function” model, a “Feature” model

and a “Structure” model, which originate from the well-known FBS model.

Function model

The function model refers to the purpose of the design and explicitly describes the

way in which the design is to be used. For instance, the purpose o f a bolt is to connect

and tighten the components. In a function model, an element is a function and a

relationship is the abstract interrelation between two functions. A function model can

be denoted as Gfunctkn^ [E, R].

An example o f a function model of a car body is illustrated in Figure 3.1(a). In the

figure, the function model o f a car body is composed o f three elements (support

chassis, protect passengers, and stylise) and three relationships (and, and, and). The

representation o f the function model in case base is shown in Figure 3.1(b).

67

Feature model

A feature model describes the characteristics of a design. It is an extended model

compared to “behaviour” in an FBS model, which describes the effect o f a design

after it is used. A feature model not only includes the behaviour of a design, but also

the important functional and structural characteristics. A feature model represents the

design in terms of features. Each element corresponds to a feature, which has an

individual attribute, a set o f attributes or derived attributes taken from elements of

other models. A feature model can be denoted as Gfeature= [E, A],

An example o f a feature model o f a car body is shown in Figure 3.2(a). The feature

model of a car body is composed of three elements (behaviour features, function

features, structure features), and each element has its own attributes. The

representation o f the feature model in the case base is shown in Figure 3.2(b).

68

Stylise

And
And

And
Support Chassis Provide space

for passengers

Figure 3 .1(a): A function model o f a car body

FUNCTION MODEL

Function-1: Support chassis

Function-2: Provide space for passengers

Function-3: Stylise

Relationship ((Function-1, Function-2, and),

(Function-2, Function-3, and),

(Function-3, Function-1, and))

Figure 3 .1(b): Representation o f a function model o f a car body in case base

69

Length, Width, Height,

Wheelbase,

Type,

Fuel consumption,

Front track,
Top speed,

Rear track
Acceleration 0-100km/h

Weight

Structure Feature Behaviour FeatureFunction Feature

Figure 3.2(a): A feature model of a car body

FEATURE MODEL

Behaviour feature

((Length 5029mm)

(Width 1902mm)

(Height 1492mm)

(Wheelbase 2990mm)

(Front track 1578mm)

(Rear track 1582mm))

Function feature

((Type Saloon)

(Fuel consumption 15.5 ltr/100km)

(Top speed 237km/h)

(Acceleration 0-100km/h 8.1 sec))

Structure feature

((Weight 1865kg))

Figure 3.2(b): Representation of a feature model of a car body in case base

70

Structure model

The structure model concerns the physical organisation o f a design. It exists at three

levels: assembly model, part model, and geometric model. An assembly model

consists of elements representing assemblies and relationships signifying the

connections between the assemblies. An assembly contains attributes describing its

characteristics and relationships between elements, including nominal and numerical

relationships. A part model is made up of parts, which are the basic units of a design

model. A complex design can be considered to be composed o f sets of parts. A part is

represented by a node in a graph. A node contains all the attributes of a part and a

relationship can be either nominal or numerical. A geometric model provides a direct

way to illustrate a design. Each node represents a geometric entity. A geometric entity

can be any geometric model, e.g. line, curve, and box. There are positional

relationships between the nodes, which can be nominal or numerical. Among these

three levels, there are relationships between the assembly model and part model, as

well as between the part model and geometric model. These relationships are

subordinate relationships and are abstract. There are two types of relationships,

therefore, in a structure model: positional relationships (numerical and nominal) and

subordinate relationships (abstract). A structure model can be denoted as Gstmcture = [E,

A, R].

Figure 3.3(a) illustrates an example of a structure model o f a car body. At the first

71

level, the assembly model comprises three elements: engine compartment, passenger

cabin, and luggage compartment. Every element has attributes such as length, width,

and height. The relationships between elements is positional. Similarly, at the other

levels, the models contain attributed elements with positional relationships among

them. There are subordinate relationships between the levels, such as the one that

denotes that the engine compartment is composed of bonnet, front panel, left front

wing, and right front wing. For simplicity, only the representation o f the assembly

model in the case base is shown in Figure 3.3(b).

The use of graph-oriented representation to describe a design is intended to enable the

integration o f different kinds of knowledge expressed in different forms. The notion

of integration here is, therefore, more in terms of types o f knowledge and concepts

than just of representation.

3.2.3 Representing design knowledge related to the design process in a fractal

model

Design knowledge related to the design process, e.g. adaptation knowledge, is

represented through generalised schemes and stored within individual design cases in

this research. This research proposes to use fractals to describe these schemes.

72

Length,

Width,

Height

Assembly

model

Luggage compartmentEngine compartment

Height
Front panel

Part model;ide Right side Left rear Right re<

panel panel wing wing
Left front wing |ht front wing

Style line 1

Style line 2

GeometricPoint 1,

Point 2,

Point 3,

Point 4

model

Subordinate relationship

Position relationship

Figure 3.3(a): A structure model of a car body

73

ASSEMBLY MODEL

Luggage compartment

((Length: 1139mm)

(Width: 1900mm)

(Height: 850mm))

Passenger cabin

((Length: 2090mm)

(Width: 1902mm)

(Height: 1120mm))

Engine compartment

((Length: 1800mm)

(Width: 1900mm)

(Height: 746mm))

Position relationship ((engine compartment, passenger cabin, connected), (Passenger cabin,

luggage compartment, connected))

Subordinate relationship ((engine compartment, bonnet, has), (engine compartment, front panel,

has), (engine compartment, left front wing, has), (engine compartment, right front wing, has),

(passenger cabin, roof panel, has), (passenger cabin, left side panel, has), (passenger cabin, right

side panel, has), (luggage compartment, luggage compartment door, has), (luggage compartment,

rear panel, has), (luggage compartment, left rear wing, has), (luggage compartment, right rear wing,

has))

Figure 3.3(b): Representation of an assembly model of a car body in case base

74

In a structure model, a part (or a set o f parts) that has particular goals and can provide

a certain performance to a design is referred to as a fractal. Basic fractal units form a

fractal model. A fractal model is an extended representation o f a part model and an

assembly model. In a basic fractal unit, as well as geometric attributes, design

knowledge is also incorporated to guide the process of adaptation. This research

proposes to represent design knowledge by Performance and Goal.

Performance describes the task of a fractal. For example, in car body design the

performance o f an engine compartment is “to provide space for the engine”.

Goal specifies the objective(s) o f a fractal. Each fractal has individual goals which

cooperate with those o f other fractals. Knowledge of how fractals achieve the ultimate

goals is integrated into fractals. In this research, it is proposed that a goal consists of

four parts:

> An attribute which has effect on the goal.

> An operation on the attribute, which can be “maximise” or “minimise”.

> Type of goal, which can be individual goal (:i) (the goals that cannot propagate to

another level) or corporate goal (:c) (the goals that are able to propagate to

another level).

> The corporate goal to which this goal contributes.

A goal can be described by a 4-tuple. For example, :G1-G1 (:minimise :volume :c :G1)

75

indicates that the goal :G1-G1 is to minimise the volume of the fractal. It is a

corporate goal and its parent goal is :G1.

An example of a basic fractal unit is shown in Figure 3.4, and an example of

representing an engine compartment as a fractal is shown in Figure 3.5.

A design can be decomposed into a hierarchy o f fractals, with each fractal providing a

specific problem description and a corresponding solution. Each fractal performs its

own role in a structure, while all the fractals work together to produce the desired

functions of a design. The term “fractal” can represent an entire fractal model at the

assembly level or a basic fractal unit at the part level. Such a hierarchical stmcture

allows the use of both specific design knowledge in each fractal and overall design

knowledge in an entire fractal model. Figure 3.6 shows a fractal structure. The

structure can be reconfigured according to a change in customer requirements. In

addition, under this architecture, a series o f knowledge architecture can be generated.

Each category o f components in the fractals can form their own system. For example,

goals o f fractals constitute a structure that describes the context and relationship of the

goals. This information will be used for design adaptation. The detail will be

discussed in Chapter 5.

76

J n
• • •

Sub-fractals

J

Performance
V______

Goal

V
Adaptation knowledge

J
Geometric
information

Figure 3.4: An illustration o f a basic fractal unit

77

Engine compartment

Sub-Fractals: Bonnet, Front panel, Left front wing, Right front wing

:performance (list :provide_space_for_the_engine)

Goals

:G1-G1 (list :minimse ivolume :c :G1)

:G3-G1 (list :minimse ilength :i :G3)

Bonnet

performance (list :provide_top_cover_for_the_engine_compartment)

:G1-G1-G1 (list :minimise :length :i :G1-G1)

Front panel

performance (list :provide_front_cover_for_the_engine_compartment)

:G1-G1-G4 (list :minimise :width :i :G1-G1)

Left front wing

performance (list :provide_left_side_cover_for_the_engine_compartment)

:G1-G1-G2 (list :minimise iheight :i :G1-G1)

Right front wing

performance (list :provide_right_side_cover_for_the_engine_compartment)

:G1-G1-G2 (list :minimise :height :i :G1-G1)

Geometric Information:

Figure 3.5: An example of representing an engine compartment as a fractal

78

Geoirfetric
information

Performance Goal

Geometric
relationship

Performance
relationship

Goal
relationship

Figure 3.6: An overview of the fractal structure

79

So far, a fractal-like design model has been introduced. The complete architecture of

the proposed fractal-like model is illustrated in Figure 3.7. In the figure, function

model and feature model form the abstract level o f the architecture, and fractal model

and geometric model make up the physical level.

The approach described above has been implemented using ICAD (KTI, 2001), a

knowledge-based environment that allows the development of “intelligent”

conceptual design systems. The ICAD environment only provides basic reasoning and

knowledge representation facilities (for example, forward and backward chaining, and

rule and objective-oriented representation). The proposed approach has been coded in

the ICAD shell. The development language is the ICAD Design Language (IDL),

which is based on Common Lisp. For an overview o f ICAD and the features that

motivated its adoption in this research, see Appendix A.

3.2.4 An illustrative example

An example of representing a car body as a fractal-like design model is shown in

Figure 3.8 to illustrate the proposed fractal-like design model. The ICAD code for the

example is shown in Appendix B.

8 0

Function

Function model

Feature

Feature model

Assembly

Fractal
model

Part
C / 5

Structure jg
model

Geometric
model

Q O 5 0 O

Geometric
entity

Figure 3.7: A structure o f a fractal-like design model

81

FUNCTION MODEL

Function-1: Support chassis

Function-2: Provide space for passengers

Function-3: Stylise

Relationship ((Function-1, Function-2, and),

(Function-2, Function-3, and),

(Function-3, Function-1, and))

FEATURE MODEL

Behaviour feature Function feature

((Length 5029mm) ((Type Saloon)

(Width 1902mm) (Fuel consumption 15.5 ltr/100km)

(Height 1492mm) (Top speed 237km/h)

(Wheelbase 2990mm) (Acceleration 0-100km/h 8.1 sec))

(Front track 1578mm)

(Rear track 1582mm)) Structure feature

((Weight 1865kg))

Figure 3.8: An example of representing a car body as a fractal-like design model (to be

continued)

8 2

STRUCTURE MODEL: cb001

Sub-Fractals: Engine compartment, passenger cabin, luggage compartment

performance (list :provide_space_for_the_engine :provide_space_for_the_passengers

:provide_space_for_the_luggage)

:G1 (list :minimise :volume :c)

:G2 (list:maximise :comfort :c)

:G3 (list :maximise visualisation :c)

Assembly

model

Engine compartment

Sub-Fractals: Bonnet, Front panel, Left front wing, Right front wing

performance (list :provide_space_for_the_engine)

: Goals

:G1-G1 (list :minimise volume :c :G1)

:G3-G1 (list :minimise :length :i :G3)

Part model

Bonnet

performance

(list :provide_top_cover_for_the_engine_co

mpartment)

:G1-G1-G1 (list :minimise Mength :i :G1-G1)

Part model

Front panel

performance

(list :provide_front_cover_for_the_engine_c

ompartment)

:G1-G1-G4 (list :minimise :width :i .G1-G1

Part model

Left front wing

performance

(list :provide_left_side_cover_for_the_engi

ne_compartment)

:G1-G1-G2 (list :minimise :height :i :G1-G1)

Part model

Right front wing

performance

(list :provide_right_side_cover_for_the_eng

ine_compartment)

:G1-G1-G2 (list :minimise :height :i :G1-G1)

Part model

Passenger cabin Luggage compartment

Figure 3.8: An example of representing a car body as a fractal-like design model (continued)

83

3.3 Characteristics of FDM

Characteristics that differentiate FDM from other design modelling techniques

include self-similarity, self-organisation, goal-orientation, and dynamism.

3.3.1 Self-similarity

The characteristic of self-similarity refers to both the organisation o f fractal structure

and the manner in which fractals work. In a fractal factory, fractals, which have

different internal stmctures, are self-similar if they can generate the same outputs with

the same inputs without considering their structures, as illustrated in Figure 3.9. A

design problem can be described as a single black box constituting a transformation

between input and output. It is possible for problems with identical input and output

variables to have different internal structures. In other words, there are a variety of

possible solutions for a problem specification. Each solution may differ from others in

many respects (features, stmcture etc). However, they are self-similar if they have the

same performance. This characteristic can be used to substitute one fractal with

another one to obtain a new solution without changing performance. This will be

discussed in Section 5.2.2. It is also possible to combine multiple fractals in different

design cases to create a new design solution.

84

internal structureinputs outputs

Figure 3.9: Self-similar fractals with different internal structures (adapted from

Wamecke 1993)

3.3.2 Self-organisation

When confronted with new customer requirements, fractals restructure themselves to

suit the new situation. The relationships between fractals are reconfigured and the

fractals are reorganised. This reorganisation o f fractals is normally supported by an

appropriate design modelling language. The structure o f the whole design can be

changed depending on the goals o f the fractals and the customer requirements. This

will be discussed in Section 5.2.2.

3.3.3 Goal-orientation

Each fractal has individual goals. These are networked together from the bottom level

to the top level to contribute towards corporate goals. The goals of the fractals form a

structure, a Goal Dependency Graph (GDG), which describes the context of the goals

and the relationships between them. A GDG starts from corporate goals and ends at

individual goals. A GDG propagates the corporate goals to individual goals, thus

facilitating the propagation of goals from the top-level fractals to the bottom-level

fractals. If there are contradicting or duplicated goals in the GDG, a simplified GDG

can be built by removing them, and adaptation can be executed according to that.

These will be further discussed in Section 5.2.2.

8 6

3.3.4 Dynamism

Dynamism, or vitality (Wamecke, 1993), which originated from the field of biology

or medicine, denotes the “power to sustain life” . In this research, the term dynamism

is used to describe the adaptability of a fractal in the process of case-based design.

During its lifetime, a fractal serves a design by modifying its performance and goals

and cooperating with other fractals. The dynamism of a fractal is determined by the

“enduring” and “non-enduring” attributes inside it. The idea o f “enduring” and

“non-enduring” attributes was introduced by Gourashi (Gourashi, 2003). An attribute

is enduring if it remains unchanged during the life o f a design, and if the very concept

of the design will change should the attribute be modified. A non-enduring attribute,

on the other hand, is an attribute that, if changed, does not alter the design concept,

but only creates another instance of it. The more non-enduring attributes a fractal has,

the more dynamism it gains.

3.4 Discussion

This chapter has proposed a design modelling method named FDM for case-based

reasoning in conceptual design, which is the first effort to apply fractal theory to

design modelling. In this method, a design is represented by function model and

feature model at the abstract level, and by fractal model (including assembly model

and part model) and geometric model at the physical level. All these representations

87

are in the form of attributed graphs. A fractal model is designed for representing the

knowledge related to the design process, while the other models are designed for

representing the knowledge related to the design objects. Knowledge related to the

design objects includes product function, feature and structure, while knowledge

related to the design process includes performance and goal. A summary of a

fractal-like design model is shown in Figure 3.10.

Moreover, a fractal-like design model possesses important fractal characteristics,

which can greatly benefit the process of case-based design in the following aspects:

> Self-similarity enables the substitution of fractals and the combination o f multiple

fractals in different design cases.

> Self-organisation facilitates the reorganisation o f fractals.

> Goal-orientation helps guide the process o f case adaptation.

> Dynamism helps realise the adaptability of a fractal.

In addition, FDM has several advantages:

> It is sufficiently comprehensive to represent engineering design problems in

different fields.

> It helps the recognition o f designs at both an abstract level and a practical level.

> FDM enables the integration o f different kinds o f knowledge expressed in

different forms.

_ involves

Element

Attribute

Relationship

based on attributed
graphs

for visualisation of early
product information

Fractal-like Design Model

addresses

incli .ides includes

Product
features

Product
functions

GoalProduct
structure

Performance

Knowledge related
to design objects

Knowledge related
to design process

Figure 3.10: A summary of fractal-like design model

89

3.5 Summary

The research reported in this chapter is aimed at developing a systematic approach for

intelligent case-based design. A design model is at the core of the system. The model

will be employed to assess the similarity between a new design and the existing

designs, and to adapt a retrieved design to suit a new situation. The model is in the

form of attributed graphs containing knowledge about function, feature, structure,

performance, and goal, and has the fractal characteristics o f self-similarity,

self-organisation, goal-orientation, and dynamism.

The chapter studied the approach of fractal-like design modelling and discovered the

key properties of fractals that make it work.

90

Chapter 4

Similarity Assessment on Attributed Graphs in Design Case Retrieval

4.1 Preliminaries

In many CBR systems, case retrieval relies on the similarity between the new problem

context and cases in the case base. Methods o f grading similarity have been developed.

However, some methods do not incorporate sufficient product information to allow

detailed comparisons of similarity among complex designs, while some involve

complicated geometric comparisons that do not measure similarity according to

criteria for domain specific technical knowledge (Elinson & Nau, 1997).

This chapter introduces an approach for assessing the similarity o f design models

presented in Chapter 3. Methods of similarity assessment have been reported in the

literature (Smyth & Keane, 1998). As mentioned in Chapter 2, the existing methods

compare either features or structures separately. In order to have a more

comprehensive similarity measure, this research considers both structure and feature

factor. The aim is to develop a method to query a case base o f design models, which

are in the form of attributed graphs containing design knowledge about function,

91

feature and structure and to identify existing designs with graphs similar to the target

problem. Similarity of design models is measured by concurrently applying

feature-based similarity measures and structure-based similarity measures.

The rest of the chapter is organised as follows: section 4.2 introduces the generation

of the compared model; section 4.3 describes the proposed approach to measure the

similarity of designs; section 4.4 gives an example to explain the method.

4.2 Compared model generation

The first step towards case retrieval is to build a compared model. A compared model

is used to query a case base of design models. Some researchers have constructed a

Model Dependency Graph as a query, which is a representation o f the design features

and interdependencies of those design features o f a CAD model (Cicirello & Regli,

2001). The nodes o f this graph correspond to individual design features and an edge

between two nodes corresponds to some spatial dependence between the features. As

discussed in Chapter 3, cases in the case base are represented in three models:

function model, feature model, and structure model. Accordingly, a compared model

which is in the form of attributed graphs containing design knowledge about function,

feature, and structure, needs to be specified to identify existing designs with graphs

similar to the target problem. The user should be able to select these models by

preference.

92

To begin case retrieval, a user is asked to give a description of function, feature, and

structure to query the case base. For structures, structure models in the case base can

be selected as a query. Constructing a compared model that integrates new

requirements and existing models is the usual method for re-design.

An example o f a compared model is shown in Figure 4.1. Used as the query are:

functions and their relationships, features (including length, width, height, car type,

wheelbase, front track, rear track, weight, fuel consumption, and acceleration), and

input structure (which is “CAB” in the case-base).

4.3 Similarity measure

It is proposed that design similarity is evaluated using a combination of two methods:

Structure-based similarity evaluation and Feature-based similarity evaluation. The

structure-based similarity measure is based on the minimum number o f the primitive

operations on the structure to equalise the target model and the case. It makes a

premise for easy adaptation, as most retrieval approaches expect that a case, which is

similar to the target problem, should also be easy to adapt. The feature-based

similarity measure is a traditional method. It measures similarity by counting the

number of common features between the case and the target problem (often with

some priority weighting of features).

93

Function

(Function-1: Support chassis)

(Function-2: Provide space for passengers)

(Function-3: Stylise)

Function Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3,

Function-1, and))

Input Features

((Length 5029mm)

(Width 1902mm)

(Height 1492mm)

(Wheelbase 2990mm)

(Front track 1578mm)

(Rear track 1582mm)

(Type Saloon)

(Fuel consumption 15.5 ltr/100km)

(Top speed 237km/h)

(Acceleration 0-100km/h 8.1 sec)

(Weight 1865kg))

Input structure

(THE :CASE-BASE :CAB)

Figure 4.1: A compared model

94

4.3.1 Structure-based similarity measure

To assess similarity of structure, the equivalence of two graphs needs to be defined

first. Assume there are two graphs G1 and G2. Ei(G)= \ei(G), e2 (G), ... e„(G)] is used

to denote the elements at the ith level, in which en(G) is the nth element of graph G in

level i. Ri(G)= \ri(G), r2(G), ... rn(G)] denotes the relationships between the elements

in level i and Pi(G)= \pi(G), p 2(G), ... p n(G)\ denotes the relationships between level i

and level i-1. There is equivalence between graphs G1 and G2 at the ith level, i.e.

Qi(Gl, G2), as a Boolean variable, is true if and only if:

a. the numbers of elements at the ith level in G1 and G2 are equal;

b. the numbers of relationships at the ith level in G1 and G2 are equal;

c. for each ej(Gl), there is a corresponding ek(G2) such that e /G l) = ek(G2);

d. for each r /G l) , there is a corresponding rk(G2) such that rj(Gl)= rk(G2)\

e. for eachp /G l) , there is a correspondingp k(G2) such thatp j(G l)= p k(G2).

e/G l)= ek(G2) if the labels of the elements are the same. Attributes are not

considered in assessing structural equivalence, because only structure is of interest

here; rj(Gl) = rk(G2), pj(G l) = p k(G2) if the types o f the relationships are the same. Let

Tj(Gl, G2) be a Boolean variable and Ti(Gl, G2) = Q i A ... A Q i. TtfGl, G2) is true if

Qi(Gl, G2), Q2(G1, G2),..., Qi(Gl, G2) are all true. Then two graphs G1 and G2 are

equal if and only if for all i, Tt(Gl, G2) is true.

For ease of adaptation, a cost-based distance calculation method is applied to grade

95

similarity. The degree of similarity between G1 and G2 can be determined by

assessing the minimum number of primitive operations (structural modifications) that

need to be applied to G l, in order to make G1 and G2 equivalent. Primitive operations

that can be performed on a graph are adding, removing, and replacing an element or a

relationship. Adding/removing an element or a relationship is to append/delete an

element or a relationship to/from a graph. Replacing an element or a relationship is

the operation of removing an existing element or a relationship and adding a new one.

The dissimilarity Ds is given by the sum o f the number o f primitive operations as

shown in Eq. (1).

where n2 is the number o f added/removed elements and relationships; n2 is the

number of replaced elements and relationships.

In Eq. (1), n2 is multiplied by 2 because the replacement operation involves two steps,

removal and addition.

The structure-based similarity Ss is defined in Eq. (2), so that the lower the degree of

dissimilarity is, the more similar the graphs are.

Ds = Z2ni + 2 E n 2 (1)

Ss = 1/ Ds (2)

96

This method of accessing similarity is applied to the function model and the structure

model. Operating on the geometric level o f the structure model is different from

operating on the other levels. The first difference is that entity types instead of labels

are compared. As geometric entities may have different names in different designs

(for example, the same curve can be named curveOOl and curve002 in different cases

d l and d2 respectively), elements cannot be identified by their labels. The second

difference is that only subordinate relationships are compared. There are many

positional relationships in a geometric model and they can be easily modified and

generated. It is difficult and unnecessary to compare all the positional relationships in

a complex design. The collection of subordinate relationships is defined in Figure 4.2.

The similarity measure for the function model and structure model are defined in

Figure 4.3 and Figure 4.4.

This method calculates the similarity o f the graph structure, which reflects the

difficulty of modifying the structure o f a given design model into a target structure.

Following the similarity measure, all the compared designs are arranged in an

ascending order of similarity. Two lists are obtained, which respectively represent

function similarity and structure similarity between a particular design and a given set

of design cases.

97

Repeat

Search the objects in the case base

if the object is : sub-relations

then write the contents of the object in a list A

end-if

until the complete case base is searched.

Figure 4.2: Obtaining the subordinate relationships

Repeat

Select a case in the case base

Repeat

Read an input function

if the input function is in the function model o f the case

then count equal functions

end-if

until all the input functions are searched

Repeat

Read an input function relationship

if the input function relationship is in the function model o f the case

then count equal function relationships

end-if

until all the input function relationships are searched

Count the sum of equal functions and function relationships

Calculate the dissimilarity

Sort the cases in an ascending order of similarity

until the complete case is searched

Figure 4.3: Structure-based similarity measure on function model

98

Repeat

Select a case in the case base

Repeat

Read an element of the input structure

if the element is in the structure model o f the case

then count equal elements

end-if

until all the elements in input structure are searched

Repeat

Read a subordinate relationship in the input structure

if the subordinate relationship is in the structure model o f the case

then count equal relationships

end-if

until all the subordinate relationships in the input structure are searched

Count the sum of equal elements and relationships

Calulate the dissimilarity

Sort the cases in an ascending order o f similarity

until the complete case is searched

Figure 4.4: Structure-based similarity measure on structure model

99

4.3.2 Feature-based similarity measure

This research proposes that features used for comparison are of two types, as defined

in Figure 4.5. One is features from the feature model, which are usually attributes

describing function, stmcture and behaviour. The other type is optional features,

which are attributes or elements extracted from other models by the user.

The equivalence of attributes is defined as follows:

> For nominal attributes, they are equal if the strings are equal.

> For numerical attributes, they are equal if they are in the range of tolerance band.

The tolerance bands are given by the user, as shown in Figure 4.6. Taking the first

element in the list of the tolerance band for example, 0.1 indicates that the input

value Vi and the compared value Vc are equal if 0.9Vc <Vi < l.lV c .

In order to find design cases that are really needed by the designer, features are

subjectively graded by the user, as shown in Figure 4.7. Let Ne denote the number of

pairs of features that are equal to each other within a specified tolerance band and Nm

the number o f features in the presented case that do not exist in the given design.

Feature-based similarity Sf can be calculated using the following equation:

100

.‘optional-features (list (list :passenger-cabin : length
3000)(list :passenger-cabin :width 1902) (list :passenger-cabin :height 1490)
(list :luggage-compartment :length 529))

: input-features
(list (the :length) (the :width) (the iheight) (the :wheelbase) (the :fronttrack)

(the rreartrack)
(the :car-type)(the :fuel-consumption) (the :top-speed) (the :acceleration)
(the :weight))

Figure 4.5: Features for comparison

tolerance-band (list 0.1 0.08 0.05 0.08 0.05 0.05 1 0.1 0.1 0.1 0.3)

Figure 4.6: Tolerance band

weights (list 0.5 0.5 0.2 0.2 0.2 0.2 0.5 0.3 0.3 0.3 0.3)

Figure 4.7: Grades for features

101

Sf = Z k iNe- Z k iNm (i—1, ...n, O ^ k -^ 1) (3)

where

ki -grades of features,

Ne - number of equal features,

Nm - number of missing features.

Feature-based similarity measures on a feature model and optional features are

defined in Figure 4.8 and Figure 4.9 below. The sum-up o f these two similarity

measures are defined in Figure 4.10.

102

Repeat

Read a case in the case base

Repeat

Read an input feature

Find the according feature in the case base

Read Tolerance-band

Read Weight

if the features equal in a tolerance-band

then add Weight to Feature-equal

end-if

until all the input features are read

Sort the case by a descending order o f Feature-equal

until all the cases in the case base are read

Figure 4.8: Feature-based similarity measure on feature model

103

Repeat

Read a case in the case base

Repeat

Read an optional feature

Find the according optional feature in the case base

Read Tolerance-band

Read Weight

if the optional features equal in a tolerance-band

then add Weight to Optional-feature-equal

end-if

until all the optional features are read

Sort the case by a descending order of Optional-feature-equal

until all the cases in the case base are read

Figure 4.9: Feature-based similarity measure on optional features

104

Repeat

Read an item in the ranking list of feature-based similarity measure on

optional features as A

Rank A

Repeat

Read an item in the ranking list of feature-based similarity measure on

feature model as B

if A and B are the same case

then rank B

end-if

until A and B are the same case

Calculate the weighed sum of the ranking of A and B

Sort the cases according to descending sum

until all the items in the feature-based similarity measure ranking list are read

Figure 4.10: Feature-based similarity measure

105

4.3.3 Similarity assessment

The previous sections have described two methods of measuring similarity. Compared

to feature similarity, structure similarity is usually recognised as the first factor to be

considered, because the aim of similarity evaluation is to use an existing design model

as the basis for further design. The more similar a structure is to a desired

specification, the easier the modification will be. On the other hand, feature similarity

is also important due to the ease with which features can be compared. As for the

difference between function and structure, function is the basis o f a design and

determines its purpose, while structure reflects the organisation of the design. With

regard to structure, an assembly model and a part model represent the general

organisation of a design; on the other hand, a geometric model explicitly expresses a

design. As previously mentioned, geometric models are easily modified so that they

are less important during design reuse. Due to the complex nature of a design, users

may encounter different situations and may require different similarity measures.

This research proposes a numerical weighting method to address this problem. The

user may define a parameter w (O ^ w ^ l) to signify the importance o f each measure.

The overall similarity measure is the sum of the weighted similarity values. Thus,

based on the similarity values for the feature model, function model, and specified

levels of structure model, the overall similarity measure S can be obtained as follows:

106

S W] Nfeature W2 ^[function Astructure (O ^ W j , W 2> 00

where Nfeature, Nfunction and Nstructure denote the positions of a design on the lists ranking

its feature, function, and structure similarity with a given design. wj,w2 and w3 denote

the weights for feature, function and structure similarity measures. The design with

the largest S is the most similar to the specified design. The method of similarity

assessment is defined in Figure 4.11.

By adopting this weighting method, the user can freely choose from the measures to

be employed and decide their importance in a particular situation. For example, if

someone wants to compare the similarity of a function model only, they can set 0 as

the weights for all the other measurements.

The whole procedure is illustrated in Figure 4.12. The ICAD code for the proposed

similarity measure approach is shown in Appendix C.

107

Repeat

Read an item in the feature-based similarity measure ranking list as A

Rank A

Repeat

Read an item in the ranking list of structure-based similarity measure

on function model as B

if A and B are the same case

then rank B

end-if

until A and B are the same case

Repeat

Read an item in the ranking list of structure-based similarity measure

on structure model as C

if A and C are the same case

then rank C

end-if

until A and C are the same case

Calculate the weighed sum of the ranking of A, B and C

Sort the cases according to descending sum

until all the items in the feature-based similarity measure ranking list are read

Figure 4.11: Similarity assessment

108

C ase b ase Design Model

Feature-based similarity measure

Feature

model

Structure-based similarity measure

V

Optional feature

model

Wi

1Z
Function

model

Iz w2

Structure model

Part

Model

Assembly

model

Y
W3Iz

Geometric

model

Similarity assessment

Selected design model

Figure 4.12: An illustration of similarity assessment method

109

4.4 An illustrative example

Design models o f car bodies are used to exemplify the method. A representation o f a

car body using style lines is illustrated in Figure 4.13. A car body can be classified

into three assemblies: engine compartment, passenger cabin, and luggage

compartment. Each assembled part is composed of a few parts. For example, a

passenger cabin is composed of roof panel, left side, and right side.

Assume there are three models dO, d l , and d2, where dO is the input model while

d land d2 are the models in the case base, d l and d2 are to be compared to dO in order

to determine which of them is more similar to dO.

Feature-based similarity measure

Table 4.1 shows comparisons between the feature models o f dO and d l using the

feature-based similarity measure (Sf). Various features are compared, including type,

length, width, height, wheelbase, front track, rear track, weight, fuel consumption, top

speed, and acceleration 0-100km/h. The parametric features require offsets to

constrain the range o f the equal features, which is given in Figure 4.14. Weights are

assigned to each feature as shown in Figure 4.15.

no

P assen ger cabin

Engine compartment Luggage compartment

Rear panelLuggagi

compartrhent door

Left rear wing

Left side

Bonnet Left front wing Roof panelFront panel

Figure 4.13: Car body represented by style lines

k, Tolerance

band

dO d1 Comparison

with d1
d2 Comparison

with d2

Type 0.5 - Saloon Saloon E Compact NE

Length 0.5 + 0.1 5029 4775 E 4262 NE

Width 0.5 + 0.08 1902 1800 E 1751 E

Height 0.2 ±0 .05 1492 1435 E 1408 NE

Wheelbase 0.2 + 0.08 2990 2830 E 2725 NE

Front track 0.2 + 0.05 1578 1512 E 1484 NE

Rear track 0.2 + 0.05 1582 1526 E 1493 NE

Weight 0.3 + 0.2 1865 1570 E 1375 E

Fuel

consumption

0.3 + 1 15.5 12.2 E 9.7 E

Top speed 0.3 + 0.1 237 226 E 201 NE

Acceleration

0-100km/h

0.3 + 0.1 8.1 9.1 NE 11.1 NE

E: equal; NE: not equal

Table 4.1: Comparison of the feature models of dO and d l and o f dO and d2 using S/

111

A c c e p t ! [D e f a u l t ! Cancel!

Cbr
Enter to le ran c e-band fo r leng th , width, height, wheelbase, f ro n ttra c k , re a rtra c k , c a r- ty p e , fuel-consum ption, top-speed,
a c c e le ra tio n and weight (a l i s p expression)

S e le c t Accept! or D efault! to use d e fa u lt (0.1 0.08 0.05 0.08 0.05 0.05 1 0.1 0.1 0.1 0 .3)

[LIST 0.1 0.08 0.05 0.08 0.05 0.05 0 . 1 0 . 1 0 . 2)

Figure 4.14: Input tolerance band

Choice Mribute

Cbr
E nter w eigh ts fo r le n g th , w idth , heigh l
a c c e le ra t io n and w eight (a l i s p ex pres

S e le c t A ccept! o r D efa u lt

([LIST 0 .5 0.

A cce p t! D e fa u lt ! C an cel!

w heelbase, f r o n t t r a c k , r e a r t r a c k , c a r - ty p e , fu e l-c o n su m p tio n , to p -sp eed ,
ssion)
! to use d e f a u l t (0 .5 0 .5 0 .2 0 .2 0 .2 0 .2 0 .5 0 .3 0 .3 0 .3 0 .3)

5 0 .2 0 .2 0 .2 0 .2 0 .5 0 .3 0 .3 0 .3 0 .3)

Figure 4.15: Input weights for features

1 1 2

Table 4.2 shows a comparison between dO and d l on the optional features using S/.

Attributes including length, width, and height o f passenger cabin and the length o f

luggage compartment are extracted from the structure model and used as optional

features for comparison. As for the feature model, the parametric feature is given a

tolerance band and every feature is assigned a weight as shown in the table.

According to Table 4.1 and Table 4.2, the result of comparing dO and d l and dO and

d2 is listed in Table 4.3.

The feature-based similarity measure 6/-can be calculated according to Eq.(3):

Sf (dO, d l) = Hki Ne-HkiNm = 0.5 X5+0.3 X5+0.2 X 4 = 4.8

Sf (dO, d2) = E k tN e - E k iN ^ 0.5 X2+0.3 X2-0.3 X I = 1.3

S/(dO, d l) > Sf(dO, d2), which means that from the perspective o f features, d l is more

similar to dO.

113

kj Tolerance

band

dO d1 Comparison

with d1
d2 Comparison

with d2

Passenger

cabin\length

0.5 ±0.1 2090 1967 E 2725 NE

Passenger

cabin\width

0.5 ±0.1 1902 1800 E 1751 E

Passenger

cabin\height

0.3 ± 0 .0 6 1120 1100 E 1000 NE

Luggage

compartmentMength

0.3 ±0 .1 1139 1080 E

'

M

E: equal; M: missing feature; NE: not equal

Table 4.2: Comparison o f the optional features o f dO and d l and o f dO and d2 using Sf

dO and d1 dO and d2

Number of equal features k= 0.5: 2+3=5, /c=0.5: 1+1=2,

fr=0.3: 3+2=5, /c=0.3: 2+0=2,

k= 0.2: 4+0=4. k=0.2: 1+0=1.

Number of missing features 0 k= 0.3: 1

Table 4.3: Summary of comparison results

114

Structure-based similarity measure

Since the function models o f dO, d l and d2 are all the same,

Ds(fun){dO, dl}= 0,

Ds(fun){dO, d2}= 0,

and S/fun) {dO, d l} = Ss(fun){dO, d2}.

In this example, the structure-based similarity measure Ss is applied at all the levels of

the stmcture model. The illustration of the structure models o f dO, d l and d2 are listed

in Figure 4.16. Different styles o f lines are used to distinguish the relationships: The

thick line represents the positional relationship between the parts, which includes

non-parametric relationship and parametric relationship; the thin line identifies the

subordinate relationship between parts or between parts and assemblies. As described

in Section 4.3.1, from Eq. (1) the result o f comparison is obtained as:

Ds(str){dO, dl}= 8,

Ds(str){dO, d2}=25.

Therefore, Ss(str){dO, dl}> Ss(str){dO, d2j, which means that from the perspective of

structures, d l is more similar to dO.

So far, the following results have been obtained:

115

Passenger
CabinEngine bay

Hatchi Bonnet

Passenger
Cabin

Bonnet Hatch

Passenger
'CabinEngine bay

Bonnet:

(a) (b) (c)

Figure 4.16: Structure models o f (a), (b) and (c)

116

Feature-based similarity measure:

Sf (dO, d l) > Sf (dO, d2).

Structure-based similarity measure on function model:

Ss(fun){dO, d l} = Ss(fun){dO, d2}.

Structure-based similarity measure on structure model including all levels:

Ss(str){dO, dl}> Ss(str){dO, d2}.

A set of weights is provided by the user to determine the importance of each result,

which is shown in Figures 4.17 - 4.19. Weights for this example are given as (0.4, 0.3,

0.3) and the similarity assessment is executed according to Eq. (4):

S(d0, d l) = 0 .4X 2 + 0 .3 X 2 + 0 .3 X 2 = 2

S (dO, d2) = 0.4 X I + 0 . 3 X 2 + 0.3 X I = 1.3

S(d0, dl)> S (dO, d2).

Thus, the conclusion can be drawn that d l is more similar to dO than d2. Figure 4.20

shows the result o f the retrieved case d l. In the figure, a geometric model of d l is

shown on the left and the structure model o f d l is shown on the right.

117

Choice Attribute

A ccept! D efa u lt! Cancel!

Cbr
Enter weight fo r fe a tu re -b a se d s im i l a r i t y measure (a number g re a te r th an or equal to 0 and l e s s than or equal to 1)

S e le c t A ccept! or D e fa u lt! to use d e f a u l t 0 .4

[O '..

Figure 4.17: Weights for feature-based similarity measure

Choice Attribute

Accept! | D e fa u ltfj Cancel! |
Cbr

Enter weight for s tru c tu re -b ased s im ilc r i ty measure on function (a number g rea te r than or equal to 0 and le s s than or equal
to 1)

S e lec t Accept! or D efault! to use d e fa u lt 0.3
joT T

Figure 4.18: Weights for structure-based similarity measure on function model

Choice Attribute

Accept! j D efault! j Cancel!
Cbr

Enter weight fo r s truc tu re-based s im ila r i ty measure on s tru c tu re (a number g re a te r than or equal to 0 and le s s than or equal
to 1)

S e lec t Accept! or D efault! to use d e fa u lt 0.3
[O ’

Figure 4.19: Weights for structure-based similarity measure on structure model

118

\lnttomce Viewport

L: S e le c t H: Hatch R; E ditV ieu Menu
sh-L: Match sh-M: U nclip sh -.t: E x p l ic i t S e le c t

Figure 4.20: The retrieved case d l

119

4.5 Discussion

This chapter has proposed a new approach to measuring the similarity of designs

using graph-based representations. It enables the user, when given a new design, to

query a case base of design models, which are in the form of attributed graphs

containing design knowledge about function, feature, and structure and to identify the

existing designs with graphs similar to the new design. A graph consists of elements,

attributes, and relationships: G = [E, A, R]. Two similarity measure methods

(structure-based similarity measure and feature-based similarity measure) are applied

on this form concurrently, in order to perform a complete comparison.

The approach of similarity measure can be outlined as follows:

> Specify a compared design model.

> Assess feature-based similarity and structure-based similarity.

♦ Feature-based similarity measure on feature model and structure model;

♦ Structure-based similarity measure on function model;

♦ Structure-based similarity measure on structure model;

> Assign weights to each measure.

Compared to the previous methods, the proposed approach has the following

advantages:

120

> It incorporates design knowledge to assess design model similarity. Previous

research had the problems that product information was insufficiently

incorporated to compare similarity o f complex designs and that complicated

geometric comparisons were conducted without taking account of the criteria of

domain specific technical knowledge. Design is a stage in which human

knowledge is involved. It is the knowledge rather than the shape model that

should be compared. In the proposed method, design knowledge such as

functions, features and structures is extracted and used for the comparison of

designs.

> It assesses similarity by considering both the features and the structure of the

product. In previous research, either feature or structure is compared individually,

which will cause an incomplete comparison. The proposed research develops an

approach to measure the similarity o f the designs considering all these factors.

> It achieves flexibility o f measuring similarity. User preference is applied to fulfil

the designer’s requirements. At different stages o f the similarity assessment

operation, users are involved by giving their preferences to guide the operation,

for example, assigning weights, specifying optional features, and selecting the

levels of structure model to be compared.

4.6 Summary

This chapter has presented a novel approach for measuring similarity of design. At

first, the generation o f compared model was discussed. A method for measuring the

similarity between this model and existing models in the case base was then addressed.

The method consists o f structure-based similarity measure, feature-based similarity

measure, and similarity assessment. Finally, an example o f the comparison of car

body was given to exemplify the proposed method.

122

Chapter 5

Fractal-based Adaptation and Fractal-Based Re-design

5.1 Preliminaries

Design is a complex open-ended task and it is unreasonable to expect a case base to

contain representatives of all possible designs. Adaptation is, therefore, a desirable

capability for case-based design systems. Research in adaptive design considers how

to adapt existing design cases in order to tackle new design problems. However, case

adaptation is often considered to be the most difficult part o f a case-based reasoning

system (Purvis & Pu, 1995). The difficulties arise from the fact that adaptation often

does not converge, especially if it is not done in a systematic way. Furthermore, in the

design domain, multiple cases must be considered in conjunction in order to solve the

new problem, resulting in the difficulty o f how to efficiently combine the cases into a

global solution for the new problem.

The proposed work develops a systematic approach for adaptation in the CBR process.

The approach adapts the fractal-like design model, which was discussed in Chapter 3,

with the help of fractal characteristics. The research presented in this thesis

123

investigates an efficient way to develop a systematic method for automating

adaptation, to investigate the use o f fractal characteristics in adaptation and to use the

performance and goals o f a design problem to guide the process of adaptation. A

description of the fractal-based adaptation method is presented with examples in

Section 5.2. Section 5.3 reports the whole process of Fractal-Based Re-design.

5.2 Fractal-based adaptation

Design case adaptation is a complicated problem solving process. Design case

adaptation involves identifying the differences between the new and the old design

contexts and modifying the previous design by taking those differences into account.

The issues to be addressed in developing an adaptation method include the

representation of domain knowledge to be used in adaptation and the strategy for

adaptation.

For strictly engineering optimisation problems, representations should be direct (i.e.

they should encode possible solutions) and parameterised (allowing only for slight

variations). They usually incorporate domain knowledge in order to make the search

more efficient (Kicinger et al., 2005b). Case adaptation can be considered as an

optimisation problem. Traditionally in case-based reasoning, adaptation knowledge

has taken the form of solution transformation rules. Adaptation knowledge structures

and processes can take many forms, from the use of declarative rules for substitutional
124

adaptation to the use o f more complex operator-based or derivational knowledge in

first-principles approaches. In this research, the adaptation knowledge is represented

through generalised schemes, i.e. fractals, which are stored within the individual

design cases as discussed in Chapter 3.

In adaptive design, depending on the demands o f the requirements list, the fractal

structure can be modified by the variation, addition, or omission of individual

sub-fractals or by changes in their combination. An advantage o f setting up a fractal

structure is that it allows a clear definition of sub-designs. I f an assembly can be

substituted directly as a fractal, the subdivision of the fractal structure can be

discontinued at a fairly high level o f complexity. In those cases requiring further

development, the division into sub-fractals o f decreasing complexity can be continued

until the search for a solution seems promising.

The purpose of re-design can be divided into two. These are modifying the

performances and improving the goals o f the existing designs. In this research, these

two issues are resolved with the help o f the fractal characteristics. This research

proposes performance revision and goal-oriented substitution as the main

manipulations o f adaptation.

125

5.2.1 Performance revision

As discussed in Chapter 3, every design case can be represented as a group of fractals

working together to deliver a particular overall performance. A description of a new

design problem is represented as a group o f sub-performances that may be provided

by a number of fractals. These sub-performances are indexed to identify the fractals.

The new sub-performances are compared to the sub-performances of the retrieved

design case as shown in Figure 5.1. The differences between the two sets of

sub-performances reveal the discrepancies between the two cases. In this way, it can

be seen where the transformation to the old design case should be applied so as to

fulfil the new requirements.

Once the discrepancies have been identified, the adaptation process starts. If there is

performance discrepancy, the fractals are restructured to adapt to the new design

problem. The system automatically selects the operation according to the performance

discrepancies under different situations as outlined below.

126

Repeat

Read the performance in the retrieved case

Add the performance in a list Retrieved-case-performance

until all the performance is added

Repeat

Read an item in the list Retrieved-case-performance

if the item is in the input performance

then add it in Kept-performance

end-if

until all items in the list Retrieved-case-performance are read

Removed-performance<- Retrieved-case-performance - Kept-performance

Repeat

Read an item in the list Kept-performance

if the item is in the input performance

then remove it from Input-performance

end-if

until all items in the list Retrieved-case-performance are read

Added-performance<-Input-performance

Figure 5.1: Comparison o f performance

127

> Situation 1: The performances are identical in the new problem and in the old

case.

> Situation 2: Some performances in the old case are not in the new problem, while

all performances in the new problem are in the old case.

> Situation 3: Some performances in the new problem are not in the old case while

all performances in the old case are in the new problem.

> Situation 4: Some performances in the new problem are not found in the old case

and some performances in the old case are not found in the new problem.

This research proposes the following rules for adapting the design case:

Operation 1: Add component.

Operation 2: Remove component.

> Rule 1: if it belongs to situation 1, no manipulation is needed.

> Rule 2: if it belongs to situation 2, those fractals whose performance is not in the

new problem will be “removed”.

> Rule 3: if it belongs to situation 3, fractals from other cases that contain those

distinguished performances will be “added”;

> Rule 4: if it belongs to situation 4, which is a combined situation of situation 2

and situation 3, the solution is to “remove” the redundant fractals and to “add” the

required fractals.

128

The process o f performance revision is defined in Figure 5.2. The ICAD code for

performance revision is shown in Appendix D.

5.2.1.1 An illustrative example

Presented here is an example o f performance revision for a car body. It is supposed

that the aim of re-design in this example is to re-design a saloon car body to a

compact one. At first, the system asks the user for the performances, as shown in

Figure 5.3. In this example, the performances for a compact car are listed below:

> To provide space for the engine.

> To provide space for the passengers and the luggage.

Then the system asks the user to select the case for re-design as shown in Figure 5.4.

A saloon car body “cb003” is selected as the re-design object. The performances of

“cb003” (the saloon car) are listed below:

> To provide space for the engine.

> To provide space for the passengers.

> To provide space for the luggage.

As can be seen, the first performance exists in the previous case but the second

performance does not. According to the rules, operations “add” and “remove” are

used to revise the existing design. A fractal providing the second performance is

129

selected from the case base to help construct the new design solution. This selection is

conducted randomly in the case base. The whole process and the result are shown in

Figure 5.5. As shown in the figure, the passenger cabin in cb002 is used to replace the

cabin in cb003, and the luggage compartment of cb003 is removed to obtain the

result.

130

Start

Are all the performance

in the old case now in the

new problem?

Are all the performance

in the new problem in the

old case?

Are all the performance

in the new problem in the

old case?

Situation 3 Situation 2 Situation 4

r r r

Rule 3 Rule 2 Rule 4

Output adapted case

Figure 5.2: The process of performance revision

131

Cbr

Choice Attribute

A c c e p t ! D e f a u l t ! C a n c e l!

C l i c k u p t o t h r e e o f t h e b u t t o n s b e l o w a r i d c l i c k " A c c e p t ! "
o r c l i c k " D e f a u l t ! " t o s e l e c t (" P r o v i d e _ S p a c e _ F o r _ T h e _ E r i g i n e ")

P r o v i de_Spac e _ F o r _T h e_ E n g i ne

| P r o v i de_Spac e _ F o r _T he_Pas s e n g e r s A n d L uggage

Pr o v i de_Spac e _F o r _T he_Pas s e n g e rs j

Pr o v i de_Spac e_F o r _T he_L u g g a g e !

Figure 5.3: Performance selection

Choice Attribute

A c c e p t! [) e f a u l t ! C a n c e l!

Cbr
E n t e r t h e c a s e n a m e by c l i c k i n g o n e o f t h e

o r c l i c k " D e f a u l t ! " t o u s e t h e

CbOO1!

Cb0°2j

|cb003

b u t t o n s b e l o w a n d c l i c k " A c c e p t ! "
d e f a u l t c a s e " C b 0 0 1 "

Figure 5.4: Re-design case selection

1 3 2

FBR c

Re-design object
cb003

“Performance substitutes’
cb002

Figure 5.5: An illustration o f the process o f re-design

133

5.2.2 Goal-oriented substitution

Designers often encounter such situations where the existing designs no longer satisfy

the particular requirements in some specific aspects. In this situation, the aim of

re-design is to improve the existing design towards particular goals. Goal-oriented

substitution is developed to solve this kind of problem.

Every fractal has individual goals. As defined in Section 3.3.3, a goal consists of four

parts:

> An attribute which has effect on the goal.

> An operation on the attribute, which can be “maximise” or “minimise”.

> Type of goal, which can be individual goal (:i) (the goals that cannot propagate to

another level) or corporate goal (:c) (the goals that are able to propagate to

another level).

> The corporate goal to which this goal contributes.

The goals of each fractal are somewhat different from those o f the others. To achieve

these goals coherently, goal consistency should be maintained. A goal formation

process is proposed here. Under the architecture of the fractals, the goals of the

fractals form a structure that describes the context and relationship of the goals. A

Goal Dependency Graph (GDG) can be generated. As a graph representing the

dependencies between the goals, a GDG propagates the corporate goals to individual

134

goals. The process o f the input goals propagation is defined in Figure 5.6.

Inside the individual goals, the attributes and the desired operations can be obtained.

This is the knowledge which guides the design on how to obtain the goals. As some

operations on the same attributes might be contradicted, these goals will be removed.

Then a simplified GDG is obtained. The identification of contradicted goals and the

generation of a simplified GDG are defined in Figure 5.7. These attributes and

operations can be used as constraints to query the case base. Fractals containing more

suitable attributes to achieve the goals are selected to substitute the fractals in the

previous design. The fractal structures after substitution are self-organised by

changing the specific substituted fractals’ attributes. The characteristic of

self-similarity guarantees that the performance of the fractals is not affected. The

generation of substitution is defined in Figure 5.8. The ICAD code for

goal-orientation substitution is shown in Appendix E.

135

Find Individual-goals in the case base and make a list

Repeat

Read an input goal in the list o f Input-goals

Repeat

Search in the list o f Individual-goals

if the corporate goal that individual goal contributes equals the input goal

then add the individual goal to a list A

end-if

until all the Individual-goals are searched

list B<-Add the input goal to list A

GDG<-Add list B

until all the input goals are read

Figure 5.6: The process o f input goal propagation

136

GDG

Conflict? If aa1=a1 and

aa3=a3 and aa2!=a2

yes no

no

m<=lenqth of b?

yes

yes no

n<=length of GDG?

simplified GDG = remove c from GDG

m=m+1

m,n=1

bb=bb+a

c=c+bb; n=n+1

aa=mth goal in b

a=nth goal in the GDG

b=Remove a from the GDG

a1 =1 st element of a; a2=2nd element of a; a3=3rd element of a

aa1=1st element of aa; aa2=2nd element of aa; aa3=3rd element of aa

Figure 5.7: The process o f generation of simplified GDG

137

Repeat

Read a goal in SGDG as A

Repeat

Search in the case base

Check the name o f object B

If object B is the fractal where A is from

Then if the attribute o f B > the attribute of A

and Operation on attribute of A is maximise

or if the attribute o f B < the attribute of A

and Operation on attribute of A is minimise

then substitute B to replace A

end-if

end-if

until a substitution is found or all the case base are searched

until all the items in SGDG is read

Figure 5.8: Definition of generation of substitution

138

5.2.2.1 An illustrative example

The following is an example of automated adaptive design for goal-oriented

substitution for a car body. The structure of the goals is illustrated in Figure 5.9. As

can be seen in the figure, G l, G2 and G3 are affected by the sub-goals in the lower

layered fractals. For example, G l is affected by G l-G l, G1-G2 and G1-G3 in engine

compartment, passenger cabin and luggage compartment, and G l-G l is affected by

another lower layered fractals. Figure 5.10 shows the GDG of the goals, which

illustrate the dependencies between the goals, and shows how the corporate goals G l,

G2 and G3 propagate to individual goals.

Suppose the aim of re-design is to improve all three goals. As can be seen, :G1-G2

(list m inim ise : volume :c :G1) and :G2-G1

(list maxim ise :volume :c :G2), :G1-G2-G1 (list m inim ise :height :i :G1-G2)

and :G2-G1-G1 (list m axim ise rheight :i :G2-G1), :G1-G2-G4

(list m inim ise :length :i :G1-G2) and :G2-G1-G3

(list maxim ise dength :i :G2-G1), :G1-G2-G3 (list m inim ise dength :i :G1-G2)

and :G2-G1-G2 (list m axim ise dength d :G2-G1) are contradicted. So these goals are

removed, and a simplified GDG is:

:G1->(:G1-G1-G1 :G1-G1-G4 :G1-G1-G2 :G1-G1-G3 :G1-G2-G2 .G1-G3-G1 :G1-G

3-G4 :G1-G3-G3 :G1-G3-G2) :G3-> (:G3-G1)

139

G1 G2 G3

Engine compartment Luggage compartmentPassenger caroin

G1-G3-G1G1-G1-G1 G1-G2-G1

G2-G1

G1-G3-G2G1-G1-G2 G1-G2-G2
G1-G2

G1-G3
G1-G1 G3-G1

G1-G3-G3G1-G1-G3 G1-G2-G3 G2-G1-G1

G1-G2-G4G2-G1-G2G1-G2-G4
G1-G1-G4

Figure 5.9 (a): Structure o f the goals o f a case o f a saloon car body

140

:G1 (list :minimise ivolume :c)

:G2 (list :maximise icomfort :c)

:G3 (list :maximise :visualisation :c)

Engine compartment :G1-G1 (list :minimise :volume :c :G1) :G3-G1 (list iminimise :length :i :G3)

Bonnet :G1-G1-G1 (list iminimise ilength :i :G1-G1)

Front panel :G1-G1-G4 (list iminimise iwidth :i :G1-G1)

Left front wing :G1-G1-G2 (list iminimise iheight :i :G1-G1)

Right front wing :G1-G1-G3 (list iminimise iheight :i :G1-G1)

Passenger cabin ;G1-G2 (list iminimise ivolume :c :G1) :G2-G1 (list imaximise ivolume :c :G2)

Roof panel:G1-G2-G1 (list iminimise iheight :i :G1-G2) :G1-G2-G2 (list iminimise iwidth :i :G1-G2)

:G2-G1-G1 (list imaximise iheight :i :G2-G1)

Leftside :G1-G2-G4 (list iminimise ilength :i :G1-G2)

:G2-G1-G3 (list imaximise ilength :i :G2-G1)

Right side :G1-G2-G3 (list iminimise ilength :i :G1-G2)

:G2-G1-G2 (list imaximise ilength :i :G2-G1)

Luggage compartment :G1-G3 (list iminimise ivolume :c :G1)

Luggage compartment door :G1-G3-G1 (list iminimise ilength :i :G1-G3)

Rear panel :G1-G3-G4 (list iminimise iwidth :i :G1-G3)

Left rear wing :G1-G3-G3 (list iminimise iheight :i :G1-G3)

Right rear wing :G1-G3-G2 (list iminimise iheight :i :G1-G3)

Figure 5.9 (b): The goals o f a case o f a saloon car body

141

G1

G2 G3

G1-G2

G1-G3

G1-G1

G3-G1G2-G1

G1-G3-G3

G1-G3-G2

G1-G3-G4

G1-G3-G3

G1-G3-G4

G1-G3-G2

G1-G3-G1

G1-G3-G1

G1-G1-G4

G1-G1-G1

G1-G1-G2

G1-G1-G3

G2-G1-G1

G2-G1-G2

Figure 5.10: The GDG of a case o f a saloon car body

142

These goals are used as constraints to query the case base for the fractals. In this

example, bonnet with minimised length, front panel with minimised width, left front

wing with minimised height, right front wing with minimised height, roof panel with

minimised height, luggage compartment door with minimised length, rear panel with

minimised width, left rear wing with minimised height, right rear wing with

minimised height and engine compartment with minimised length are searched in the

case base. If they are found, they will be used to substitute the according fractals of

the re-design object.

5.3 Fractal-Based Re-design (FBR)

So far, with the adaptation strategies discussed in the previous section, together with

case representation and case retrieval discussed in Chapter 3 and Chapter 4, a

complete case-based design system has been established. These three parts are

integrated as a systematic approach which can help the designer query a case base of

design models, identify similar existing designs and adapt the retrieved design to suit

the new situation. The framework of Fractal-Based Re-design (FBR) is illustrated in

Figure 5.11. As shown in the figure, FBR starts with a design model describing the

design requirements. Then the query model is compared to the models in the case base

by a feature-based similarity measure and by a structure-based similarity measure.

Next, these two similarity measures are assessed to determine the most similar cases

in the case base compared to the query model. This case is then used as the base for

143

Specifying the query
requirements---------------- Design Model

Assign weights
Feature-based similarity measureand tolerance band

Assign weights Case
Structure-based similarity measure

retrieval

Assign weights

Similarity assessment

© -
Assign weightsUser Retrieved design modeland tolerance band

Adaptive

design
Specify performanc 3

Performance revision

Specify goals
Goal-oriented substitution

Adapted design model

Figure 5.11: The framework o f FBR

144

adaptive design. The user can choose to re-design according to performance or goals.

Finally, the adapted design model is achieved. The designer is involved in the whole

process of FBR by specifying inputs at each step. The designer can also assign

weights to manipulations to control the process. Furthermore, the process can start not

only with design requirements, but also start from the middle o f the process, i.e. the

designer can specify an existing model and begin adaptive design straight away. The

ICAD code for FBR is shown in Appendix F.

5.4 Discussion

Adaptive design is a method used for conceptual design. With this method, when the

design team is confronted with a new design problem, an old design case, which has

some similarity to the requirements for the new design problem, can be retrieved and

then modified to suit those new requirements. An advantage o f this method is that

most of the design knowledge is available once a design case has been retrieved. Only

minor changes are required so as to modify the old design case.

Two main issues are involved in adaptive design. The first is the representation of the

domain knowledge for the adaptation. In FBR, adaptation knowledge is distributed

over fractals. The second is the strategy for adaptation. This chapter has addressed the

strategy for adaptation. Design knowledge, such as performance and goals, is

employed to develop a systematic method for automating adaptation. Performance

145

revision adapts a design by substituting fractals according to the identified

performance; goal-oriented adaptation provides an efficient way for adaptation by

using the goals of a design problem to guide the process o f adaptation. The fractal

specific characteristics such as self-similarity, self-organisation, goal-orientation play

an important role in the automation of the adaptation process.

This chapter has also addressed Fractal-Based Re-design as a whole CBR process.

FBR is intended to be a formal framework for tasks that include reasoning about

design, formulating new design solutions, and the development o f computer-based

design aids. FBR aids in thinking about design at both the abstract and the practical

levels and realises the automation of design processes.

5.5 Summary

In this chapter, the fractal-based adaptation strategy was presented with examples in

Section 5.2. This included performance revision and goal-oriented substitution. Then

Section 5.3 presented the whole process o f FBR.

146

Chapter 6

A Case Study of Fractal-Based Re-design in Automotive Body Design

6.1 Preliminaries

Through the use of a case study, this chapter describes how the approach to

conceptual design proposed in this thesis can be applied to support the design o f an

engineering product. The chapter starts with a short review o f automotive body design

in Section 6.2. A case study in automotive body design is presented in Section 6.3 and

the results are discussed in Section 6.4.

6.2 Automotive body design

Automotive body design is a crucial task in automotive development. Body design has

a profound impact on the vehicle's appeal and function. The body is the most

expensive component of the vehicle to manufacture. It is designed under constraints

arising from aesthetic considerations, structural and functional requirements, cost

concerns and the availability of manufacturing resources. Engineers base their

147

judgments on specific experiences with prior designs. However, new engineers begin

their work without these experiences and even experienced engineers may not have

had experience with the most relevant designs for a particular problem. Multiple

information resources exist to aid the design task, such as records o f experiences with

prior designs, stored in paper and electronic forms. However, it may be difficult or

excessively time-consuming for engineers to find the information needed. Key

questions for improving this process are how to provide better access to experiences

and other engineering knowledge and how to improve the usefulness o f the

information when it is re-applied (Leake et al., 1999).

6.3 A case study of Fractal-Based Re-design in automotive body design

A case base has been built using the FDM technique proposed in Chapter 3. The

models of automotive bodies in the case base are illustrated in Figure 6.1. Design

knowledge such as functions, features, structures, performance and goals is

represented as shown in the figure.

148

Cb001

FUNCTION MODEL

Function-1: Support chassis

Function-2: Provide space for passengers

Function-3: Stylise

Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3,

Function-1, and))

FEATURE MODEL

Behaviour feature Function feature

((Length 5029mm) ((Type Saloon)

(Width 1902mm) (Fuel consumption 15.5 ltr/100km)

(Height 1492mm) (Top speed 237km/h)

(Wheelbase 2990mm) (Acceleration 0-100km/h 8.1 sec))

(Front track 1578mm)

(Rear track 1582mm)) Structure feature

((Weight 1865kg))

STRUCTURE MODEL

Sub-Fractals: Engine compartment, passenger cabin, luggage compartment

performance (list :provide_space_for_the_engine :provide_space_for_the_passengers

:provide_space_for_the_luggage)

:G1 (list :minimise :volume :c) Assembly j

:G2 (list :maximise :comfort :c)
model

:G3 (list :maximise visualisation :c)

Figure 6.1 (a): The model o f automotive body in the case base :Cb001

149

Cb002

FUNCTION MODEL

Function-1: Support chassis

Function-2: Provide space for passengers

Function-3: Stylise

Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3,

Function-1, and))

FEATURE MODEL

Behaviour feature

((Length 4262mm)

(Width 1751mm)

(Height 1408mm)

(Wheelbase 2725mm)

(Front track 1484mm)

(Rear track 1493mm))

Function feature

((Type Compact)

(Fuel consumption 9.7 ltr/100km)

(Top speed 201 km/h)

(Acceleration 0-100km/h 11.1 sec))

Structure feature

((Weight 1375kg))

STRUCTURE MODEL

Sub-Fractals: Engine compartment, passenger cabin, luggage compartment

performance

(list :provide_space_for_the_engine :provide_space_for_the_passengers_and luggage)

:G1 (list :minimise :volume :c)

:G2 (list :maximise :comfort :c)

:G3 (list :maximise visualisation :c)

Assembly

model M ,r̂

Figure 6.1 (b): The model of automotive body in the case base: Cb002

150

Cb003

FUNCTION MODEL

Function-1: Support chassis

Function-2: Provide space for passengers

Function-3: Stylise

Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3,

Function-1, and))

FEATURE MODEL

Behaviour feature

((Length 4775mm)

(Width 1800mm)

(Height 1435mm)

(Wheelbase 2830mm)

(Front track 1512mm)

(Rear track 1526mm))

Function feature

((Type Saloon)

(Fuel consumption 12.2 ltr/100km)

(Top speed 226km/h)

(Acceleration 0-100km/h 9.1sec))

Structure feature

((Weight 1570kg))

STRUCTURE MODEL

Sub-Fractals: Engine compartment, passenger cabin, luggage compartment

performance (list :provide_space_for_the_engine :provide_space_for_the_passengers

:provide_space_for_the_luggage)

:G1 (list :minimise :volume :c)

:G2 (list :maximise :comfort :c)

:G3 (list :maximise visualisation :c)

Assembly

m odel

Figure 6.1 (c): The model o f automotive body in the case base: Cb003

151

Cb004

FUNCTION MODEL

Function-1: Support chassis

Function-2: Provide space for passengers

Function-3: Stylise

Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3,

Function-1, and))

FEATURE MODEL

Behaviour feature Function feature

((Length 4100mm) ((Type Compact)

(Width 1700mm) (Fuel consumption 13.7 ltr/100km)

(Height 1400mm) (Top speed 210km/h)

(Wheelbase 2750mm) (Acceleration 0-100km/h 11.5sec))

(Front track 1484mm)

(Rear track 1493mm)) Structure feature

((Weight 1500kg))

STRUCTURE MODEL

Sub-Fractals: Engine compartment, passenger cabin, luggage compartment

performance

(list :provide_space_for_the_engine :provide_space_for_the_passengers_and_luggage)

:G1 (list :minimise :volume :c)

:G2 (list :maximise :comfort :c)

:G3 (list :maximise visualisation :c)

Figure 6.1 (d): The model o f automotive body in the case base: Cb004

Assembly

model

1 5 2

Cb005

FUNCTION MODEL

Function-1: Support chassis

Function-2: Provide space for passengers

Function-3: Stylise

Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3,

Function-1, and))

FEATURE MODEL

Behaviour feature Function feature

((Length 4569mm) ((Type Estate)

(Width 1853mm) (Fuel consumption 39.2 ltr/100km)

(Height 1674mm) (Top speed 198km/h)

(Wheelbase 2795mm) (Acceleration 0-100km/h 8.3sec))

(Front track 1524mm)

(Rear track 1542mm)) Structure feature

((Weight 1820kg))

STRUCTURE MODEL

Sub-Fractals; Engine compartment, passenger cabin, luggage compartment

performance

(list :provide_space_for_the_engine :provide_space_for_the_passengers_and luggage)

:G1 (list :minimise :volume :c)

:G2 (list :maximise :comfort :c)

:G3 (list :maximise visualisation :c)

Figure 6.1 (e): The model o f automotive body in the case base: Cb005

Assembly

model

153

Cb006

FUNCTION MODEL

Function-1: Support chassis

Function-2: Provide space for passengers

Function-3: Stylise

Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3,

Function-1, and))

FEATURE MODEL

Behaviour feature Function feature

((Length 5500mm) ((Type Saloon)

(Width 2000mm) (Fuel consumption 19.5 ltr/100km)

(Height 1492mm) (Top speed 180km/h)

(Wheelbase 2990mm) (Acceleration 0-100km/h 10.1 sec))

(Front track 1578mm)

(Rear track 1582mm)) Structure feature

((Weight 2000kg))

STRUCTURE MODEL

Sub-Fractals: Engine compartment, passenger cabin, luggage compartment

performance (list :provide_space_for_the_engine :provide_space_for_the_passengers

:provide_space_for_the_luggage)

:G1 (list :minimise :volume :c)

:G2 (list :maximise :comfort :c)

:G3 (list :maximise visualisation :c)

Figure 6.1 (f): The model o f automotive body in the case base: Cb006

Assembly

model

154

Cb007

FUNCTION MODEL

Function-1: Support chassis

Function-2: Provide space for passengers

Function-3: Stylise

Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3,

Function-1, and))

FEATURE MODEL

Behaviour feature

((Length 4871mm)

(Width 1855mm)

(Height 1372mm)

(Wheelbase 2781mm)

(Front track 1567mm)

(Rear track 1584mm))

Function feature

((Type Saloon)

(Fuel consumption 19.1 ltr/100km)

(Top speed 248km/h)

(Acceleration 0-100km/h 4.6sec))

Structure feature

((Weight 1785kg))

STRUCTURE MODEL

Sub-Fractals: Engine compartment, passenger cabin, luggage compartment

performance (list :provide_space_for_the_engine :provide_space_for_the_passengers

:provide_space_for_the_luggage)

G1 (list :minimise :volume :c)

G2 (list :maximise :comfort :c)

G3 (list :maximise visualisation :c)

Assembly

model

Figure 6.1 (g): The model of automotive body in the case base: Cb007

155

To query the case base, a set o f requirements for the desired product can be

formulated based on the requirements for an automotive body. The set o f requirements

for the design o f this new automotive body are presented in Table 6.1. These

requirements are implemented in an ICAD input model to query the FBR system. This

is presented in Figure 6.2. Then the user is asked whether he wants to retrieve a case

only or to retrieve and adapt a case, as shown in Figure 6.3. In this example, the user

selects to retrieve and adapt. Using the similarity assessment method proposed in

Chapter 4, the similarity between the input model and the cases in the case base is

measured, and the most similar case is retrieved. Figure 6.4 shows the result of

retrieval. By tracing into “lisp-listener”, it can be found that it is the case “cb007” that

has been retrieved. The system next asks the user to select the adaptation method.

According to the initial requirement, the user selects the goal-oriented substitution as

the method to be used in adaptation as shown in Figure 6.5. The method is as

described in Chapter 5. By tracing into “lisp-listener”, the simplified GDG is

generated as shown in Figure 6.6. It indicates that the FBR is looking for maximised

“roof panel height”, maximum “right side length”, maximum “left side length” and

minimised “engine-compartment length”. The detail o f goal-oriented adaptation is

illustrated in Table 6.2. In the table, it can be found that the retrieved roof panel

(ROOFPANEL007), right side (RIGHTSIDE007), left side (LEFTSIDE007), engine

compartment (EC007) have been substituted by ROOFPANELOOl, RIGHTSIDE 001,

RIGHTSIDE001 and EC001. This is because the latter fractals are able to maximise

or minimise the particular attributes to realise the goals. As shown in the table, the

156

engine compartment EC001 directly substitutes EC007, while the others substitute

only the structure without changing the dimensions. This is because the engine

compartment is a fractal at the assembly level and the others are at the part level.

Fractals at assembly level can be substituted as a whole, while the dimensional

changes made at part levels may affect other parts. Finally, the result o f adaptation is

presented in Figure 6.7.

157

Feature Requirement

Car-type Saloon

Length About 4700mm

Width About 1700mm

Height About 1300mm

Wheelbase About 2900mm

Front track About 1600mm

Rear track About 1600mm

Fuel-consumption About 201tr/ 100km

Top-speed 220km/h

Length o f passenger-cabin 2400mm

Width o f passenger-cabin 1700mm

Height o f passenger cabin 1300mm

Goal “to maximise visualisation and comfort”

Table 6.1: A design specification for the automotive design

158

FUNCTIONS: C L I S T : S U P P O R T - C H A S I S : P R O T E C T - P A S S E N G E R : S T !
Y L I N G)

FUNCTIOH-RELATIONSHIP:
(L I S T : S U P P O R T - C H A S I S - A N D - P R O T E C T - P A S S E N G E R !
: P R O T E C T - P A S S E N G E R - A N D - S T Y L I N G : S T Y L I N G - A N D - !
S U P P O R T - C H A S I S)

LENGTH: 4 7 0 0
WIDTH: 1 7 0 0
HEIGHT: 1 3 0 0

WHEELBASE: 2 7 0 0

FRONTTRACK: 1 6 0 0
REARTRACK: 1600
CAR-TYPE: : S A L O O N
FUEL-CONSUMPTION: 2 0

OPTIOHAL-FEATURES:
(L I S T (L I S T : P A S S E N G E R - C A B I N : L E N G T H 2 4 0 0) (!
L I S T : P A S S E N G E R - C A B I N : W I D T H 1 7 0 0) (L I S T : P A !
S S E N G E R - C A B I N : H E I G H T 1 3 0 0))

WEIGHTS: (L I S T 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . 5 0 . !
5)

TOLERANCE-BAND: (L I S T 0 . 1 0 . 0 8 0 . 0 5 0 . 0 8 0 . 0 5 0 . 0 5 0 . 2)
WEIGHT S-OPTIONAL-FEATURES: (L I S T 0 . 5 0 . 5 0 . 5)
T OL ERANCE-BAND-OPTIONAL-FEAT URES: |(L I S T 0 . 1 0 . 1 0 . 1)
W1: 1
W2: 0
W3: |0

Figure 6.2: Inputs to query the FBR system

Choice Attribute

A c c e p t ! D e f a u l t ! C a n c e l!

Cbr
D o y o u n e e d t o r e t r i e v e o r r e t r i e v e a n d a d a p t a d e s i g n ? (c h o o s e o n e)

S e l e c t A c c e p t ! o r D e f a u l t ! t o u s e d e f a u l t " R e t r i e v e "

R e t r ie v e j

jR e t r ie v e And A d ap t

Figure 6.3: Selection o f retrieval or adaptation

159

♦i" IC A D Ib c r I n l c r f a t a 0 0 M 1 N 1 4

ICAD F i le E d it In s lu iiL t Tree Op H uns C rupliits
Jndance Vitnpori

L: S e le c t M: Match R: EditV ieu Menu
sh-L: Match sh -li: U ncllp sh-R: E x p l ic i t S e le c t

J . B j H

For Display
Engine-Conpai tn e n t
 Bonnet

tO S\ \ \ S urf 1
\ \ 'R igh t f ro n tu in g

W\ \ \surf-?
\ T e f tf ro n tu ln g

\ ^S urf-3
'Front panel 1

NNL-2
NSur f-3

T’as s enger Cabi n
V ~"-R aofpanel

\ \ S u rf-I
\ 'R ig h ts id e\%:i

\ '''•Surf-2
'L e f ts id e

^NL-2
V L -3
^S ur f-3

Luggage C onpartnent
F~--—Lcdoor

'R iqhtreurtirirai

Figure 6.4: The result of retrieval

Choice Attribute

A c c e p t! 1 D e f a u l t ! C a n c e l!

Cbr
P e r f o r m a n c e - r e v i s i i

S e l e c t A c c e p t ! o r D i
o n o r g o a l - o r i e n t e d a d a p t a
e f a u l t ! t o u s e d e f a u l t " P e

t i o n ? (c h o o s e o n e)
r f o r m a n c e R e v i s i o n "

P e r fo rn a n c e R e v is io n)

|G oal O r ie n te d

Figure 6.5: Selection of adaptation methods

1 6 0

(OROOFPANEL iMAXIMISE :HEIGHT :I :G2)

(:RIGHTSIDE :MAXIMISE :LENGTH :I :G2)

(:LEFTSIDE :MAXIMISE :LENGTH :I :G2»

(:ENGINE-COMPARTMENT :MINIMSE :LENGTH :I :G3))

Figure 6.6: Tracing simplified GDG in lisp-listener

Height of
roof panel

Maximise #<ROOFP
ANEL007
31408>

1372 #<ROOFP
ANEL001
24333>

1492 #<ROOFP
ANEL001
24333>

1372

Length of
right side

Maximise #<RIGHT
SIDE007
31567>

2781 #<RIGHT
SIDE001
24552>

3000 #<RIGHT
SIDE001
24552>

2781

Length of
left side

Maximise #<LEFTS
IDE007
31726>

2781 #<LEFTSI
DE001
24769>

3000 #<LEFTSI
DE001
24769>

2781

Length of
engine
compartment

Minimise #<EC007
27085>

1790 #<EC001
27085>

1500 #<EC001
27085>

1500

Table 6.2: Detail o f goal-oriented adaptation

161

L: S e le c t M: Match R: EciitVieu Menu
sh-L: Match sh-H: U ncllp sh-R: E x p l ic i t S e le c t

Figure 6.7: The result o f adaptation

162

6.4 Discussion

In this chapter, it was illustrated how the approach presented in this thesis could be

applied to support the design of a real-world product. The knowledge that was

required to design the product was presented, which demonstrated how this can be

formalised using the fractal-based modelling approach presented in Chapter 3. A

formal design case for automotive body design was presented. In this case study, each

model is comprised o f approximately ten basic fractal units, fifty elements, ninety

attributes and fifty relationships. The entire case base contains about eighty basic

fractal units, three hundred elements, four hundred attributes and three hundred

relationships. It was also demonstrated how to use this knowledge to guide the

process o f design. Measuring the similarity between an input model and existing cases

was discussed using the method presented in Chapter 4. A goal-oriented substitution

method was then employed to adapt the retrieved case study product, as presented in

Chapter 5.

A comparison between the requirements and the results is given in Table 6.3. It can be

seen that the initial design requirements have been fulfilled. The conclusion can thus

be drawn that FBR has successfully retrieved and adapted the automotive body

design.

163

Feature # Requirement Retrieved
ease

Substituting Adapted case
case

Car-type Saloon Saloon Saloon

Length About
4700mm

4871mm 4581mm

Width About
1700mm

1855mm 1902mm

Height About
1300mm

1372mm 1372mm

Wheelbase About
2900mm

2781mm 2781mm

Front track About
1600mm

1567mm 1567mm

Rear track About
1600mm

1584mm 1584mm

Fuel-consumption About
201tr/100km

19.11tr/100km 19. lltr/100km

Top-speed 220km/h 248km/h 248km/h
Length o f
passenger-cabin

2400mm 2781mm 2781mm

Width o f
passenger-cabin

1700mm 1855mm 1855mm

Height of passenger
cabin

1300mm 1372mm 1372mm

Height o f roof
panel

1372mm 1492mm 1372mm

Length o f right side 2781mm 3000mm 2781mm
Length o f left side 2781mm 3000mm 2781mm
Length o f engine
compartment

1790mm 1500mm 1500mm

Table 6.3: Comparison of the design specification and result of adaptation

164

6.5 Summary

A case study in automotive body design was given to demonstrate the successful

implementation of FBR. The chapter started with a short review of automotive body

design in Section 6.2. A case study in automotive body design was presented in

Section 6.3 and the results were discussed in Section 6.4.

165

Chapter 7

Conclusions

7.1 Preliminaries

This chapter presents the conclusions of this work, outlines the main contributions of

the research, and makes recommendations for further studies.

7.2 Conclusions

In Chapter 1, the objectives o f this research were presented. These were as follows:

1) To identify and externalise design knowledge using a fractal-like model.

2) To understand the role o f design knowledge in conceptual design.

3) To use design knowledge as a guide for every stage o f concept development.

4) To provide a framework for supporting conceptual design, using the techniques of

case-based reasoning and fractal theory, for reasoning about design and

development o f computer-based design aids.

This section discusses how the research presented in this thesis achieved these
166

objectives.

Designers have limited time to build up experience and are, in any event, unlikely to

become experts in all relevant fields. Design knowledge needs to be captured, stored

and reused. In Chapter 3, to address objectives 1 and 2, a design modelling technique

was presented upon which the research reported in this thesis was based. The model is

in the form of attributed graphs containing design knowledge about function, feature,

structure, performance and goal. It can represent a design from an abstract to a

physical level. Knowledge related to both the design objects and to the design process

is represented. Fractals are introduced to represent the design knowledge related to the

design process. The presented model has the fractal characteristics o f self-similarity,

self-organisation, goal-orientation and dynamism. These characteristics play

important roles in the process of case-based conceptual design. It can be concluded

that design knowledge has been successfully externalised using a fractal-like model.

To address objective 3, this research incorporates design knowledge to assess design

model similarity as described in Chapter 4. Previous research had the problems that

product information was insufficiently incorporated to compare similarity o f complex

designs and that complicated geometric comparisons were conducted without taking

account o f the criteria o f domain specific technical knowledge. Design is a stage in

which human knowledge is involved. It is the knowledge rather than the shape model

that should be compared. In the proposed method, design knowledge such as function,

167

feature and structure is extracted and used for the comparison o f designs. To address

objective 3, this research also incorporates design knowledge, such as performance

and goals, to guide the process of design adaptation as described in Chapter 5.

Performance revision adapts a design by substituting fractals according to the

identified performance; goal-oriented adaptation provides an efficient way for

adaptation by using the goals of a design problem to guide the process of adaptation.

Therefore, it can be seen that design knowledge has been successfully used as a guide

for every stage o f concept development.

In addition to fractal theory, the thesis has also shown how CBR can be used to

support the human designer during conceptual design. In Chapter 4, similarity

assessment in case retrieval was introduced. Similarity of design models is measured

by concurrently applying a feature-based similarity measure and a structure-based

similarity measure. A weighting method is then adopted to assess the results. In

Chapter 5, adaptation strategies which include performance revision and goal-oriented

substitution with the help o f fractal characteristics were discussed. The integration of

the case-based reasoning and fractal theory into a framework for supporting

conceptual design has been presented to address objective 4. The approach was then

validated using a case study on the automotive body design problem in Chapter 6. The

goal to provide computer support for the conceptual design process using CBR and

fractal theory has, therefore, been achieved.

168

7.3 Contributions

The research presented in this thesis has contributed to the area of design modelling

and knowledge representation. A fractal-like design modelling technique has been

proposed, which is able to represent various aspects o f design knowledge from

abstract to physical levels and from knowledge related to design objects to knowledge

related to design processes.

The research also contributed to the area o f intelligent design. The research, for the

first time, has applied fractal theory to conceptual design. The important fractal

characteristics play very important roles from modelling to adaptation. The research

has achieved the automation of the majority of the tasks involved in conceptual

design.

Another important contribution has been in the area of case-based design. In particular,

case retrieval has been conducted by measuring similarity using various aspects o f

design knowledge; case adaptation has been treated as a performance revision process

and as a goal-oriented process.

Finally, this work has added a contribution to the area o f similarity measure. A

combinative feature-based and structure-based similarity measure method has been

presented.

169

7.4 Recommendations

This section presents a number of recommendations for further research. The possible

topics are as follows:

> Collaborative fractal-based design. In a broader scope, fractals can be regarded as

an agent-based structure and the fractal-based design can be conducted in a

distributed environment. In industry, because o f the distributed nature of the

design teams, a product is designed through the collective and joint efforts of

many designers. There is a need to develop a tool in order to support

collaborative design. Fractals will play a more important role in a dynamic

collaborative environment.

> Automation o f creative design. Since this research mainly focuses on routine

design, it involves only knowledge related to this particular type. Creative design,

which constitutes the remaining challenge in the area o f design automation, also

requires a supporting tool. One possible avenue for further study would be the

development o f tools which assist in modelling the knowledge o f product

evolution and which can then be used to generate innovative products.

> Integration of a CAD model. The geometric model used to query the case base is

in the form of a graph model. A real CAD model, e.g. STEP, as a widely used

170

geometric format, might be more effectively used to query the case base for a

similar shape or geometric model.

171

Appendix A

An overview of the ICAD system

This appendix outlines the ICAD system and some o f the features that make it

particularly suitable for the work presented in this thesis.

ICAD is a knowledge-based engineering environment that can be used for developing

“intelligent” design systems. It consists o f an Emacs editor, in which programs are

written, and the ICAD browser. The programming language used is the ICAD Design

Language (IDL), based on Common Lisp.

ICAD uses an engineering methodology known as generative technology to

encapsulate the essential information required to design, analyse and manufacture a

product. This information is stored in what is known as an ICAD Product Model. The

product model represents the engineering intent behind the physical product. It can

store information such as product information (attributes o f the physical product such

as geometry, material type, and functional constraints), process information, drawings

and reports. This makes ICAD different from conventional CAD systems which

produce models that contain mostly geometric information only. An ICAD product

model contains all o f the information required by the design. Once an ICAD product

model is created, an engineer can use it to generate, evaluate, or configure new

designs simply by changing the input to the model.

172

Object-oriented programming; The fundamental building block in IDL is a “Defpart”

(DEFinition o f a PART). Basically, a “Defpart” represents a class of parts. It is

composed o f a defpart name, a mixin list (which allows the defpart to be built from

other defparts), and features (which describe the rules and part structure). Specific

designs are generated by providing different values for the input parameters. Design

instances are generated by giving specific input values to a defpart. The process o f

generating a design instance from a defpart is known as instantiation. By object-

oriented programming, the design of complex systems is modularised by grouping

similar parts into the same class; a part can be characterised by using different kinds

of attributes, not just geometric attributes.

Part-whole representation: Complex parts and systems can be simplified by

representing them within a tree-like structure. This “product-structure-tree”, as is

called in ICAD, allows the division of complex assemblies into sub-assemblies. Each

sub-assembly can be further divided. This more accurately reflects the way that design

and manufacturing engineers think about design.

Attributes: Attributes provide a way to attach information to a part design. Any kind

of information can be represented in an attribute, including part geometry, engineering

information, process information, etc. These attributes can be written in many ways,

including arithmetic expressions, conditional rules, relationships to other attributes,

database lookups, connections to outside computer programs, and user inputs.

Demand-driven evaluation: The rules that are embedded in a product model are

evaluated only when they are required. For example, if the system is required to draw

173

the geometry o f a model, only those rules required to draw the geometry are evaluated.

The system will not evaluate rules that determine the weight or cost o f that model

when drawing the geometry. Once a rule has been calculated, its value is cached until

it is needed again. The entire assembly structure is demand-driven. Sub-assemblies

are not computed until they are needed. This means the designer can efficiently work

on portions of an overall assembly without the system needing to compute the entire

assembly. Demand-driven evaluation has such advantages: the system functions more

efficiently; the IDL is order-independent; working on small pieces o f a large model is

easier; traditional programming problems such as memory management and flow of

control are avoided.

174

Appendix B

Code for case base

This appendix gives the code for case representation. For simplicity, only the code for

one case is given here. The case base used in this research consists o f a number of

other cases like this. They are used in conjunction with the other codes listed in

Appendix C, D, E, and F. This code can be used to illustrate the fractal-like design

modelling technique discussed in Chapter 3. Part o f this code is used for the

illustrative example o f Chapter 4, and the code as a whole is used for the example and

case study of Chapter 5. The code is written in IDL, which is based on Common Lisp.

(defpart case-base ()
:parts
((cab :type cbOOl) (cab-2 :type cb002) (cab-3 :type cb003) (cab-

4 :type cb004) (cab-5 :type cb005) (cab-6 :type cb006) (cab-7 :type
cb007)

CASE cbOOl ;;;;;;;;;;;;;;;;;;;

(defpart cbOOl (box)
:attributes
(:functions (list :support-chasis :protect-passenger :stylise)
:function-relationship (list :support-chasis-and-protect-

passenger :protect-passenger-and-stylise :stylise-and-support-chasis)
:function-model (append (the :functions) (the :function-

relationship))
:width (max (the :engine-compartment rwidth) (the rpassenger-

cabin :width) (the :luggage-compartment :width))
:length (+ (the ;engine-compartment :length) (the :passenger-

cabin :length) (the :luggage-compartment : length))
rheight (max (the :engine-compartment :height) (the rpassenger-

cabin :height) (the :luggage-compartment :height))
:car-type :saloon
:wheelbase 2990
:fronttrack 1578

175

rreartrack 1582
:weight 1865
:fuel-consumption 15.5
:top-speed 237
:acceleration 8.1
:behaviour-feature

(list (the : length) (the rwidth) (the rheight)
(the rwheelbase) (the rfronttrack) (the rreartrack))

rfunction-feature (list (the rear-type) (the rfuel-consumption)
(the rtop-speed) (the racceleration))

rstructure-feature (list (the rweight))
rfeatures (append (the rbehaviour-feature) (the rfunction-feature)

(the rstructure-feature))
r performance
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rperformance))
(cc (collect! (defaulting bb ()))))

((return-when empty? cc)))
rcorporate-goals (list (the rGl) (the rG2) (the r G3))
rGl (list rminimise rvolume rc)
rG2 (list rmaximise rcomfort rc)
rG3 (list rmaximise rvisualisation rc)
r sub-goals
(let-streams

((aa (in-tree self))
(bb (defaulting (the-object aa rgoals)))
(dd (the-object aa rname-for-display))
(ee (if (not (equal bb mot-applicable))

(append bb (list (list dd)))
'nil))

(cc (collect! ee)))
((return-when empty? (remove 'nil cc))))

r reform-sg
(let-streams

((a (in (the rsub-goals)))
(b (lastcar a))
(c (remove b a))
(e (let-streams

((aa (in c))
(bb (append b aa))
(cc (collect! bb)))

((return-when empty? cc))))
(d (collect! e)))

((return-when empty? d)))

r reform-sg2
(let-streams

((a (in (the rreform-sg)))
(b (stream-append a)))

((return-when empty? b)))

r find-individual-goals
(let-streams

((aa (in (the rreform-sg2)))
(bb (nth 3 aa))
(individual? (equal bb r i))
(cc (collect-if! individual? aa 'nil)))

176

((return-when empty? (remove 'nil cc))))

:sub-relations
(let-streams

((aa (in (the :children)))
(bb (the-object aa :name-for-display))
(cc (collect! bb)))

((return-when empty? cc)))
:sub-cases
(let-streams

((aa (in (the :children)))
(bb (the-object aa :type))
(cc (collect! bb)))

((return-when empty? cc)))

)

:report-attributes
(:vrml-out
(write-vrml-file (list self)
"f:/cbOOl.wrl"
:specified-planarity 0.1
:specified-linearity 0.1
:camera-on? t))

:parts
((engine-compartment

:type ecOOl
:position (:bottom 0.0))
(passenger-cabin
.-type pcOOl
:position (:front (:from (the :engine-compartment) (the :engine-

compartment :length))))
(luggage-compartment
:type IcOOl
:position (:front (:from (the :passenger-cabin) (the :passenger-

cabin : length)) :bottom 0.0))
))

(defpart ecOOl (box)
:attributes
(:width 1902
:length 1500
:height 1000
:performance (list :provide_space_for_the_engine!
:goals (list (the :G1-G1) (the :G3-G1))
:G1-G1 (list :minimise rvolume :c :G1)
:G3-G1 (list rminimise :length :i :G3)

:sub-relations
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa :name-for-display))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))

:report-attributes

177

(:vrml-out
(write-vrml-file (list self)
"f:/ecOOl.wrl"
:specified-planarity 0.1
:specified-linearity 0.1
:camera-on? t))

:parts
((bonnet :type bonnetOOl)
(rightfrontwing :type rightfrontwingOOl)
(leftfrontwing :type leftfrontwingOOl)
(frontpanel :type frontpanelOOl)))

(defpart bonnetOOl (box)
:attributes
(: s-l-points-1 (list (the (:edge-center :right : front))

(translate (the (:edge-center :right :top)) :down
100 :front 250)

(the (:vertex :top :right :rear))
)

:s-l-points-2 (list (translate (the (:face-center :front)) :front
150)

(translate (the (:face-center :top)) :down
50 :front 200)

(the (:edge-center :rear :top))
)

:s-l-points-3 (list (the (:edge-center :left :front))
(translate (the (:edge-center :left :top)) :down

100 :front 250)
(the (:vertex :top :left :rear))

)

:display-controls (merge-display-controls
' (:color :magenta))

:performance (list :provide_top_cover_for_the__engine_compartment)
rgoals (list (the :G1-G1-G1))
:G1-G1-G1 (list :minimise :length :i :G1-G1)
:sub-relations
(let-streams

((aa (in (the :children)))
(bb (the-object aa :type))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))

:parts
((1-1 :type fitted-wire

rpoints (the :s-l-points-1))
(1-2 :type fitted-wire

:points (the :s-l-points-2))
(1-3 :type fitted-wire

rpoints (the .s-l-points-3))
(surf-1 :type lofted-sheet

:wires (list (the :1-1) (the :l-2) (the : 1 — 3)))

))

(defpart rightfrontwingOOl (box)
:attributes
(:s-2-points-l (list (the (:edge-center :right :front))

178

(translate (the (:edge-center :right :top)) :down
100 :front 250)

(the (:vertex :top :right :rear)))
:s-2-points-2 (list (translate (the (redge-

center :right :front)) :down 100)
(translate (the (:face-center :right)) :right 100)
(the (:edge-center :right :rear))

)

:s-2-points-3 (list (the (:vertex rbottom :front :right))
(translate (the (redge-

center :right rbottom)) :right 100)
(the (:vertex :bottom :right :rear)))

:display-controls (merge-display-controls
' (:color rmagenta))

:performance
(list :provide_right_side_cover_for_the_engine_compartment)

:goals (list (the :G1-G1-G2))
:G1-G1-G2 (list :minimise :height :i :G1-G1)
:sub-relations
(let-streams

((aa (in (the :children)))
(bb (the-object aa :type))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))

:parts
((1-1 :type fitted-wire

rpoints (the :s-2-points-l))
(1-2 :type fitted-wire

rpoints (the rs-2-points-2))
(1-3 rtype fitted-wire

rpoints (the rs-2-points-3))
(surf-2 rtype lofted-sheet

rwires (list (the r1—1) (the rl-2) (the rl-3)))

))

(defpart leftfrontwingOOl (box)
r attributes
(rs-3-points-l (list (the (redge-center rleft rfront))

(translate (the (redge-center rleft rtop)) rdown
100 rfront 250)

(the (rvertex rtop rleft rrear))
)

rs-3-points-2 (list (translate (the (redge-
center rleft rfront)) :down 100)

(translate (the (rface-center rleft)) rleft 100)
(the (redge-center rleft rrear))
)

rs-3-points-3 (list (the (rvertex rbottom rfront rleft))
(translate (the (redge-

center rleft rbottom)) rright 100)
(the (rvertex rbottom rleft rrear))

)

:display-controls (merge-display-controls
1(rcolor rmagenta))

r performance
(list rprovide_left_side_cover_for_the_engine_compartment)

rgoals (list (the rGl-Gl-G2))
rGl-Gl-G2 (list minimise rheight ri rGl-Gl)

179

: sub-relations
(let-streams

((aa (in (the :children)))
(bb (the-object aa rtype))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))
:parts
((1-1 rtype fitted-wire

rpoints (the rs-3-points-l))
(1-2 rtype fitted-wire

rpoints (the rs-3-points-2))
(1-3 rtype fitted-wire

rpoints (the rs-3-points-3))
(surf-3 rtype lofted-sheet

rwires (list (the r1 — 1) (the r1 — 2) (the rl-3)))
))

(defpart frontpanelOOl (box)
r attributes
(rs-4-points-l (list (the (redge-center rright rfront))

(translate (the (rface-center rfront)) rfront 150)
(the (redge-center rleft rfront))

)

rs-4-points-2 (list (the (rvertex rbottom rfront rright))
(translate (the (redge-

center rbottom rfront)) rfront 150)
(the (rvertex rbottom rfront rleft))

)

rdisplay-controls (merge-display-controls '(rcolor rmagenta))
rperformance (list rprovide_front_cover_for_the_engine_compartment)
rgoals (list (the rGl-Gl-G4))
rGl-Gl-G4 (list rminimise rwidth ri rGl-Gl)
r sub-relations
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rtype))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))
rparts
((1-1 rtype fitted-wire

rpoints (the rs-4-points-l))
(1-2 rtype fitted-wire

rpoints (the rs-4-points-2))
(surf-4 rtype lofted-sheet

rwires (list (the r1—1) (the rl-2)))
))

(defpart pcOOl (box)
r attributes
(r width 1902
rlength 3000
rheight 1492
rperformance (list rprovide_space_for_the_passengers)
rgoals (list (the rGl-G2) (the rG2-Gl))
rGl-G2 (list rminimise rvolume rc rGl)
rG2-Gl (list rmaximise rvolume rc rG2)
r sub-relations
(let-streams

((aa (in (the rchildren)))

180

(bb (the-object aa :name-for-display))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))

:report-attributes
(:vrml-out
(write-vrml-file (list self)
"f:/pcO 01.wrl"
:specified-planarity 0.1
:specified-linearity 0.1
:camera-on? t)

)

:parts
(

(roofpanel :type roofpanelOOl)
(rightside rtype rightsideOOl)
(leftside rtype leftsideOOl)

))

(defpart roofpanelOOl (box)
r attributes
(rs-l-points-1 (list (translate (the

(rvertex rfront rbottom rright)) rup (the rengine-
compartment rheight))

(translate (the
(rvertex rtop rfront rright)) rdown 100 rrear 800 rleft 200)

(translate (the (rvertex rtop rrear rright)) rdown
100 rfront 800 rleft 200)

(translate (the
(rvertex rrear rbottom rright)) rup (the rluggage-
compartment rheight))

)

rs-l-points-2 (list (translate (the
(rvertex rfront rbottom rleft)) rup (the rengine-compartment rheight))

(translate (the (rvertex rtop rfront rleft)) rdown
100 rrear 800 rright 200)

(translate (the (rvertex rtop rrear rleft)) rdown
100 rfront 800 rright 200)

(translate (the (rvertex rrear rbottom rleft)) rup
(the rluggage-compartment rheight))

)

rdisplay-controls (merge-display-controls '(rcolor rmagenta))
rperformance (list rprovide_top_cover_for_the_passenger_cabin)
rgoals (list (the rGl-G2-Gl) (the rGl-G2-G2) (the rG2-Gl-Gl))
rGl-G2-Gl (list rminimise rheight ri rGl)
rGl-G2-G2 (list rminimise rwidth ri rGl)
rG2-Gl-Gl (list rmaximise rheight ri rG2)
r sub-relations
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rtype))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))
r parts
((1-1 rtype fitted-wire

rpoints (the rs-l-points-1))
(1-2 rtype fitted-wire

181

:points (the :s-l-points-2))
(surf-1 :type lofted-sheet

rwires (list (the : 1 — 1) (the :l-2)))
))

(defpart rightsideOOl (box)
:attributes
(:s-2-points-l (list (translate (the

(rvertex rfront rbottom rright)) rup (the rengine-
compartment rheight))

(translate (the
(rvertex rtop rfront rright)) rdown 100 rrear 800 rleft 200)

(translate (the (rvertex rtop rrear rright)) rdown
100 rfront 800 rleft 200)

(translate (the
(rvertex rrear rbottom rright)) rup (the rluggage-
compartment rheight))

)

rs-2-points-2 (list (translate (the
(rvertex rfront rbottom rright)) rup (- (the rengine-
compartment rheight) 100))

(translate (the (rface-center rright)) rright
100 rfront 500)

(translate (the (rface-center rright)) rright
100 rrear 500)

(translate (the
(rvertex rrear rbottom rright)) rup (- (the rluggage-
compartment rheight) 100))

)

rs-2-points-3 (list (the (rvertex rbottom rright rfront))
(translate (the (redge-

center rright rbottum)) rright 100 rfront 500)
(translate (the (redge-

center rright rbottom)) rright 100 rrear 500)
(the (rvertex rbottom rright rrear))
)

rdisplay-controls (merge-display-controls '(rcolor rmagenta))
rperformance

(list rprovide_right_side_cover_for_the_passenger_cabin)
rgoals (list (the rGl-G2-G3) (the rG2-Gl-G2))
rGl-G2-G3 (list rminimise rlength ri rGl)
rG2-Gl-G2 (list rmaximise rlength ri rG2)
r sub-relations
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rtype))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))
r parts
((1-1 rtype fitted-wire

rpoints (the : s-2-points-l))
(1-2 rtype fitted-wire

rpoints (the rs-2-points-2))
(1-3 rtype fitted-wire

rpoints (the rs-2-points-3))
(surf-2 rtype lofted-sheet

rwires (list (the r1—1) (the rl-2) (the rl-3)))
))

(defpart leftsideOOl (box)

182

:attributes
(:s-3-points-l (list (translate (the

(:vertex :front rbottom rleft)) rup (the rengine-compartment rheight))
(translate (the (rvertex rtop rfront rleft)) rdown

100 rrear 800 rright 200)
(translate (the (rvertex rtop rrear rleft)) rdown

(rvertex rrear rbottom rleft)) rup

r engine-

400

400

(- (-

(r face-center

(r face-center

left)) r top

left)) r top

rear rbottom rleft)) rup

left r front))

rear))

100 rfront 800 rright 200)
(translate (the

(the rluggage-compartment rheight))
)

rs-3-points-2 (list (translate (the
(rvertex rfront rbottom rleft)) rup (- (the
compartment rheight) 100))

(translate (the
rleft 100 rfront 500)

(translate (the
rleft 100 rrear 500)

(translate (the (rvertex :
^the rluggage-compartment rheight) 100))

)

rs-3-points-3 (list (the (rvertex rbottom
(translate (the (redge-

center rleft rbottom)) rleft 100 rfront 500)
(translate (the (redge-

center rleft rbottom)) rleft 100 rrear 500)
(the (rvertex rbottom rleft

)

rdisplay-controls (merge-display-controls '(rcolor rmagenta))
r performance

(list rprovide_left _side_cover_for_the_passenger_cabin)
goals (list (the rGl-G2-G4) (the rG2-Gl-G3))
G1-G2-G4 (list rminimise rlength
G2-G1-G3 (list rmaximise rlength
sub-relations
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rtype))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))
rparts
((1-1 rtype fitted-wire

rpoints (the rs-3-points-l))
(1-2 rtype fitted-wire

rpoints (the rs-3-points-2))
(1-3 rtype fitted-wire

rpoints (the rs-3-points-3))
(surf-3 rtype lofted-sheet

rwires (list (the r1 — 1)

rGl)
r G2)

(the rl-2) (the rl-3)))
))

(defpart IcOOl (box)
r attributes
(r width 1900
rlength 529
rheight 1000
rperformance (list rprovide_space_for_the_luggage)
rgoals (list (the rGl-G3))
rGl-G3 (list rminimise rvolume rc rGl)
r sub-relations
(let-streams

183

((aa (in (the :children)))
(bb (the-object aa :narae-for-display))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))

:report-attributes
(:vrml-out
(write-vrml-file (list self)
"f:/IcOOl.wrl"
:specified-planarity 0.1
:specified-linearity 0.1
:camera-on? t)
)

:parts
((lcdoor :type lcdoorOOl)
(rightrearwing :type rightrearwingOOl)
(leftrearwing :type leftrearwingOOl)
(rearpanel :type rearpanelOOl)

))

(defpart lcdoorOOl (box)
:attributes
(:s-l-points-1 (list (the (:vertex :top :right :front))

(the (rvertex :top :right :rear)))
:s-l-points-2 (list (the (:edge-center :front :top))

(translate (the (:edge-center :rear :top)) :rear
150))

:s-l-points-3 (list (the (rvertex :top :left :front))
(the (rvertex :top :left :rear)))

:display-controls (merge-display-controls 1(:color :magenta))
:performance (list :provide_top_cover_for_the_luggage_compartment)
:goals (list (the :G1-G3-G1))
:G1-G3-G1 (list :minimise :length :i :G1)
:sub-relations
(let-streams

((aa (in (the tchildren)))
(bb (the-object aa :type))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))
:parts
((1-1 :type fitted-wire

:points (the :s-l-points-1))
(1-2 :type fitted-wire

rpoints (the :s-l-points-2))
(1-3 :type fitted-wire

rpoints (the :s-l-points-3))
(surf-1 :type lofted-sheet

:wires (list (the :1-1) (the :l-2) (the :l-3)))

(defpart rightrearwingOOl (box)
:attributes
(:s-2-points-l (list (the (:vertex :top :right :front))

(the (:edge-center :right :top))
(the (:vertex :top :right :rear))

)

:s-2-points-2 (list (the (:edge-center :right :front))
(translate (the (:face-center :right)) :right 100)

184

(the (:edge-center :right :rear))
)

:s-2-points-3 (list (the (:vertex rbottom :front :right))
(the (:edge-center :right :bottom))
(the (:vertex rbottom :right :rear))

)

:display-controls (merge-display-controls '(:color :magenta))
:performance

(list :provide__right_side_cover_f or_the_luggage_compartment)
rgoals (list (the :G1-G3-G2))
:G1-G3-G2 (list rminimise :height :i :G1)
:sub-relations
(let-streams

((aa (in (the .’children)))
(bb (the-object aa :type))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))
:parts
((1-1 :type fitted-wire

rpoints (the :s-2-points-l))
(1-2 :type fitted-wire

.•points (the : s-2-points-2))
(1-3 :type fitted-wire

rpoints (the :s-2-points-3))
(surf-2 rtype lofted-sheet

rwires (list (the :1-1) (the :l-2) (the :l-3)))
))

(defpart leftrearwingOO1 (box)
:attributes
(:s-3-points-l (list (the (rvertex :top rleft :front))

(the (:edge-center rleft rtop))
(the (rvertex rtop rleft rrear))
)

rs-3-points-2 (list (the (redge-center rleft :front))
(translate (the (rface-center rleft)) rleft 100)
(the (redge-center rleft rrear))

)

rs-3-points-3 (list (the (rvertex rbottom rfront rleft))
(the (r edge-center rleft .-bottom))
(the (rvertex rbottom rleft rrear))

)

rdisplay-controls (merge-display-controls 1(rcolor rmagenta))
r performance

(list r provide_left_side_cover_for_the_luggage_compartment)
rgoals (list (the rGl-G3-G3))
rGl-G3-G3 (list rminimise rheight ri rGl)
r sub-relations
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rtype))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))
r parts
((1-1 rtype fitted-wire

rpoints (the rs-3-points-l))
(1-2 rtype fitted-wire

rpoints (the rs-3-points-2))
(1-3 rtype fitted-wire

185

rpoints (the :s-3-points-3))
(surf-3 rtype lofted-sheet

rwires (list (the r1 — 1) (the r1 — 2) (the r1 — 3)))
))

(defpart rearpanelOOl (box)
r attributes
(rs-4-points-l (list (the (rvertex rright rrear rtop))

(translate (the (redge-center rrear rtop)) rrear
150)

(the (rvertex rleft rrear rtop))
)

rs-4-points-2 (list (the (rvertex rbottom rright rrear))
(translate (the (redge-

center rbottom rrear)) rrear 150)
(the (rvertex rbottom rleft rrear))

)

rdisplay-controls (merge-display-controls '(rcolor rmagenta))
r performance (list r provide_back_cover_for_the_luggage_compartment)
rgoals (list (the rGl-G3-G4))
rGl-G3-G4 (list rminimise rwidth ri rGl)
r sub-relations
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rtype))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))

r parts
((1-1 rtype fitted-wire

rpoints (the rs-4-points-l))
(1-2 rtype fitted-wire

rpoints (the rs-4-points-2))
(surf-4 rtype lofted-sheet

rwires (list (the r1—1) (the rl-2)))

186

Appendix C

Code for similarity measure and case retrieval

This appendix shows the ICAD code for the approach o f graph-based similarity

measure and case retrieval presented in Chapter 4. It is used in conjunction with the

code o f case base, which is partly presented in Appendix B.

(defpart case-retrieval (box)
: choice-attributes
(: wl
(:prompt "Enter weight for feature-based similarity measure"
:domain (:number :from 0 :to 1)
:default 0.4)

: w2
(:prompt "Enter weight for structure-based similarity measure on

function"
:domain (:number :from 0 :to 1)
:default 0.3)

: w3
(:prompt "Enter weight for structure-based similarity measure on

structure"
:domain (:number :from 0 :to 1)
rdefault 0.3)

:weights
(rprompt "Enter weights for length,width, height, wheelbase,

fronttrack, reartrack, car-type, fuel-consumption, top-speed,
acceleration and weight"

:default (list 0.5 0.5 0.2 0.2 0.2 0.2 0.5 0.3 0.3 0.3 0.3))
:tolerance-band
(:prompt "Enter tolerance-band for length,width, height, wheelbase,

fronttrack, reartrack, car-type, fuel-consumption, top-speed,
acceleration and weight"

:default (list 0 . 1 0 . 08 0 . 05 0 . 08 0 . 05 0 . 05 1 0 . 1 0.1 0.1 0.3))
)

:optional-inputs
(

:functions (list :support-chasis :protect-passenger rstylise)
:function-relationship (list :support-chasis-and-protect-

passenger :protect-passenger-and-stylise :stylise-and-support-chasis)
:length 5029
:width 1902

187

:height 1492
:wheelbase 2990
:fronttrack 1578
:reartrack 1582
:car-type :saloon
:fuel-consumption 15.5
:top-speed 237
:acceleration 8.1
:weight 1865
:input-structure (the :case-base :cab)
:optional-features (list (list :passenger-cabin :length

3000)(list :passenger-cabin :width 1902) (list ipassenger-
cabin :height 1490) (list :luggage-compartment :length 529))

:weights-optional-features (list 0.5 0.5 0.3 0.3)
:tolerance-band-optional-features (list 0.1 0.1 0.06 0.1)
)

:attributes
(

:according-optional-features ;;get the according features in the
case base

(let-streams
((a (in (the :case-contents)))

(case (the :case-base a))
(b (let-streams

((c (in (the :optional-features)))
(cl (first c))
(c2 (second c))
(d (let-streams

((e (in-tree case))
(el (the-object e :name-for-display))
(equal? (equal el cl))
(f (collect-if! equal? (defaulting (list a el c2

(the-object e c2))))))
((return-when empty? f))))

(g (collect! d)))
((return-when empty? g))))

(data (collect! b)))
((return-when empty? data)))

:according-optional-features-1 ;; sort according-optional-features
(let-streams

((a (in (the :according-optional-features)))
(b (stream-append a)))

((return-when empty? b)))

:according-optional-features-2 ;; sort according-optional-
features-1

(let-streams
((a (in (the :according-optional-features-1)))

(b (stream-append a)))
((return-when empty? b)))

:fbsm-optional-start ;; similarity measure on optional features
(let-streams

((a (in (the :optional-features)))
(w (in (the :weights-optional-features)))
(tl (in (the :tolerance-band-optional-features)))
(b (let-streams

((al (first a))

188

(a2 (second a))
(a3 (lastcar a))
(c. (in (the : according-optional-features-2)))
(cl (first c))
(c2 (second c))
(c3 (third c))
(c4 (fourth c))
(match? (and (equal c2 al) (equal c3 a2)))
(equal? (if match? (and (< c4 (+ (* tl a3) a3))

(> c4 (- a3 (* tl a3))))
nil))

(result (if equal? (list w cl) nil))
(resultl (collect! result)))

((return-when empty? (remove nil resultl))))) ; ; (cl
a3 c4 match? equal? result)

(data (collect! b)))
((return-when empty? data)))

:fbsm-optional-2 ;; sort fbsm-optional-start, obtain a list of
(weight, name of case)

(let-streams
((a (in (the :fbsm-optional-start)))

(b (stream-append a)))
((return-when empty? b)))

:fbsm-optional
(let-streams

((a (in (the :case-contents)))
(b (let-streams

((c (in (the :fbsm-optional-2)))
(cl (first c))
(c2 (second c))
(match? (equal a c2))
(count (fby 0 (if match? (+ count cl) count))))

((return-when empty? (list count a))) (a cl c2 match?
count)))

(data (collect! b)))
((return-when empty? (safe-sort data #'> : key # ’first))))

: fbsm
(let-streams

((a (in (the :fbsm-optional)))
(al (first a))
(a2 (second a))
(b (let-streams

((c (in (the :fbsm-feature)))
(cl (first c))
(c2 (second c))
(match? (equal a2 c2))
(count (fby al (if match? (+ count cl) count))))

((return-when empty? (list count a2))) (a cl c2 match?
count)))

(data (collect! b)))
((return-when empty? (safe-sort data # ’> : key #'first))))

:input-features

189

(list (the :length) (the :width) (the :height) (the :wheelbase)
(the :fronttrack) (the :reartrack)

(the :car-type)(the :fuel-consumption) (the :top-speed)
(the :acceleration)

(the :weight))

:input-functions (append (the :functions) (the :function-
relationship))

:case-contents
(let-streams

((aa (in (the :case-base :children)))
(bb (the-object aa :name-for-display))
(cc (collect! bb)))

((return-when empty? cc)))

:fbsm-feature ;;feature-based-similarity-measure
(let-streams

((a (in (the :case-contents)))
(case (the :case-base a))
(matches (let-streams

((tl (in (the :input-features)))
(t2 (in (the-object case :features)))

(t3 (in (the :tolerance-band)))
(t4 (in (the :weights)))

(feature-equal (if (numberp tl)
(and (< t2 (+ (* t3 tl) tl))

(> t2 (- tl (* t3 tl))))
(equal t1 t2)))

(count (fby 0 (if feature-equal (+ t4 count)
count))))

((return-when empty? (list count a)))
))

(data (collect! matches)))
((return-when empty? (safe-sort data #'> : key

#'first)))) ;;returns the list according to fbsm

:sbsm-f ;;structure-based-similarity-measure on function
model

(let-streams
((a (in (the :case-contents)))

(case (the :case-base a))
(matches (let-streams

((tl (in (the :input-functions)))
(in? (member tl t2))
(t2 (fby (the-object case :function-model) (if in?

(remove tl t2) t2)))
(equal-count (fby 0 (if in? (1+ equal-count)

equal-count)))
(nl (length (the :input-functions)))
(n2 (length t2))
(dissm (+ (- nl equal-count) n2)))

((return-when empty? (list dissm a)))
))

(data (collect! matches)))
((return-when empty? (safe-sort data #'< :key #'first)))

(case)) ;;returns the list according to sbsm-f

:input-relations ;;get the relations of the elements from
input structure

190

(let-streams
((tl (in-tree (the :input-structure)))

(result (collect! (defaulting
(the-object tl :sub-relations) ()))))

((return-when empty? (remove nil result))))

:compared-structure ;;make list of the relations
(let-streams

((tl (in (the :input-relations)))
(result (fby () (append result tl))))

((return-when empty? result)))

:temp ;;get the relations of the elements from
cases and make a list of relations

(let-streams
((a (in (the :case-contents)))

(relations
(let-streams

((tl (in-tree (the :case-base a)))
(result (collect! (defaulting

(the-object tl :sub-relations) ()))))
((return-when empty? (remove nil result)))))

(case (let-streams
((tl (in (the-object relations)))
(result (fby () (append result tl))))

((return-when empty? result))))
(data (collect! (list case a))))

((return-when empty? data)))

:sbsm-s ;;structure-based-similarity-measure on structure
model, calculate the amount of actions

(let-streams
((a (in (the :temp)))

(b (first a))
(c (second a))
(matches (let-streams

((tl (in (the-object b)))
(in? (member tl t2 :test #'equal))
(t2 (fby (the :compared-structure) (if in? (remove

tl t2 :count 1) t2)))
(equal-count (fby 0 (if in? (1+ equal-count) equal-

count)))
(nl (length (the-object b)))
(n2 (length t2))
(dissm (* 2 (+ (- nl equal-count) n2))))

((return-when empty? (list dissm c)))
))

(data (collect! matches)))
((return-when empty? (safe-sort data #'< : key

#'first)))) ;;returns the list according to sbsm-f

:rank-fbsm
(let-streams

((a (in (the :fbsm)))
(al (fby 1 (+ al 1)))
(a2 (append (list al) a))
(a3 (collect! a2)))

((return-when empty? a3)))

:rank-sbsm-f
(let-streams

191

((a (in (the :sbsm-f)))
(al (fby 1 (+ al 1)))
(a2 (append (list al) a))
(a3 (collect! a2)))

((return-when empty? a3)))

:rank-sbsm-s
(let-streams

((a (in (the :sbsm-s)))
(al (fby 1 (+ al 1)))
(a2 (append (list al) a))
(a3 (collect! a2)))

((return-when empty? a3)))

: sa
(let-streams

((a (in (the :rank-fbsm)))
(al (first a))
(a2 (third a))
(bl (let-streams

((b (in (the :rank-sbsm-f)))
(b2 (third b))
(equal? (equal a2 b2))
(bll (if equal? (first b) 0)))

((return-when equal? bll)) (b b2 equal?)))
(cl (let-streams

((c (in (the :rank-sbsm-s)))
(c2 (third c))
(equal? (equal a2 c2))
(ell (if equal? (first c) 0)))

((return-when equal? ell)) (c c2 equal?)))
(sa (+ (+ (* (the :wl) al) (* (the :w2) bl)) (* (the :w3) cl)))
(result (collect! (list sa a2))))

((return-when empty? (safe-sort result #'< : key #'first))))

:retrieved-case-name (second (first (the :sa)))
:get-type
(let-streams

((aa (in (the :case-base :children)))
(bb (the-object aa :name-for-display))
(dd (the-object aa rtype))
(cc (collect! (list bb dd))))

((return-when empty? cc)))

:find-type
(let-streams

((aa (in (the rget-type)))
(bb (first aa))
(equals? (equal bb (the :retrieved-case-name))))

((return-when equals? (second aa))))
)

rparts
((retrieved-case

rtype (the rfind-type))
)

rpseudo-parts
((case-base rtype case-base)))

192

Appendix D

Code for performance retrieval

This appendix lists the ICAD code for the adaptation approach o f performance

retrieval introduced in Chapter 5. It is used in conjunction with the code o f case base,

which is partly presented in Appendix B.

(defpart performance-revision (box)
:choice-attributes
(:case-ca
(rprompt "Enter the case name"
:domain (:item-list

(list :cbOOl :cb002 :cb003 :cb004 :cb005 :cb006 :cb007))
:default :cb001)

:input-performance
(:prompt "Enter che performance"
:domain (:selection-list

(list :provide_space_for_the_engine :provide_space_for_the_passengers
_and_luggage :provide_space_for_the_passengers :provide_space_for_the
_luggage)

rminimum-selections 1
:maximum-selections 3)

:default (list :provide_space_for_the_engine))
)

:modifiable-defaulted-inputs
(

:length 5029
:width 1902
:height 1492
)

:attributes
(:retrieved-case (cond ((equal (the :case-ca) :cb001) (first

(the :list-cases)))

193

cases)))
((equal (the :case-ca) :cb002) (second (the : list-

cases)))
((equal (the :case-ca) :cb003) (nth 2 (the list-

cases)))
((equal (the :case-ca) :cb004) (nth 3 (the list-

cases)))
((equal (the :case-ca) :cb005) (nth 4 (the list-

cases)))
((equal (the :case-ca) :cb006) (nth 5 (the :list-

cases))))
((equal (the :case-ca) :cb007) (nth 6 (the :list-

:retrieved-case-performance ;;give the performance of the
retrieved case

(let-streams
((a (in (the :retrieved-case :performance)))

(b (stream-append a)))
((return-when empty? b)))

:retrieved-case-subcases ;;give the performance of the
retrieved cased alongside with the according case name

(let-streams
((a (in (the :retrieved-case-performance)))

(b (in (the :retrieved-case :sub-cases)))
(c (collect! (list a b))))

((return-when empty? c)))

:kept-subcases ;;subcases from the retrieved case that can be
kept in the new situation

(let-streams
((aa (in (the :retrieved-case-subcases)))

(aal (first aa))
(aa2 (second aa))
(bb (member aal (the :input-performance)))
(cc (collect-if! bb (defaulting aa2))))

((return-when empty? cc)))

:kept-performance ;;performance from the retrieved case that can
be kept in the new situation

(let-streams
((aa (in (the :retrieved-case-subcases)))

(aal (first aa))
(aa2 (second aa))
(bb (member aal (the :input-performance)))
(cc (collect-if! bb (defaulting aal))))

((return-when empty? cc)))

:added-performance ;;performance that need to be added from the
case base

(let-streams
((a (in (the :kept-performance)))

(b (fby (the :input-performance) (remove a b))))
((return-when empty? b)))

:trial
(list :provide space_for the_passengers :provide_space_for_the_lugga
ge)

:search-performance ;;search the added-performance provided by
which subcases

194

(let-streams
((aa (in (the :added-performance)))

(bb (let-streams
((a (in-tree (the :case-base)))
(al (the-object a :type))
(b (defaulting (the-object a :performance)))
(equal? (equal (list aa) b))
(c (collect-if! equal? al)))

((return-when empty? c))))
(cc (collect! (list aa bb))))

((return-when empty? cc)))
((:PROVIDE SPACE_FOR_THE_PASSENGERS (PC001
PC003))(:PROVIDE_SPACE_FOR_THE_LUGGAGE (LC001 LC003)))

:added-subcases ;;sort the subcases to be added to the
retrieved case

(let-streams
((a (in (the :search-performance)))

(al (first a))
(a2 (second a))
(b (first a2))
(c (collect! (list al b))))

((return-when empty? c)))
((:PROVIDE_SPACE_FOR_THE_PAS SENGERS PC001)
(:PROVIDE_SPACE_FOR_THE_LUGGAGE LC001))

:kept-performance-and-subcases
(let-streams

((aa (in (the :retrieved-case-subcases)))
(aal (first aa))
(aa2 (second aa))
(bb (member aal (the :input-performance)))
(cc (collect-if! bb (list (defaulting aal) aa2))))

((return-when empty? cc)))

:adapted-subcases-list (append (the :added-subcases) (the :kept-
perf ormance-and-subcases))

:sort-adapted-subcases-list
(let-streams

((a (in (the :input-performance)))
(b (let-streams

((bl (in (the :adapted-subcases-list)))
(bl1 (first bl))
(bl2 (second bl))
(match? (equal a bll))
(b3 (collect-if! match? bl2)))

((return-when empty? b3))))
(c (collect! b)))

((return-when empty? c)) (a b c))

:sort-adapted-subcases-list-2
(let-streams

((a (in (the :sort-adapted-subcases-list)))
(b (stream-append a)))

((return-when empty? b)))

:list-cases (the :case-base :children)
)

:parts

195

((adapted-case
:type case-for-adaptation)

)

:pseudo-parts
(

(case-base rtype case-base)
)

)

(defpart case-for-adaptation (box)
:attributes
(:functions (the-object (make-part 'cbr) :retrieved-case :functions)
:function-relationship (the-object (make-part ’cbr) :retrieved-

case :function-relationship)
:function-model (append (the :functions) (the :function-

relationship))
rwidth (max (the :engine-compartment :width) (the rpassenger-

cabin rwidth) (the rluggage-compartment rwidth))
rlength (+ (the rengine-compartment rlength) (the rpassenger-

cabin rlength) (the rluggage-compartment rlength))
rheight (max (the rengine-compartment rheight) (the rpassenger-

cabin rheight) (the rluggage-compartment rheight))
rear-type (the-object (make-part 'cbr) rretrieved-case rear-type)
rwheelbase (the-object (make-part ’cbr) rretrieved-case rwheelbase)
rfronttrack (the-object (make-part 'cbr) rretrieved-

case rfronttrack)
rreartrack (the-object (make-part 'cbr) rretrieved-case rreartrack)
rweight (the-object (make-part 'cbr) rretrieved-case :weight)
:fuel-consumption (the-object (make-part 'cbr) :retrieved-

case :fuel-consumption)
:top-speed (the-object (make-part 'cbr) :retrieved-case :top-speed)
:acceleration (the-object (make-part 'cbr) rretrieved-

case :acceleration)
.•behaviour-feature

(list (the :length) (the rwidth) (the rheight)
(the rwheelbase) (the rfronttrack) (the rreartrack))

rfunction-feature (list (the rear-type) (the rfuel-consumption)
(the rtop-speed) (the racceleration))

rstructure-feature (list (the rweight))
rfeatures (append (the rbehaviour-feature) (the rfunction-feature)

(the rstructure-feature))
r performance
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rperformance))
(cc (collect! (defaulting bb ()))))

((return-when empty? cc)))

rlocal-adapted-subcases-list (the-object (make-part 'cbr) rsort-
adapted-subcases-list- 2)

r sub-relations
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rname-for-display))
(cc (collect! bb)))

((return-when empty? cc)))

)

r report-attributes

196

(:vrml-out
(write-vrml-file (list self)
"f:/carbody.wrl"
:specified-planarity 0.1
:specified-linearity 0.1
:camera-on? t))

:parts
((engine-compartment

:type (first (the :local-adapted-subcases-list))
:position (:bottom 0.0))
(passenger-cabin
:type (second (the :local-adapted-subcases-list))
:position (:front (:from (the :engine-compartment) (the rengine-

compartment :length))))
(luggage-compartment
:type (if (equal (third (the :local-adapted-subcases-list)) nil)

'null-part
(third (the :local-adapted-subcases-list)))

:position (:front (:from (the :passenger-cabin) (the rpassenger-
cabin :length)) rbottom 0.0))

)

)

197

Appendix E

Code for goal-oriented substitution

This appendix presents the ICAD code for the adaptation approach o f goal-oriented

substitution described in chapter 5. It is used in conjunction with the code o f case base,

which is partly presented in Appendix B.

(defpart cbr (box)
:modifiable-defaulted-inputs
(:case-ca (list :cb001)
:Goall (list :minimise :volume :c)
:Goal2 (list :maxiraise :comfort :c)
:Goal3 (list rmaximise :visualisation :c]
:input-goals (list "Gl")

)

attributes
(:retrieved-case (cond ((equal (first (the :case -ca)) :cbOO1) (f

(the :list-cases))
((equal (first (the :case-ca)) :cb002) (second

(the :list-cases))
((equal (first (the :case-ca)) :cb003) (nth 2

(the :list-cases))
((equal (first (the :case-ca)) :cb004) (nth 3

(the :list-cases))
((equal (first (the :case-ca)) :cb005) (nth 4

(the :list-cases))
((equal (first (the :case-ca)) :cb006) (nth 5

(the :list-cases))
((equal (first (the :case-ca)) :cb007) (nth 6

(the :list-cases))))

:s-review-goals (the :retrieved-case :corporate-goalsi
rmaximise :visualisation :c))

:review-goals (the :retrieved-case : corporate-goals)

198

:review-individual-goals (the :retrieved-case :find-individual-
goals)

:input-goals-propagation (let-streams
((a (in (the :input-goals)))
(b (let-streams

((aa (in (the :review-individual-
goals)))

(bb (lastcar aa))
(bbl (symbol-name bb))
(bb2 (char bbl 1))
(aal (char a 1))
(cc (equal aal bb2))
(dd (collect-if! cc aa nil)))

((return-when empty? dd))))
(c (collect! b)))

((return-when empty? c)))
:reform-igp (let-streams

((a (in (the :input-goals-propagation)))
(b (stream-append a)))

((return-when empty? b)))

:find-conflict (let-streams
((a (in (the :reform-igp)))
(al (first a))
(a2 (second a))
(a3 (nth 2 a))
(b (remove a (the :reform-igp)))
(c (let-streams

((aa (in b))
(aal (first aa))
(aa2 (second aa))
(aa3 (nth 2 aa))
(conflict? (and (and (equal aal al) (equal

aa3 a3)) (not (equal aa2 a2))))
(bb (collect-if! conflict? (list aa a) nil)))
((return-when empty? (remove nil bb)))))

(d (collect! c)))
((return-when empty? (remove nil d))))

:reform-find-conflict (let-streams
((a (in (the :find-conflict)))
(b (stream-append a)))

((return-when empty? b)))
:reform-find-conflict-2 (let-streams

((a (in (the :reform-find-conflict)))
(b (stream-append a)))

((return-when empty? b)))
:simplified-goals (let-streams

((a (in (the :reform-find-conflict-2)))
(b (fby (the :reform-igp) (remove a b))))

((return-when empty? b)))

:value-in-sg (let-streams
((a (in (the :simplified-goals)))
(al (first a))
(a2 (second a))
(a3 (nth 2 a))
(b (let-streams

((aa (in-tree (the :retrieved-case)))
(aal (the-object aa :name-for-display))
(bb (equal al aal))
(dd (collect-if! bb (the-object aa a3) nil)))

199

((return-when empty? (remove nil d d))) (a a l
aal bb)))

(c (collect! (append (list al a2 a3) b))))

((return-when empty? c)))

:find-substitution (let-streams
((a (in (the :value-in-sg)))
(al (first a))
(a2 (second a))
(a3 (nth 2 a))
(a4 (nth 3 a))
(b (let-streams

((aa (in-tree (the :case-base)))
(aal (the-object aa :name-for-display))
(bbl (equal al aal))
(aa2 (the-object aa a3))
(bb2 (if bbl (and (> aa2 a4) (equal

a2 :maximise)) nil))
(bb3 (if bbl (and (< aa2 a4) (equal

a2 rminimise)) nil))
(aa4 (the-object aa rtype))
(cc (collect-if! (or bb2 bb3) (list aal

aa4))))
((return-when empty? cc))))

(c (collect! b)))
((return-when empty? (remove nil c))))

r reform-substitution (let-streams
((a (in (the rfind-substitution)))
(al (first a))
(b (collect! al)))

((return-when empty? b)))

rrs-performance (let-streams
((a (in (the rreform-substitution)))

(al (first a))
(b (let-streams

((aa (in-tree (the rretrieved-case)))
(aal (the-object aa rname-for-display))
(aa2 (defaulting (the-object

aa rperformance)))
(bb (equal aal al))
(cc (collect-if! bb aa2)))

((return-when empty? cc))))
(c (collect! (append (list a) b))))

((return-when empty? c)))

rreform-rsp (let-streams
((a (in (the rrs-performance)))
(al (first a))
(a2 (second a))
(b (collect! (append al a2))))

((return-when empty? b)))

:list-cases (the :case-base :children)

:functions (the :retrieved-case :functions)
:function-relationship (the : retrieved-case :function-relationship)

200

: function-model (append (the .-functions) (the .-function-
relationship))

rwidth (max (the :engine-compartment rwidth) (the rpassenger-
cabin rwidth) (the rluggage-compartment rwidth))

rlength (+ (the rengine-compartment rlength) (the rpassenger-
cabin rlength) (the rluggage-compartment rlength))

rheight (max (the rengine-compartment rheight) (the rpassenger-
cabin rheight) (the rluggage-compartment rheight))

rear-type (the rretrieved-case rear-type)
rwheelbase (the rretrieved-case rwheelbase)
rfronttrack (the rretrieved-case rfronttrack)
rreartrack (the rretrieved-case rreartrack)
rweight (the rretrieved-case rweight)
rfuel-consumption (the : retrieved-case rfuel-consumption)
rtop-speed (the rretrieved-case rtop-speed)
racceleration (the rretrieved-case racceleration)
rbehaviour-feature

(list (the rlength) (the rwidth) (the rheight)
(the rwheelbase) (the rfronttrack) (the rreartrack))

rfunction-feature (list (the rear-type) (the rfuel-consumption)
(the rtop-speed) (the racceleration))

rstructure-feature (list (the rweight))
rfeatures (append (the rbehaviour-feature) (the rfunction-feature)

(the rstructure-feature))
rperformance
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rperformance))
(cc (collect! (defaulting bb ()))))

((return-when empty? cc)))
rlocal-retrieved-case-sub-relations (the rretrieved-case rsub­

relations)
rcheck-ec (equal (first (the rlocal-retrieved-case-sub-relations))

r engine-compartment)
rcheck-pc (equal (second (the rlocal-retrieved-case-sub-relations))

rpassenger-cabin)
rcheck-lc (equal (defaulting (nth 2 (the rlocal-retrieved-case-

sub-relations)))
rluggage-compartment)

r sub-relations
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rname-for-display))
(cc (collect! bb)))

((return-when empty? cc)))

rparts
((engine-compartment

rtype (if (the rcheck-ec) ’ecgoal 'null-part)
rposition (rbottom 0.0))
(passenger-cabin
rtype (if (the rcheck-pc) 'pegoal ’null-part)
rposition (rfront (rfrom (the rengine-compartment) (the rengine-

compartment rlength))))
(luggage-compartment
rtype (if (the rcheck-lc) 'legoal ’null-part)
rposition (rfront (rfrom (the rpassenger-cabin) (the rpassenger-

cabin rlength)) rbottom 0.0))
)

201

:pseudo-parts
((case-base :type case-base))

(defpart ecgoal (box)
: attributes
(:width (the :local-retrieved-case :engine-compartment rwidth)
rlength (the rlocal-retrieved-case rengine-compartment rlength)
rheight (the rlocal-retrieved-case rengine-compartment rheight)
rperformance (list rprovide_space_for_the_engine)
rgoals (list (the :G1-G1) (the rG3-Gl))
rGl-Gl (list rminimise rvolume rc rGl)
rG3-Gl (list rminimise rlength ri rG3)
:local-retrieved-case (the-object (make-part 'cbr) rretrieved-case)
rlocal-reform-rsp (the-object (make-part 'cbr) rreform-rsp)
rcheck-bonnet (let-streams

((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_top_cover_for_the_engine_compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
rcheck-bonnet-2 (let-streams

((a (in-tree (the rlocal-retrieved-case)))
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_top_cover_for_the__engine_compartment)))
(c (collect-if! b al)))

((return-when empty? (first c))))
r check-rightfrontwing (let-streams

((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_right_side_cover_for_the_engine_compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
r check-rightfrontwing-2 (let-streams

((a (in-tree (the rlocal-retrieved-case)))
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide__right_side_cover_for_the_engine_compartment)))
(c (collect-if! b al)))
((return-when empty? (first c))))

r check-leftfrontwing (let-streams
((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_left_side_cover_for_the_engine_compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
r check-leftfrontwing-2 (let-streams

((a (in-tree (the rlocal-retrieved-case)))
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))

202

(b (equal a2
(list rprovide_left_side_cover_for_the_engine_compartment)))

(c (collect-if! b al)))
((return-when empty? (first c))))

:check-frontpanel (let-streams
((a (in (the :local-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 :provide^front_cover__for_the_engine_compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
: check-frontpanel-2 (let-streams

((a (in-tree (the :local-retrieved-case)))
(al (the-object a :type))
(a2 (defaulting (the-object a :performance)))
(b (equal a2

(list :provide_front_cover_for__the_engine_compartment)))
(c (collect-if! b al)))
((return-when empty? (first c))))

:check-collection (list (the :check-bonnet) (the :check-
rightf rontwing) (the :check-leftfrontwing) (the : check-frontpanel))

:check-collection-2 (list (the :check-bonnet-2) (the rcheck-
rightfrontwing-2) (the :check-leftfrontwing-2) (the rcheck-
frontpanel-2))

:bonnet-type (if (and (the :goal-oriented?)
(equal (first (first (the : check-collection)))

’t))
(second (first (the :check-collection)))

(first (the :check-collection-2)))
:goal-oriented? (equal 1 1)
:sub-relations
(let-streams

((aa (in (the :children)))
(bb (the-object aa :name-for-display))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))

:report-attributes
(:vrml-out
(write-vrml-file (list self)
"f:/engine-compartment.wrl"
:specified-planarity 0.1
:specified-linearity 0.1
:camera-on? t))

:parts
((bonnet rtype (the :bonnet-type))
(rightfrontwing rtype (if (and (the rgoal-oriented?)

(equal (first (second (the rcheck-
collection))) 1t))

(second (second (the rcheck-collection)))
(second (the rcheck-collection-2))))

(leftfrontwing rtype (if (and (the rgoal-oriented?)
(equal (first (the rcheck-leftfrontwing)) ’t))

(second (the rcheck-leftfrontwing))
(the rcheck-leftfrontwing-2)))

(frontpanel rtype (if (and (the rgoal-oriented?)
(equal (first (the rcheck-frontpanel)) 't))

(second (the rcheck-frontpanel))

203

(the :check-frontpanel-2)))))

(defpart pcgoal (box)
:attributes
(rwidth (the :local-retrieved-case rpassenger-cabin rwidth)
rlength (the rlocal-retrieved-case rpassenger-cabin rlength)
rheight (the rlocal-retrieved-case rpassenger-cabin rheight)
rperformance (list rprovide_space_for_the_passengers)
rgoals (list (the rGl-G2) (the rG2-Gl))
rGl-G2 (list rminimise rvolume rc rGl)
rG2-Gl (list rmaximise rvolume rc rG2)
rlocal-retrieved-case (the-object (make-part 'cbr) r retrieved-case)
rlocal-reform-rsp (the-object (make-part 'cbr) rreform-rsp)
rcheck-roofpanel (let-streams

((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_top_cover_for_the_passenger_cabin))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
rcheck-roofpanel-2 (let-streams

((a (in-tree (the rlocal-retrieved-case)))
(al (the-object a rtype)(the-object (make-part

'lcgoal) rleftrearwing))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_top__cover_for_the_passenger_cabin)))
(c (collect-if! b al)))

((return-when empty? (first c))))
rcheck-rightside (let-streams

((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_right_side_cover_for_the_passenger_cabin))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
rcheck-rightside-2 (let-streams

((a (in-tree (the rlocal-retrieved-case)))
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide__right_side_cover_for_the_passenger_cabin)))
(c (collect-if! b al)))
((return-when empty? (first c))))

rcheck-leftside (let-streams
((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_left_side_cover_for_the_passenger_cabin))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
rcheck-leftside-2 (let-streams

((a (in-tree (the rlocal-retrieved-case)))
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_left_side_cover_for_the_passenger_cabin)))
(c (collect-if! b al)))

204

((return-when empty? (first c))))
:goal-oriented? (equal 1 1)

: sub-relations
(let-streams

((aa (in (the :children)))
(bb (the-object aa :name-for-display))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))

:report-attributes
(:vrml-out
(write-vrml-file (list self)
"f:/paasenger-cabin.wrl"
:specified-planarity 0.1
:specified-linearity 0.1
:camera-on? t)

)

:parts
((roofpanel rtype (if (and (the :goal-oriented?)

(equal (first (the :check-roofpanel)) 't))
(second (the :check-roofpanel))

(the :check-roofpanel-2)))
(rightside rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-rightside)) 't))
(second (the rcheck-rightside))

(the rcheck-rightside-2)))
(leftside rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-leftside)) !t))
(second (the rcheck-leftside))
(the rcheck-leftside-2)))))

(defpart lcgoal (box)
r attributes
(rwidth (the rlocal-retrieved-case rluggage-compartment rwidth)
rlength (the rlocal-retrieved-case rluggage-compartment rlength)
rheight (the rlocal-retrieved-case rluggage-compartment rheight)
rperformance (list rprovide_space_for__the_luggage)
rgoals (list (the rGl-G3))
rGl-G3 (list rminimise rvolume rc rGl)
rlocal-retrieved-case (the-object (make-part 'cbr) rretrieved-case)
rlocal-reform-rsp (the-object (make-part 'cbr) rreform-rsp)
rcheck-lcdoor (let-streams

((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_top_cover_for_the_luggage_compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
rcheck-lcdoor-2 (let-streams

((a (in-tree (the rlocal-retrieved-case)))
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_top_cover_for_the_luggage_compartment)))
(c (collect-if! b al)))

((return-when empty? (first c))))
r check-rightrearwing (let-streams

205

({a (in (the :local-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 :provide__right__side_cover_for_the__luggage_compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
:check-rightrearwing-2 (let-streams

((a (in-tree (the :local-retrieved-case)))
(al (the-object a :type))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list :provide_right_side__cover_for_the_luggage_compartment)))
(c (collect-if! b al)))
((return-when empty? (first c))))

:check-leftrearwing (let-streams
((a (in (the :local-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 :provide_left_side_cover_for_the_luggage_compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
:check-leftrearwing-2 (let-streams

((a (in-tree (the :local-retrieved-case)))
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_left_side_cover_for_the_luggage_compartment)))
(c (collect-if! b al)))
((return-when empty? (first c))))

rcheck-rearpanel (let-streams
((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_back_cover_for_the_luggage_compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
rcheck-rearpanel-2 (let-streams

((a (in-tree (the rlocal-retrieved-case)))
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_back_cover_for_the_luggage_compartment)))
(c (collect-if! b al)))

((return-when empty? (first c))))
rgoal-oriented? (equal 1 1)

r sub-relations
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rname-for-display))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))

r report-attributes
(r vrml-out
(write-vrml-file (list self)
"f r/luggage-compartment.wrl"

206

:specified-planarity 0.1
:specified-linearity 0.1(the-object (make-part

'lcgoal) :leftrearwing)
:camera-on? t)
)

:parts
((lcdoor rtype (if (and (the :goal-oriented?)

(equal (first (the :check-lcdoor)) 't))
(second (the :check-lcdoor))

(the :check-lcdoor-2)))
(rightrearwing rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-rightrearwing)) 't))
(second (the rcheck-rightrearwing))

(the rcheck-rightrearwing-2)))
(leftrearwing rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-leftrearwing)) 't))
(second (the rcheck-leftrearwing))

(the rcheck-leftrearwing-2)))
(rearpanel rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-rearpanel)) ’t))
(second (the rcheck-rearpanel))
(the rcheck-rearpanel-2)))))

207

Appendix F

Code for fractal-based re-design

This appendix gives the ICAD code for fractal-based re-design described in Chapter 5.

The fractal-based re-design is an integrated system which is made up of the

subsystems described in Chapter 4 and Chapter 5, with their codes in Appendix D, E,

and F. The code presented here is also used for the case study in Chapter 5, in

conjunction with the code o f case base, which is partly presented in Appendix B.

(defpart cbr (box)
:choice-attributes
(:retrieve-or-adapt
(rprompt "Do you need to retrieve or retrieve and adapt a design?"
:domain (:item-list (list :retrieve :retrieve-and-adapt))
rdefault rretrieve)

:adaptation-method
(:prompt "Performance-revision or goal-oriented adaptation?"
:domain (:item-list (list :performance-revision :goal-oriented))
rdefault :performance-revision)

:input-performance
(:prompt "Enter the performance"
:domain (: selection-list

(list :provide_space_for_the_engine :provide_space_for_the_passengers
_and_luggage :provide_space_for_the_passengers :provide_space__for_the
_luggage)

:minimum-selections 1
imaximum-selections 3)

rdefault (list :provide_space_for_the_engine))

)

rmodifiable-defaulted-inputs
(

rGoall (list rminimise rvolume rc)
rGoal2 (list rmaximise rcomfort rc)
rGoal3 (list rmaximise rvisualisation rc)
rinput-goals (list "Gl" "G2")

208

:functions (list :support-chasis rprotect-passenger :stylise)
:function-relationship (list :support-chasis-and-protect-

passenger :protect-passenger-and-stylise :stylise-and-support-chasis)
:length 5029
:width 1902
:height 1492
:wheelbase 2990
rfronttrack 1578
ireartrack 1582
: car-type :saloon
:fuel-consumption 15.5
:top-speed 237
: acceleration 8.1
:weight 1865
:input-structure (the :case-base :cab)
:weights (list 0.5 0.5 0.2 0.2 0.2 0.2 0.5 0.3 0.3 0.3

0.3) ;/weights for feature
:tolerance-band (list 0.1 0.08 0.05 0.08 0.05 0.05 1 0.1 0.1 0.1

0.3)
:wl 0.4 ;/weight for feature-based similarity measure
:w2 0.3 //weight for structure-based similarity measure on

function
:w3 0.3 //weight for structure-based similarity measure on

structure
:optional-features (list (list rpassenger-cabin :length

3000) (list rpassenger-cabin rwidth 1902) (list rpassenger-
cabin rheight 1490) (list rluggage-compartment rlength 529))

rweights-optional-features (list 0.5 0.5 0.3 0.3)
rtolerance-band-optional-features (list 0.1 0.1 0.06 0.1)
)

r attributes
(
raccording-optional-features //get the according features in the

case base
(let-streams

((a (in (the rcase-contents)))
(case (the rcase-base a))
(b (let-streams

((c (in (the roptional-features)))
(cl (first c))
(c2 (second c))
(a (let-streams

((e (in-tree case))
(el (the-object e rname-for-display))
(equal? (equal el cl))
(f (collect-if! equal? (defaulting (list a el c2

(the-object e c2))))))
((return-when empty? f))))

(g (collect! d)))
((return-when empty? g))))

(data (collect! b)))
((return-when empty? data)))

raccording-optional-features-1 // sort according-optional-features
(let-streams

((a (in (the raccording-optional-features)))
(b (stream-append a)))

((return-when empty? b)))

209

:according-optional-features-2 ;; sort according-optional-
features-1

(let-streams
((a (in (the :according-optional-features-1)))

(b (stream-append a)))
((return-when empty? b)))

:fbsm-optional-start ;; similarity measure on optional features
(let-streams

((a (in (the :optional-features)))
(w (in (the :weights-optional-features)))
(tl (in (the :tolerance-band-optional-features)))
(b (let-streams

((al (first a))
(a2 (second a))
(a3 (lastcar a))
(c (in (the :according-optional-features-2)))
(cl (first c))
(c2 (second c))
(c3 (third c))
(c4 (fourth c))
(match? (and (equal c2 al) (equal c3 a2)))
(equal? (if match? (and (< c4 (+ (* tl a3) a3))

(> c4 (- a3 (* tl a3))))
nil))

(result (if equal? (list w cl) nil))
(resultl (collect! result)))

((return-when empty? (remove nil resultl))))) ; ; (cl
a3 c4 match? equal? result)

(data (collect! b)))
((return-when empty? data)))

:fbsm-optional-2 ;; sort fbsm-optional-start, obtain a list of
(weight, name of case)

(let-streams
((a (in (the :fbsm-optional-start)))

(b (stream-append a)))
((return-when empty? b)))

:fbsm-optional
(let-streams

((a (in (the :case-contents)))
(b (let-streams

((c (in (the :fbsm-optional-2)))
(cl (first c))
(c2 (second c))
(match? (equal a c2))
(count (fby 0 (if match? (+ count cl) count))))

((return-when empty? (list count a))) (a cl c2 match?
count)))

(data (collect! b)))
((return-when empty? (safe-sort data #'> : key #'first))))

: fbsm
(let-streams

((a (in (the :fbsm-optional)))
(al (first a)'

210

(a2 (second a))
(b (let-streams

((c (in (the :fbsm-feature)))
(cl (first c))
(c2 (second c))
(match? (equal a2 c2))
(count (fby al (if match? (+ count cl) count))))

((return-when empty? (list count a2))) (a cl c2 match?
count)))

(data (collect! b)))
((return-when empty? (safe-sort data #'> :key #'first))))

:input-features
(list (the :length) (the :width) (the :height) (the :wheelbase)

(the :fronttrack) (the :reartrack)
(the :car-type)(the :fuel-consumption) (the :top-speed)

(the :acceleration)
(the .’weight))

:input-functions (append (the :functions) (the :function-
relationship))

:case-contents
(let-streams

((aa (in (the :case-base :children)))
(bb (the-object aa :name-for-display))
(cc (collect! bb)))

((return-when empty? cc)))

:fbsm-feature ;;feature-based-similarity-measure
(let-streams

((a (in (the :case-contents)))
(case (the :case-base a))
(matches (let-streams

((tl (in (the :input-features)))
(t2 (in (the-object case :features)))

(t3 (in (the :tolerance-band)))
(t4 (in (the :weights)))

(feature-equal (if (numberp tl)
(and (< t2 (+ (* t3 tl) tl))

(> t2 (- tl (* t3 tl))))
(equal tl t2)))

(count (fby 0 (if feature-equal
count))))

(+ t4 count)

((return-when empty? (list count a)))
))

(data (collect! matches)))
((return-when empty? (safe-sort data #'> :key

#’first)))) ;;returns the list according to fbsm

:sbsm-f ;;structure-based-similarity-measure on function
model

(let-streams
((a (in (the :case-contents)))

(case (the :case-base a))
(matches (let-streams

((tl (in (the :input-functions)))
(in? (member tl t2))

211

(t2 (fby (the-object case :function-model) (if in?
(remove tl t2) 12)))

(equal-count (fby 0 (if in? (1+ equal-count)
equal-count)))

(nl (length (the :input-functions)))
(n2 (length t2))
(dissm (+ (- nl equal-count) n2)))

((return-when empty? (list dissm a)))
))

(data (collect! matches)))
((return-when empty? (safe-sort data #'< :key #'first)))

(case)) ;;returns the list according to sbsm-f

:input-relations ;;get the relations of the elements from
input structre

(let-streams
((tl (in-tree (the :input-structure)))

(result (collect! (defaulting
(the-object tl :sub-relations) ()))))

((return-when empty? (remove nil result))))

:compared-structure ;;make list of the relations
(let-streams

((tl (in (the :input-relations)))
(result (fby () (append result tl))))

((return-when empty? result)))

: temp ;;get the relations of the elements from
cases and make a list of relations

(let-streams
((a (in (the :case-contents)))

(relations
(let-streams

((tl (in-tree (the :case-base a)))
(result (collect! (defaulting

(the-object tl : sub-relations) ()))))
((return-when empty? (remove nil result)))))

(case (let-streams
((tl (in (the-object relations)))
(result (fby () (append result tl))))

((return-when empty? result))))
(data (collect! (list case a))))

((return-when empty? data)))

:sbsm-s ;;structure-based-similarity-measure on structure
model, calculate the amount of actions

(let-streams
((a (in (the :temp)))

(b (first a))
(c (second a))
(matches (let-streams

((tl (in (the-object b)))
(in? (member tl t2 :test #'equal))
(t2 (fby (the :compared-structure) (if in? (remove

tl t2 :count 1) t2)))
(equal-count (fby 0 (if in? (1+ equal-count) equal-

count)))
(nl (length (the-object b)))

212

(n2 (length t2))
(dissm (* 2 (+ (- nl equal-count) n2))))

((return-when empty? (list dissm c)))
))

(data (collect! matches)))
((return-when empty? (safe-sort data #'< : key

#'first)))) ;;returns the list according to sbsm-f

:rank-fbsm
(let-streams

((a (in (the :fbsm)))
(al (fby 1 (+ al 1)))
(a2 (append (list al) a))
(a3 (collect! a2)))

((return-when empty? a3)))

:rank-sbsm-f
(let-streams

((a (in (the :sbsm-f)))
(al (fby 1 (+ al 1)))
(a2 (append (list al) a))
(a3 (collect! a2)))

((return-when empty? a3)))

:rank-sbsm-s
(let-streams

((a (in (the :sbsm-s)))
(al (fby 1 (+ al 1)))
(a2 (append (list al) a))
(a3 (collect! a2)))

((return-when empty? a3)))

: sa
(let-streams

((a (in (the :rank-fbsm)))
(al (first a))
(a2 (third a))
(bl (let-streams

((b (in (the :rank-sbsm-f)))
(b2 (third b))
(equal? (equal a2 b2))
(bll (if equal? (first b) 0)))

((return-when equal? bll)) (b b2 equal?)))
(cl (let-streams

((c (in (the :rank-sbsm-s)))
(c2 (third c))
(equal? (equal a2 c2))
(ell (if equal? (first c) 0)))

((return-when equal? ell)) (c c2 equal?)))
(sa (+ (+ (* (the :wl) al) (* (the :w2) bl)) (* (the :w3) cl))
(result (collect! (list sa a2))))

((return-when empty? (safe-sort result #'< : key #'first))))

:retrieved-case-name (second (first (the :sa)))

:get-type
(let-streams

((aa (in (the :case-base rchildren)))

213

(bb (the-object aa :name-for-display))
(dd (the-object aa :type))
(cc (collect! (list bb dd))))

((return-when empty? cc)))

:find-type
(let-streams

((aa (in (the :get-type)))
(bb (first aa))
(equals? (equal bb (the :retrieved-case-name))))

((return-when equals? (second aa))))

;/ADAPTATION;;;;;;;;;;;; ; ;;;;;PERFORMANCE REVISION;;;;

: retrieved-case-performance ;;give the performance of the
retrieved case

(let-streams
((a (in (the :retrieved-case /performance)))

(b (stream-append a)))
((return-when empty? b)))

:retrieved-case-subcases ;;give the performance of the
retrieved cased alongside with the according case name

(let-streams
((a (in (the :retrieved-case-performance)))

(b (in (the :retrieved-case :sub-cases)))
(c (collect! (list a b))))

((return-when empty? c)))

:kept-subcases ;;subcases from the retrieved case that can be
kept in the new situation

(let-streams
((aa (in (the :retrieved-case-subcases)))

(aal (first aa))
(aa2 (second aa))
(bb (member aal (the :input-performance)))
(cc (collect-if! bb (defaulting aa2))))

((return-when empty? cc)))

:kept-performance ;/performance from the retrieved case that can
be kept in the new situation

(let-streams
((aa (in (the :retrieved-case-subcases)))

(aal (first aa))
(aa2 (second aa))
(bb (member aal (the /input-performance)))
(cc (collect-if! bb (defaulting aal))))

((return-when empty? cc)))

/added-performance ;/performance that need to be added from the
case base

(let-streams
((a (in (the /kept-performance)))

(b (fby (the /input-performance) (remove a b))))
((return-when empty? b)))

/trial
(list zprovide_space_for_the_passengers zprovide__space_for__the__lugga
ge)

214

:search-performance ;;search the added-performanc provided by
which subcases

(let-streams
((aa (in (the :added-performance)))

(bb (let-streams
((a (in-tree (the :case-base)))
(al (the-object a :type))
(b (defaulting (the-object a :performance)))
(equal? (equal (list aa) b))
(c (collect-if! equal? al)))

((return-when empty? c))))
(cc (collect! (list aa bb))))

((return-when empty? cc)))
((:PROVIDE_SPACE_FOR_THE_PASSENGERS (PC001
PC003)) (:PROVIDERSPACE_FOR_THE_LUGGAGE (LC001 LC003)))

:added-subcases ;;sort the subcases to be added to the
retrieved case

(let-streams
((a (in (the :search-performance)))

(al (first a))
(a2 (second a))
(b (first a2))
(c (collect! (list al b))))

((return-when empty? c)))
((:PROVIDE_SPACE_FOR_THE_PASSENGERS PC001)
(:PROVIDE_SPACE__FOR_THE_LUGGAGE LC001))

:kept-performance-and-subcases
(let-streams

((aa (in (the :retrieved-case-subcases)))
(aal (first aa))
(aa2 (second aa))
(bb (member aal (the :input-performance)))
(cc (collect-if! bb (list (defaulting aal) aa2))))

((return-when empty? cc)))

:adapted-subcases-list (append (the :added-subcases) (the :kept-
performance-and-subcases))

:sort-adapted-subcases-list
(let-streams

((a (in (the :input-performance)))
(b (let-streams

((bl (in (the :adapted-subcases-list)))
(bll (first bl))
(bl2 (second bl))
(match? (equal a bll))
(b3 (collect-if! match? bl2)))

((return-when empty? b3))))
(c (collect! b)))

((return-when empty? c)) (a b c))

:sort-adapted-subcases-list-2
(let-streams

((a (in (the :sort-adapted-subcases-list)))
(b (stream-append a)))

((return-when empty? b)))

215

GOAL-ORIENTED-ADAPATION

:s-review-goals (the :retrieved-case rcorporate-
goals) ;;((:MINIMISE :VOLUME :C) (:MAXIMISE :COMFORT :C)
(:MAXIMISE :VISUALISATION :C))

:review-goals (the :retrieved-case :corporate-goals)
:review-individual-goals

goals)
:input-goals-propagation

((a
(b

goals)))

(the : retrieved-case :find-individual-

(let-streams
(in (the :input-goals)))
(let-streams

((aa (in (the :review-individual-

(bb (lastcar aa))
(bbl (symbol-name bb))
(bb2 (char bbl 1))
(aal (char a 1))
(cc (equal aal bb2))
(dd (collect-if! cc aa nil)))

((return-when empty? dd))))
(c (collect! b)))

((return-when empty? c)))
:reform-igp (let-streams

((a (in (the :input-goals-propagation)))
(b (stream-append a)))

((return-when empty? b)))

:find-conflict (let-streams
((a (in (the :reform-igp)))
(al (first a))
(a2 (second a))
(a3 (nth 2 a))
(b (remove a (the :reform-igp)))
(c (let-streams

((aa (in b))
(aal (first aa))
(aa2 (second aa))
(aa3 (nth 2 aa))
(conflict? (and (and (equal aal al) (equal

aa3 a3)) (not (equal aa2 a2))))
(bb (collect-if! conflict? (list aa a) nil))
((return-when empty? (remove nil bb)))))

(d (collect! c)))
((return-when empty? (remove nil d))))

:reform-find-conflict (let-streams
((a (in (the :find-conflict)))
(b (stream-append a)))

((return-when empty? b)))
:reform-find-conflict-2 (let-streams

((a (in (the :reform-find-conflict)))
(b (stream-append a)))

((return-when empty? b)))
:simplified-goals (let-streams

((a (in (the :reform-find-conflict-2)))
(b (fby (the :reform-igp) (remove a b))))

((return-when empty? b))))

:value-in-sg (let-streams

216

((a (in (the :simplified-goals)))
(al (first a))
(a2 (second a))
(a3 (nth 2 a))
(b (let-streams

((aa (in-tree (the :retrieved-case)))
(aal (the-object aa :name-for-display))
(bb (equal al aal))
(dd (collect-if! bb (the-object aa a3) nil)))

((return-when empty? (remove nil dd))) (a al
aal bb)))

(c (collect! (append (list al a2 a3) b))))

((return-when empty? c)))

:find-substitution (let-streams
((a (in (the :value-in-sg)))
(al (first a))
(a2 (second a))
(a3 (nth 2 a))
(a4 (nth 3 a))
(b (let-streams

((aa (in-tree (the :case-base)))
(aal (the-object aa :name-for-display))
(bbl (equal al aal))
(aa2 (the-object aa a3))
(bb2 (if bbl (and (> aa2 a4) (equal

a2 :maximise)) nil))
(bb3 (if bbl (and (< aa2 a4) (equal

a2 :minimise)) nil))
(aa4 (the-object aa :type))
(cc (collect-if! (or bb2 bb3) (list aal

aa4))))
((return-when empty? cc))))

(c (collect! b)))
((return-when empty? (remove nil c))))

:reform-substitution (let-streams
((a (in (the :find-substitution)))
(al (first a))
(b (collect! al)))

((return-when empty? b)))

:rs-performance (let-streams
((a (in (the :reform-substitution)))

(al (first a))
(b (let-streams

((aa (in-tree (the :retrieved-case)))
(aal (the-object aa :name-for-display))
(aa2 (defaulting (the-object

aa .’performance)))
(bb (equal aal al))
(cc (collect-if! bb aa2)))

((return-when empty? cc))))
(c (collect! (append (list a) b))))

((return-when empty? c)))

:reform-rsp (let-streams
((a (in (the :rs-performance)))
(al (first a))

217

)

(a2 (second a))
(b (collect! (append al a2))))

((return-when empty? b)))

:parts
((case-for-display

:type (cond ((equal (the :retrieve-or-adapt) :retrieve
'case-for-goal-oriented-adaptation)
((and (equal (the :retrieve-or-adapt)

(equal (the :adaptation-method)
revision))

:retrieve-and-adapt)
:performance-

1case-for-adaptation)
((and (equal (the :retrieve-or-adapt)

(equal (the :adaptation-method)
'case-for-goal-oriented-adaptation))

)

)

:retrieve-and-adapt)
:goal-oriented))

:pseudo-parts
(

(retrieved-case
:type (the :find-type))
(case-base :type case-base)

)

(defpart case-for-adaptation (box)
:attributes
(:functions (the-object (make-part Tcbr) :retrieved-case :functions)
:function-relationship (the-object (make-part 'cbr) :retrieved-

case :function-relationship)
:function-model (append (the :functions) (the :function-

relationship))
:width (max (the :engine-compartment :width) (the rpassenger-

cabin :width) (the :luggage-compartment :width))
: length (+ (the :engine-compartment :length) (the rpassenger-

cabin : length) (the :luggage-compartment :length))
rheight (max (the :engine-compartment rheight) (the rpassenger-

cabin rheight) (the rluggage-compartment rheight))
rear-type (the-object (make-part 'cbr) rretrieved-case rear-type)
rwheelbase (the-object (make-part 'cbr) rretrieved-case rwheelbase)
rfronttrack (the-object (make-part 'cbr) rretrieved-

case r fronttrack)
:reartrack (the-object (make-part 'cbr) rretrieved-case rreartrack)
rweight (the-object (make-part 'cbr) rretrieved-case rweight)
rfuel-consumption (the-object (make-part 'cbr) rretrieved-

case rfuel-consumption)
rtop-speed (the-object (make-part 'cbr) rretrieved-case rtop-speed)
racceleration (the-object (make-part 'cbr) retrieved-

case :acceleration)
:behaviour-feature

(list (the :length) (the :width) (the :height)
(the :wheelbase) (the rfronttrack) (the rreartrack))

rfunction-feature (list (the rear-type) (the rfuel-consumption)
(the rtop-speed) (the racceleration))

rstructure-feature (list (the rweight))
rfeatures (append (the rbehaviour-feature) (the rfunction-feature)

(the rstructure-feature))
r performance

218

(let-streams
((aa (in (the rchildren)))
(bb (the-object aa :performance))
(cc (collect! (defaulting bb ()))))

((return-when empty? cc)))
:sub-relations
(let-streams

((aa (in (the :children)))
(bb (the-object aa :name-for-display))
(cc (collect! bb)))

((return-when empty? cc)))
)

:report-attributes
(:vrml-out
(write-vrml-file (list self)
"f:/carbody.wrl"
:specified-planarity 0.1
:specified-linearity 0.1
:camera-on? t))

:parts
((engine-compartment

:type (first (the-object (make-part ’cbr) :sort-adapted-subcases-
list-2))

:position (:bottom 0.0))
(passenger-cabin
:type (second (the-object (make-part 'cbr) :sort-adapted-

subcases-list-2))
position (:front (:from (the :engine-compartment) (the rengine-

compartment :length))))
(luggage-compartment
:type (if (equal (third (the-object (make-part 'cbr) rsort-

adapted-subcases-list-2)) nil) 'null-part
(third (the-object (make-part 'cbr) :sort-adapted-subcases-

list-2)))
:position (:front (:from (the :passenger-cabin) (the rpassenger-

cabin :length)) :bottom 0.0))
)

)

(defpart case-for-goal-oriented-adaptation (box)
:attributes
(: functions (the-object (make-part 'cbr) :retrieved-case :functions)
:function-relationship (the-object (make-part 'cbr) :retrieved-

case :function-relationship)
:function-model (append (the :functions) (the :function-

relationship))
:width (max (the :engine-compartment :width) (the passenger-

cabin :width) (the :luggage-compartment :width))
:length (+ (the :engine-compartment :length) (the rpassenger-

cabin :length) (the :luggage-compartment :length))
rheight (max (the rengine-compartment rheight) (the rpassenger-

cabin rheight) (the rluggage-compartment rheight))
rear-type (the-object (make-part 'cbr) rretrieved-case rear-type)
rwheelbase (the-object (make-part 'cbr) rretrieved-case rwheelbase)
rfronttrack (the-object (make-part 'cbr) rretrieved-

case rfronttrack)
rreartrack (the-object (make-part 'cbr) rretrieved-case rreartrack)
rweight (the-object (make-part 'cbr) rretrieved-case rweight)

219

:fuel-consumption (the-object (make-part ’cbr) :retrieved-
case :fuel-consumption)

:top-speed (the-object (make-part 'cbr) :retrieved-case :top-speed)
:acceleration (the-object (make-part 'cbr) :retrieved-

case :acceleration)
:behaviour-feature

(list (the : length) (the :width) (the :height)
(the rwheelbase) (the rfronttrack) (the rreartrack))

rfunction-feature (list (the rear-type) (the rfuel-consumption)
(the rtop-speed) (the :acceleration))

rstructure-feature (list (the rweight))
rfeatures (append (the rbehaviour-feature) (the rfunction-feature)

(the rstructure-feature))
r performance
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rperformance))
(cc (collect! (defaulting bb ()))))

((return-when empty? cc)))

rcheck-ec (equal (first (the-object (make-part 'cbr) rretrieved-
case rsub-relations))

r engine-compartment)
rcheck-pc (equal (second (the-object (make-part 'cbr) rretrieved-

case rsub-relations))
rpassenger-cabin)

rcheck-lc (equal (defaulting (nth 2 (the-object (make-part
'cbr) rretrieved-case rsub-relations)))

rluggage-compartment)
r sub-relations
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rname-for-display))
(cc (collect! bb)))

((return-when empty? cc)))

)

r report-attributes
(r vrml-out
(write-vrml-file (list self)
"f r/carbody.wr1"
rspecified-planarity 0.1
rspecified-linearity 0.1
r camera-on? t))

r parts
((engine-compartment

rtype (if (the rcheck-ec) 'ecgoal 'null-part)
rposition (rbottom 0.0))
(passenger-cabin
rtype (if (the rcheck-pc) 'pegoal 'null-part)
rposition (rfront (:from (the rengine-compartment) (the rengine-

compartment rlength))))
(luggage-compartment
rtype (if (the rcheck-lc) 'legoal 'null-part)
rposition (rfront (rfrom (the rpassenger-cabin) (the rpassenger-

cabin rlength)) rbottom 0.0))
)

)

220

(defpart ecgoal (box)
:attributes
(:width (the-object (make-part 'cbr) :retrieved-case rengine-

compartment :width)
: length (the-object (make-part ’cbr) :retrieved-case rengine-

compartment :length)
:height (the-object (make-part 'cbr) :retrieved-case rengine-

compartment rheight)
rperformance (list rprovide_space_for_the_engine)
:goals (list (the :G1-G1) (the :G3-G1))
:G1-G1 (list rminimise rvolume :c :G1)
:G3-G1 (list rminimise rlength ri rG3)
rcheck-bonnet (let-streams

((a (in (the-object (make-part 'cbr) rreform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_top_cover_for_the_engine_compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
rcheck-bonnet-2 (let-streams

((a (in-tree (the-object (make-part
'cbr) rretrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_top_cover_for_the_engine_compartment)))
(c (collect-if! b al)))

((return-when empty? (first c))))
r check-rightfrontwing (let-streams

((a (in (the-object (make-part 'cbr) rreform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_right_side_cover_for_the_engine__compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
r check-rightfrontwing-2 (let-streams

((a (in-tree (the-object (make-part
'cbr) r retrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_right_side_cover_for_the_engine_compartment)))
(c (collect-if! b al)))
((return-when empty? (first c))))

r check-leftfrontwing (let-streams
((a (in (the-object (make-part 'cbr) rreform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_left_side_cover_for_the__engine__compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
r check-leftfrontwing-2 (let-streams

((a (in-tree (the-object (make-part
'cbr) rretrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_left_side_cover_for_the_engine_compartment)))

221

(c (collect-if! b al)))
((return-when empty? (first c))))

rcheck-frontpanel (let-streams
((a (in (the-object (make-part ’cbr) :reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 :provide_front_cover_for_the_engine__compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
:check-frontpanel-2 (let-streams

((a (in-tree (the-object (make-part
'cbr) :retrieved-case)))

(al (the-object a :type))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_front__cover__for_the_engine_compartment)))
(c (collect-if! b al)))

((return-when empty? (first c))))
:goal-oriented? (equal (the-object (make-part 'cbr) radaptation-

method) :goal-oriented)
:sub-relations
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rname-for-display))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))

r report-attributes
(r vrml-out
(write-vrml-file (list self)
"fr/engine-compartment.wrl"
rspecified-planarity 0.1
rspecified-linearity 0.1
r camera-on? t))

rparts
((bonnet rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-bonnet)) ' t))
(second (the rcheck-bonnet))

(the rcheck-bonnet-2))) ; top_surface
(rightfrontwing rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-rightfrontwing)) 't))
(second (the rcheck-rightfrontwing))

(the rcheck-rightfrontwing-2)))
(leftfrontwing rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-leftfrontwing)) 't))
(second (the rcheck-leftfrontwing))

(the rcheck-leftfrontwing-2)))
(frontpanel rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-frontpanel)) 't))
(second (the rcheck-frontpanel))
(the rcheck-frontpanel-2)))))

(defpart pcgoal (box)
r attributes
(rwidth (the-object (make-part 'cbr) rretrieved-case rpassenger-

cabin rwidth)
rlength (the-object (make-part 'cbr) rretrieved-case rpassenger-

cabin rlength)

222

:height (the-object (make-part 'cbr) :retrieved-case rpassenger-
cabin rheight)

rperformance (list rprovide_space_for_the_passengers)
rgoals (list (the rGl-G2) (the rG2-Gl))
rGl-G2 (list rminimise rvolume rc rGl)
rG2-Gl (list rmaximise rvolume rc rG2)
rcheck-roofpanel (let-streams

((a (in (the-object (make-part 'cbr) rreform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_top_cover_for_the_passenger_cabin))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
rcheck-roofpanel-2 (let-streams

((a (in-tree (the-object (make-part
'cbr) r retrieved-case)))

(al (the-object a rtype)(the-object (make-part
’lcgoal) rleftrearwing))

(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_top_cover_for_the_passenger_cabin)))
(c (collect-if! b al)))

((return-when empty? (first c))))
rcheck-rightside (let-streams

((a (in (the-object (make-part 'cbr) rreform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_right_side_cover_for_the_passenger_cabin))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
rcheck-rightside-2 (let-streams

((a (in-tree (the-object (make-part
'cbr) rretrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_right_side_cover__for_the__passenger_cabin)))
(c (collect-if! b al)))
((return-when empty? (first c))))

rcheck-leftside (let-streams
((a (in (the-object (make-part 'cbr) rreform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_left_side_cover_for_the_passenger_cabin))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
rcheck-leftside-2 (let-streams

((a (in-tree (the-object (make-part
'cbr) r retrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_left_side_cover_for_the_passenger_cabin)))
(c (collect-if! b al)))

((return-when empty? (first c))))
rgoal-oriented? (equal (the-object (make-part 'cbr) radaptation-

method) rgoal-oriented)

223

: sub-relations
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa :name-for-display))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))

:report-attributes
(:vrml-out
(write-vrml-file (list self)
"f:/paasenger-cabin.wri"
:specified-planarity 0.1
: specified-linearity 0.1
:camera-on? t)

)

rparts
((roofpanel rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-roofpanel)) 't))
(second (the rcheck-roofpanel))

(the rcheck-roofpanel-2)))
(rightside rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-rightside)) 't))
(second (the rcheck-rightside))

(the rcheck-rightside-2)))
(leftside rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-leftside)) *t))
(second (the rcheck-leftside))
(the rcheck-leftside-2)))))

(defpart lcgoal (box)
r attributes
(rwidth (the-object (make-part 'cbr) rretrieved-case rluggage-

compartment rwidth)
rlength (the-object (make-part 'cbr) rretrieved-case rluggage-

compartment rlength)
rheight (the-object (make-part 'cbr) rretrieved-case rluggage-

compartment rheight)
rperformance (list rprovide_space_for_the__luggage)
rgoals (list (the rGl-G3))
rGl-G3 (list rminimise rvolume rc rGl)
rcheck-lcdoor (let-streams

((a (in (the-object (make-part 'cbr) rreform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_top__cover_for_the_luggage_compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
rcheck-lcdoor-2 (let-streams

((a (in-tree (the-object (make-part
'cbr) rretrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_top_cover_for_the_luggage_compartment)))
(c (collect-if! b al)))

((return-when empty? (first c))))
r check-rightrearwing (let-streams

224

((a (in (the-object (make-part ’cbr) :reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 :provide_right_side__cover_for_the_luggage_compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
:check-rightrearwing-2 (let-streams

((a (in-tree (the-object (make-part
'cbr) :retrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_right_side_cover_for_the_luggage_compartment)))
(c (collect-if! b al)))
((return-when empty? (first c))))

rcheck-leftrearwing (let-streams
((a (in (the-object (make-part ’cbr) rreform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide__left_side_cover_for_the_luggage_compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
r check-leftrearwing-2 (let-streams

((a (in-tree (the-object (make-part
’cbr) rretrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide__left_side_cover_for_the_luggage_compartment)))
(c (collect-if! b al)))
((return-when empty? (first c))))

rcheck-rearpanel (let-streams
((a (in (the-object (make-part ’cbr) rreform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide__back_cover_for_the_luggage_compartment))
(d (collect-if! c (list c a2) nil)))

((return-when empty? (first d))))
rcheck-rearpanel-2 (let-streams

((a (in-tree (the-object (make-part
’cbr) rretrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_back_cover_for_the_luggage_compartment)))
(c (collect-if! b al)))

((return-when empty? (first c))))
rgoal-oriented? (equal (the-object (make-part ’cbr) radaptation-

method) rgoal-oriented)

r sub-relations
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rname-for-display))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))

225

:report-attributes
(:vrml-out
(write-vrml-file (list self)
"f:/luggage-compartment.wrl"
:specified-planarity 0.1
:specified-linearity 0.1(the-object (make-part

'lcgoal) :leftrearwing)
:camera-on? t)
)

:parts
((lcdoor :type (if (and (the :goal-oriented?)

(equal (first (the :check-lcdoor)) 't))
(second (the :check-lcdoor))

(the :check-lcdoor-2)))
(rightrearwing rtype (if (and (the :goal-oriented?)

(equal (first (the :check-rightrearwing)) 't))
(second (the :check-rightrearwing))

(the :check-rightrearwing-2)))
(leftrearwing rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-leftrearwing)) 't))
(second (the rcheck-leftrearwing))

(the rcheck-leftrearwing-2)))
(rearpanel rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-rearpanel)) !t))
(second (the rcheck-rearpanel))
(the rcheck-rearpanel-2)))))

226

References

Agarwal, M. & Cagan, J. 2000. On the use o f shape grammars as expert systems for

geometry-based engineering design. Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, Vol.14, pp. 431-439.

Ahmed, S. 2005. Encouraging reuse o f design knowledge: a method to index

knowledge. Design studies, Vol.26, pp. 565-592.

Aleixos, N., Company, P. & Contero, M. 2004. Integrated modeling with top-down

approach in subsidiary industries. Computers in Industry, Vol.53(l), pp. 97-116.

Al-Hakim, L., Kusiak, A. & Mathew, J. 2000. A graph-theoretic approach to

conceptual design with functional perspectives. Computer-Aided Design, Vol.32, pp.

867-875.

Alisantoso, D., Khoo, L. P. & Lu, W. F. 2005. Early design analysis using rough set

theory. 1st Intelligent Production Machines and Systems (I*PROMS) Virtual

Conference pp. 243-248.

Al-Shihabi, T. & Zeid, I. 1998. A design-plan-oriented methodology for applying

case-based adaptation to engineering design. Artificial Intelligence for Engineering

Design, Analysis and Manufacturing, Vol. 12, pp. 463-478.

Altshuller, G. S. 1969. Algorithm o f invention. Moscow worker, Moscow.

Altshuller, G. S. 1984. Creativity as an exact science: The theory o f the solution of

inventive problems. Gordon and Breach Science Publishing, New York.

227

Andersson, K. 1993. A Vocabulary for Conceptual Design - Part o f a Design Grammar.

IFIP WG-5.3 Workshop on Formal Design Methods for Computer-Aided-Design

Tallinn, Estonia, pp. 139-152.

Anthony, L., Regli, W. C., John, J. E. & Lombeyda, S. V. 2001. An approach to

capturing structure, behavior, and function o f artifacts in computer-aided design.

Journal of Computing and Information Science in Engineering, Vol. 1(2), pp. 186-192.

Arangarasan, R., Dani, T. H., Chu, C.-C., Liu, X. & Gadh, R. 2000. Geometric

Modeling in Multi-Modal, Multi-Sensory Virtual Environment. Proceedings o f 2000

NSF Design and Manufacturing Research Conference Vancouver, Canada.

Arciszewski, T., Michalski, R. & Wnek, J. 1995. Constructive induction: The key to

design creativity. Third International Round-Table Conference on Computational

Models o f Creative Design Heron Island, Queensland, Australia, pp. 397-426.

Bergmann, R. & Wilke, W. 1995. Learning abstract planning cases. European

Conference on Machine Learning 1995 Heraklion, Greece, pp. 55-76.

Bergmann, R. & Wilke, W. 1998. Towards a new formal model o f transformational

adaptation in case-based reasoning. Proceeding o f the 13th European Conference on

Artificial Intelligence 1998 pp. 53-57.

Bespalov, D., Regli, W. C. & Shokoufandeh, A. 2003. Reeb graph based shape

retrieval for CAD. DETC'03, 2003 ASME Design Engineering Technical Conferences

Chicago, Illinois, USA.

Bilgic, T. & Fox, M. S. 1996. Constraint-based retrieval o f engineering design cases:

Context as constraints. Artificial Intelligence in Design '96 Stanford University.

228

Kluwer Academic Publishers, pp. 269-288.

Bo, Y. & Salustri, F. A. 1999. Function modeling based on interactions o f mass,

energy and information. Proceedings o f the 12th International Florida Artificial

Intelligence Research Society Conference Sanibel Island, USA. pp. 384-388.

Borst, W. N. 1997. Construction of engineering ontologies for knowledge sharing and

reuse. PhD Thesis. University of Twente, Enschede, Netherlands.

Bridge, D. G. 1998. Defining and combining symmetric and asymmetric similarity

measures. Proceedings of the 4th European Workshop on Case-based Reasoning,

Berlin, pp. 52-63.

Campbell, M. I., Cagan, J. & Kotovsky, K. 1999. A-Design: An agent-based approach

to conceptual design in a dynamic environment. Research in Engineering Design,

Vol. 11(3).

Castano, S., Antonellis, V. D., Fugini, M. G. & Pemici, B. 1998. Conceptual schema

analysis: techniques and applications. ACM Transactions on Database Systems 1998,

Vol.23(3), pp. 286-333.

Chen, L., Song, Z. & Feng, L. 2004. Internet-enabled real-time collaborative

assembly modeling via an e-Assembly system: status and promise. Computer-Aided

Design, Vol.36, pp. 835-847.

Cicirello, V. & Regli, W. C. 2001. Machining feature-based comparisons o f

mechanical parts. SMI 2001: International Conference on Shape Modelling and

Applications Genoa, Italy. IEEE Computer Society Press, pp. 176-185.

Coyne, R. D., Rosenman, M. A., Radford, A. D., Balachandran, M. & Gero, J. S. 1990.

229

Knowledge-based design systems. Addison-Wesley.

Cvetkovic, D. & Parmee, I. 2002. Agent-based support within an interactive

evolutionary design system. Artificial Intelligence for Engineering Design, Analysis

and Manufacturing, Vol. 16, pp. 331-342.

Daniel, J., Medland, T. & Newnes, L. 2004. A study o f methodologies for the design

of medical devices. Proceedings o f the 5th International Conference on Integrated

Design and Manufacturing in Mechanical Engineering 2004 Bath, UK.

Deng, Y.-M. 2002. Function and behavior representation in conceptual mechanical

design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,

Vol. 16, pp. 343-362.

Deng, Y.-M., Britton, G. A. & Tor, S. B. 2000. Constraint-based functional design

verification for conceptual design. Computer-Aided Design, Vol.32, pp. 889-899.

Denkena, B., Woelk, P.-O. & Apitz, R. 2005. Knowledge-based manufacturing within

the extended enterprise. Proceedings o f the 1st Intelligent Production Machines and

Systems (I*PROMS) Virtual International Conference Cardiff, UK. Elsevier, Oxford,

pp. 105-110.

Dezfuli, M. R. D. 2001. A framework for value-based conceptual engineering design.

PhD Thesis, Mechanical Engineering, University o f Southern California, LA, USA.

Ding, L. & Gero, J. S. 2001. The emergence o f the representation o f style in design.

Environment and Planning B: Planning and Design, Vol.28(5), pp. 707-731.

Dym, C. L. 1994. Engineering design: A synthesis o f views. Cambridge University

Press, Cambridge, UK.

230

Elinson, A. & Nau, D. S. 1997. Feature-based similarity assessment of solid models.

4th ACM Symposium on Solid Modeling and Applications Atlanta, Georgia, pp.

297-310.

El-Mehalawi, M. & Miller, R. A. 2003. A database system o f mechanical components

based on geometric and topological similarity. Part II: indexing, retrieval, matching,

and similarity assessment. Computer-Aided Design, Vol.35(l), pp. 95-105.

Fiorentino, M., de Amicis, R., Monno, G. & Stork, A. 2002. Spacedesign: a mixed

reality workspace for aesthetic industrial design. In Proceeding o f the IEEE and ACM

International Symposium on Mixed and Augmented Reality, pp. 86-96.

Francois, A. R. J. & Medioni, G. G 1996. Generic shape learning and recognition.

Object Representation in Computer Vision II Cambridge, U.K. pp. 287-320.

French, M. J. 1985. Conceptual design for engineers. The Design Council and

Springer-Verlag, London, UK.

Fuh, J. Y. H. & Li, W. D. 2005. Advances in collaborative CAD: the-state-of-the art.

Computer-Aided Design, Vol.37, pp. 571-581.

Gero, J. S. 1996. Computers and creative design. The Global Design Studio, National

University o f Singapore, pp. 11-19.

Gero, J. S. & Jupp, J. R. 2003. Feature-based qualitative representations of

Architectural plans. Proceedings o f the International Conference o f the Association

for Computer Aided Architectural Design Research in Asia 2003 Rangsit University,

Bangkok, pp. 117-128.

231

Gero, J. S. & Kannengiesser, U. 2004. The situated function-behaviour-structure

framework. Design Studies, Vol.25, pp. 373-391.

Gero, J. S. & Tsai, J.-H. 2004. Application o f bond graph models to the representation

of buildings and their use. Proceedings o f the 9th International Conference of the

Association for Computer Aided Architectural Design Research in Asia 2004 Seoul,

Korea, pp. 373-385.

Gourashi, N. S. E.-D. 2003. Knowledge-based conceptual design o f robot grippers.

PhD Thesis, Department o f System Engineering, Cardiff University, Cardiff.

Hayes, E. E. & Regli, W. C. 2001. Integrating design process knowledge with CAD

models. DETC'2001 ASME Design Engineering Technical Conferences & Computers

and Information in Engineering Conference Pittsburgh, Pennsylvania.

Hilaga, M., Shinagawa, Y., Kohmura, T. & Kunii, T. 2001. Topology matching for

fully automatic similarity estimation o f 3D shapes. SIGGRAPH 2001 Los Angeles,

USA. pp. 203-212.

Horvath, I., Vergeest, J. S. M. & Kuczogi, G. 1998. Development and application of

design concept ontologies for contextual conceptualization. Proceedings of 1998

ASME Design Engineering Technical Conferences Atlanta, Georgia. ASME, New

York.

Hsu, W. & Liu, B. 2000. Conceptual design: issues and challenges. Computer-Aided

Design, Vol.32, pp. 849-850.

Hsu, W. & Woon, I. M. Y. 1998. Current and future research in the conceptual design

of mechanical products. Computer-Aided Design, Vol.30(5), pp. 377-389.

232

Hu, X., Pang, J., Pang, Y., Atwood, M., Sun, W. & Regli, W. C. 2000. A survey of

design rationale systems: Approaches, representation, capture and retrieval.

Engineering with Computers, Vol. 16(3-4), pp. 209-235.

Huang, G. Q., Lee, S. W. & Mak, K. L. 2003. Collaborative product definition on the

Internet: a case study. Journal o f Materials Processing Technology, Vol.6721, pp. 1-7.

Hurst, K. S. 1999. Engineering design principles. Arnold, London.

Iyer, N., Lou, K., Jayanti, S., Kalyanaraman, Y. & Ramani, K. 2003. Early results

from 3DESS: A 3D engineering shape search system. International Symposium on

Product Lifecycle Management (PLM 03), Indian Institute o f Science, Bangalore,

India.

Jarmulak, J., Craw, S. & Rowe, R. 2001. Using Case-Base Data to Learn Adaptation

Knowledge for Design. Proceedings o f the 17th IJCAI Conference pp. 1011-1016.

Jupp, J. R. & Gero, J. S. 2004. Qualitative representation and reasoning in design: A

hierarchy o f shape and spatial languages. Visual and Spatial Reasoning in Design III

p p .139-162.

Juster, N. P., Maxfield, J., Dew, P. M., Taylor, S., Fitchie, M., Ion, W. J., Zhao, J. &

Thompson, M. 2001. Predicting product aesthetic quality using virtual environments.

Journal o f Computing and Information Science in Engineering, Vol.l, pp. 105-112.

Keane, M. T., Smyth, B. & O’Sullivan, J. 2001. Dynamic similarity: A processing

perspective on similarity. In: Hahn, M.U. ed. Similarity & Categorisation. Oxford:

Oxford University Press, pp. 179-192.

Kicinger, R. 2004. Emergent engineering design: Design creativity and optimality

233

inspired by nature. School o f Information Technology and Engineering, George

Mason University, Fairfax, VA, USA.

Kicinger, R., Arciszewski, T. & Jong, K. D. 2005a. Emergent Designer: An integrated

research and design support tool based on models o f complex systems. International

Journal of Information Technology in Construction, Vol. 10, pp. 329-347.

Kicinger, R., Arciszewski, T. & Jong, K. D. 2005b. Evolutionary computation and

structural design: A survey o f the state-of-the-art. Computers and Structures, Vol.83,

pp. 1943-1978.

Kicinger, R., Arciszewski, T. & Jong, K. D. 2005c. Generative design in structural

engineering. 2005 ASCE International Conference on Computing in Civil Engineering,

Cancun, Mexico. American Society o f Civil Engineers Press, Reston, VA.

Kicinger, R., Arciszewski, T. & Jong, K. D. 2005d. Parameterized versus Generative

Representations in Structural Design: An Empirical Comparison. Genetic and

Evolutionary Computation Conference Washington, DC.

Kima, K.-Y., Wang, Y., Muogboh, O. S. & Nnaji, B. O. 2004. Design formalism for

collaborative assembly design. Computer-Aided Design, Vol.36, pp. 849-871.

Kitamura, Y. & Mizoguchi, R. 2003. Ontology-based description o f functional design

knowledge and its use in a functional way server. Expert Systems with Applications,

Vol.24, pp. 153-166.

Kroll, E., Condoor, S. S. & Jansson, D. G. 2001. Innovative conceptual design.

Cambridge University Press, Cambridge, UK.

KTI 2001. The ICAD System (Release 8.0.0) user's manual. Lexington, MA, USA.

234

Le, S. Q., Ho, T. B. & Phan, T. T. H. 2004. A Novel Graph-Based Similarity Measure

for 2D Chemical Structures. Genome Informatics, Vol. 15(2), pp. 82-91.

Leake, D. B., Bimbaum, L., Hammond, K., Marlow, C. & Yang, H. 1999. Integrating

information resources A case study o f engineering design support. International

Conference on Case-Based Reasoning 1999 Munich, Germany.

Leake, D. B. & Sooriamurthi, R. 2002. Automatically selecting strategies for

Multi-Case-Base Reasoning. European Conference on Case-Based Reasoning 2002:

Advances in Case-Based Reasoning Berlin. Springer Verlag, pp. 204-233.

Leake, D. B. & Sooriamurthi, R. 2003. Dispatching cases versus merging case-bases:

when MCBR matters. Proceedings o f the 16th International Florida Artificial

Intelligence Research Society Conference (FLAIRS-2003) St. Augustine, Florida, pp.

129-133.

Lee, J. 1997. Design rationale systems: Understanding the issues. AI in Design, IEEE.

Expert, pp. 78-85.

Liu, Y.-C., Bligh, T. & Chakrabarti, A. 2003. Towards an ’ideal' approach for concept

generation. Design Studies, Vol.24, pp. 341-355.

Maher, M. L., Balachandran, M. B. & Zhang, D. M. 1995. Case-based reasoning in

design. Lawrence Erlbaum, Mahwah, New Jersey.

Mann, D. L. 2002. Hands-on systematic innovation. CREAX Press, Belgium.

McCormack, J. P., Cagan, J. & Vogel, C. M. 2004. Speaking the Buick language:

capturing, understanding, and exploring brand identity with shape grammars. Design

235

Studies, Vol.25, pp. 1-29.

Nakakoji, K., Gross, M. D., Candy, L. & Edmonds, E. 2001. Tools, conceptual

frameworks, and empirical studies for early stages o f design. Conference on Human

Factors in Computing Systems archive, CHI '01 extended abstracts on Human factors

in computing systems Seattle, Washington, pp. 493-494.

Ng, K. W. 2006. A critical analysis o f current engineering design decision making

perspective. Proceedings o f the 2nd Intelligent Production Machines and Systems

(I*PROMS) Virtual International Conference Cardiff, UK.

Noy, N. F. & McGuinness, D. L. 2001. Ontology development 101: A guide to

creating your first ontology. Stanford University, Stanford, CA, Stanford Knowledge

Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics

Technical Report SMI-2001-0880.

Ohbuchi, R., Otagiri, T., Ibato, M. & Takei, T. 2002. Shape-similarity search of

three-dimensional models using parameterized statistics. Pacific Graphics 2002

Beijing, China, pp. 265-275.

O'Sullivan, B. A. 1999. Constraint-aided conceptual design. PhD Thesis, Department

o f Computer science, University College Cork, Ireland.

O'Sullivan, B. A. 2002. Constraint-aided conceptual design. Professional Engineering

Publishing Limited, London and Bury St Edmunds, UK.

Pahl, G. & Beitz, W. 1996. Engineering design: A systematic approach. The Design

Council and Springer Verlag, London.

Papadopoulos, A. N. & Manolopoulos, Y. 1999. Structure-based similarity search with

236

graph histograms. DEXA/IWOSS International Workshop on Similarity Search

Florence, Italy, pp. 174-178.

Pham, D. T., Gourashi, N. S. E.-D. & Eldukhri, E. E. 2005. Intelligent conceptual

design of robot grippers for assembly tasks. Proceedings of the 1st Intelligent

Production Machines and Systems (I*PROMS) Virtual Conference Cardiff, UK. pp.

321-326.

Pham, D. T. & Liu, H. 2006. A new TRIZ-based approach to design concept

generation. Proceedings o f the 4th International Conference on Manufacturing

Research Liverpool, pp. 371-376.

Pham, D. T., Liu, H. & Dimov, S. 2006. An I-Ching-TRIZ inspired tool for retrieving

conceptual design solutions. Proceedings o f the 2nd Intelligent Production Machines

and Systems (I*PROMS) Virtual International Conference Cardiff, UK.

Preston, M. & Mehandjiev, N. 2004. A framework for classifying intelligent design

theories. 2004 ACM workshop on Interdisciplinary software engineering research

Newport Beach, CA, USA. pp. 49-54.

Purvis, L. & Pu, P. 1995. Adaptation using constraint satisfaction techniques.

Proceedings o f the 1st International Conference on Case Based Reasoning, Berlin

LNAI Series, Springer Verlag, pp. 289-300.

Qian, L. & Gero, J. S. 1996. Function-behaviour-structure paths and their role in

analogy-based design. Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, Vol. 10, pp. 289-312.

Qin, X. & Regli, W. C. 2000. Applying case-based reasoning to mechanical bearing

design. DETC'OO 2000 ASM E Design Engineering Technical Conferences Baltimore,

237

Maryland.

Qin, X. & Regli, W. C. 2003. A study in applying case-based reasoning to engineering

design: Mechanical bearing design. Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, Vol. 17, pp. 235-252.

Renner, G. & Ekart, A. 2003. Genetic algorithms in computer aided design.

Computer-Aided Design, Vol.35, pp. 709-726.

Rivard, H. & Fenves, S. J. 2000. SEED-Config: A case-based reasoning system for

conceptual building design. Artificial Intelligence for Engineering Design, Analysis

and Manufacturing . Vol. 14, pp. 415-430.

Roozenburg, N. F. M. & Eekels, J. 1995. Product design: Fundamentals and methods.

John Wiley & Sons, Chichester.

Rosenman, M. 2000. Case-based evolutionary design. Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, Vol. 14, pp. 17-29.

Ryu, K. and Jung, M. 2003. Agent-based fractal architecture and modelling for

developing distributed manufacturing systems. International Journal o f Production

Research, Vol.41, pp. 4233-4255.

Ryu, K., Son, Y. & Jung, M. 2003. Modeling and specifications o f dynamic agents in

fractal manufacturing systems. Computers in Industry, Vol.52, pp. 161-182.

Salustri, F. A. 1996. A formal theory for knowledge-based product model

representation. Knowledge-Intensive CAD II: Proc. IFIP WG5.2 Workshop London.

Chapman & Hall, pp. 59-78.

238

Salustri, F. A. 2000. Towards a logical framework for engineering design processes.

4th IFIP TC5 WG5.2 Workshop on Knowledge Intensive CAD Italy, pp. 201-212.

Salustri, F. A. 2001. Using design patterns to promote multidisciplinary design.

Proceedings o f the 2001 CSME International Conference on Multi-disciplinary

Design Engineering Montreal, Canada.

Salustri, F. A. 2002. Mereotopology for product modelling: A new framework for

product modelling based on logic. Journal of Design Research, Vol.2(1).

Salustri, F. A. 2005. Using pattern languages in design engineering. ICED 2005

(CD-ROM) Melbourne, Australia.

Salustri, F. A. & Parmar, J. 2003. Visualising early product design information with

enhanced concept maps. 2003 International Conference on Engineering Design

Stockholm.

Saridakis, K. M., Dentsoras, A. J., Radel, P. A., Saridakis, V. G. & Exintari, N. V. 2006.

Neuro-fuzzy case-based design: An application in structural design. Proceedings of

the 2nd Intelligent Production Machines and Systems (I*PROMS) Virtual

International Conference Cardiff, UK.

Savransky, S. D. 2000. Engineering o f creativity: Introduction to TRIZ methodology

o f inventive problem solving. CRC Press, Boca Raton.

Seebohm, T. & Wallace, W. 1998. Rule-based representation o f design in architectural

practice. Automation in Construction, Vol.8, pp. 73-85.

Seo, K., Goodman, E. D. & Rosenberg, R. C. 2005. Design o f Air Pump System

Using Bond Graph and Genetic Programming Method. Proceedings o f the 2005

239

conference on Genetic and evolutionary computation Washington DC, USA. pp.

2215-2216.

Sequin, C. H. 2005. CAD tools for aesthetic engineering. Computer-Aided Design,

Vol.37, pp. 737-750.

Setchi, R. M., Lagos, N. & Dimov, S. S. 2005. Semantic modelling of product support

knowledge. Proceedings o f the 1st Intelligent Production Machines and Systems

(I*PROMS) Virtual Conference Cardiff, UK. pp. 275-280.

Sharma, M., Raja, V. & Fernando, T. 2006. Collaborative design review in a

distributed environment, the 2nd Intelligent Production Machines and Systems

(I*PROMS) Vritual International Conference Cardiff, UK.

Shyamsundar, N. & Gadh, R. 2002. Collaborative virtual prototyping o f product

assemblies over the Internet. Computer-Aided Design, Vol.34, pp. 755-768.

Smyth, B. & Cunningham, P. 1992. Deja Vu: A hierarchical case-based reasoning

system for software design. Proceedings o f the 10th European Conference on

Artificial Intelligence Vienna, Austria, pp. 587-589.

Smyth, B. & Keane, M. T. 1998. Adaptation-guided retrieval: questioning the

similarity assumption in reasoning. Artificial Intelligence, Vol. 104, pp. 1-45.

Sqalli, M. H., Purvis, L. & Freuder, E. C. 1999. Survey o f applications integrating

constraint satisfaction and case-based reasoning. Proceedings o f the 1st International

Conference and Exhibition on the Practical Application o f Constraint Technologies

and Logic Programming London.

Suh, N. P. 1990. The principles o f design. Oxford University Press, New York.

240

Sycara, K. P. 1998. Multiagent systems. AI magazine, Vol.19, pp. 79-92.

Szykman, S., Sriram, R. D. & Regli, W. C. 2001. The role of knowledge in

next-generation product development systems. Journal of computation and

information Science in Engineering, Vol. 1(1), pp. 3-11.

Tirpak, T. M., Daniel, S. M., LaLonde, J. D. & Davis, W. J. 1992. A note on a fractal

architecture for modelling and controlling flexible manufacturing systems. IEEE

Transactions on Systems, Man,and Cybernetics, Vol.22(3), pp. 564-567.

Umeda, Y. & Tomiyama, T. 1997. Functional reasoning in design. IEEE Expert,

Vol. 12(2), pp. 42-48.

Vancza, J. 1999. Artificial intelligence support in design: a survey. CIRP international

design seminar Dordrecht, Kluwer. pp. 57-68.

Waheed, A. & Adeli, H. 2005. Case-based reasoning in steel bridge engineering.

Knowledge-Based Systems, Vol. 18, pp. 37-46.

Wang, C., Horvath, I. & Vergeest, J. S. M. 2002a. Towards the reuse of shape

information in CAD. Tools and Methods o f Competitive Engineering 2002, Wuhan,

China, pp. 103-116.

Wang, L., Shen, W., Xie, H., Neelamkavil, J. & Pardasani, A. 2002b. Collaborative

conceptual design-state o f the art and future trends. Computer-Aided Design,

Vol.34(113), pp. 981-996.

Wamecke, H.-J. 1993. The fractal company. Springer-Verlag, Germany.

241

White, S. A. 1995. A framework for the development of domain specific design

support systems. 1 st World Conference on Integrated Design and Process Technology

Austin, Texas, USA. pp. 27-42.

Zavbi, R. & Duhovnik, J. 2000. Conceptual design of technical systems using

functions and physical laws. Artificial Intelligence for Engineering Design, Analysis

and Manufacturing, Vol. 14, pp. 69-83.

Zha, X. F. & Du, H. 2001. Mechanical systems and assemblies modeling using

knowledge-intensive Petri nets formalisms. Artificial Intelligence for Engineering

Design, Analysis and Manufacturing, Vol.15, pp. 145-171.

242

