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Thesis Summary

Engineering conceptual design is a knowledge-intensive process that generates solutions 

to a product specification. It is a process that can benefit from past experience o f similar 

designs. In reality however, designers often have limited time to build up the necessary 

experience and are, in any event, unlikely to become experts in all relevant fields. Hence 

there is a need to capture, store and reuse valuable knowledge. Currently available 

conventional CAD systems offer limited possibilities for the re-use o f existing designs. 

Techniques from the field o f Artificial Intelligence (AI) may be applied to aid the 

conceptual design phase, which is known as the area of intelligent computer-aided design.

The aim of this work is to identify and externalise design knowledge using a fractal-like 

model, to understand the role of design knowledge in conceptual design and to use design 

knowledge as a guide for every stage o f concept development. This research provides a 

framework for supporting conceptual design, which uses the techniques o f Case-Based 

Reasoning (CBR) and fractal theory, for reasoning about the design and development of 

computer-based design aids.

The framework is comprised of three parts. The first is case representation. This research 

proposes a new representation technique, Fractal-like Design Modelling (FDM), which 

integrates design knowledge in a graph-based form and has fractal-specific characteristics. 

The second is case retrieval. Based on FDM, the similarity between a new design and the 

existing designs is assessed by concurrently applying a feature-based similarity measure 

and a structure-based similarity measure. The third is case adaptation. With the help of 

fractal characteristics, an approach of adaptive design is developed by performance 

revision and by goal-oriented substitution. These three parts work together to achieve an 

automated, case-based, conceptual design method: Fractal-Based Re-design.
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Chapter 1

Introduction

1.1 Overview

This chapter briefly introduces the research presented in this thesis. The specific topic 

o f the current research is discussed. This is followed by the objectives o f the research. 

The chapter ends with a description o f the structure of the thesis.

1.2 Engineering design and product development

Engineering design is a systematic, intelligent generation and evaluation of 

specifications for artefacts whose form and function achieve stated objectives and 

satisfy specified constraints (Dym, 1994). Engineering design includes the roles of 

marketing, finance, planning, and overall management. There are many different 

models o f the engineering design process, but they all include the following elements 

in some form or another (Kroll et al., 2001).

>  A stage to identify and analyse a need prior to initiating conceptual design.

>  A conceptual design stage to create new ideas that satisfy the need.
l



> Activities through which a concept is turned into an overall product or system 

layout.

> A stage to finalise the design details.

Conceptual design is considered a very important phase of the product development 

life cycle. It is a process o f generating and implementing the fundamental ideas that 

characterise a product. Great opportunities exist at this stage. Conceptual design has a 

powerful impact on manufacturing productivity and product quality, as many 

manufacturing processes are indirectly determined at this stage. The concept 

generated at this stage affects the basic shape generation and material selection of the 

concerned product. It is difficult, or even impossible, to compensate for or to correct a 

poor design concept formulated at the conceptual design phase in the subsequent 

phase o f detailed design.

Computers, which have been widely used in many areas in engineering, e.g. 

simulations, analysis, and optimisation, have few applications at the conceptual 

design stage. This is because information at the early stage o f design is usually 

imprecise and incomplete, making it difficult to utilise computer-based systems. 

Artificial Intelligence (AI) is well suited to support conceptual design. The work in AI 

has the following directions: pursuing systemic and intellectual integration; building 

robots (both physical and computational); modelling rationality; supporting 

collaboration; enhancing communication; obtaining the broad reaches of knowledge



needed for intelligent action; deepening the mathematical foundations o f the field. As 

a result o f the application of AI techniques to conceptual design, an area o f research 

known as intelligent design has emerged. This area of research examines how to 

provide computer support for modelling and automating the cognitive processes and 

knowledge representations which engineers apply to design problems.

1.3 Research topic

Engineering conceptual design is a knowledge-intensive process that generates 

solutions to a product specification. It is a process that can benefit from past 

experience o f similar designs. In reality, however, designers often have little time to 

build up the necessary experience and are unlikely to become experts in all relevant 

fields. Hence, there is a need to capture, store and reuse valuable knowledge. At 

present, most common CAD systems can only help designers to construct geometric 

models step by step. They offer few possibilities for the reuse o f existing designs 

(Wang et al., 2002). The need for computational frameworks to enable engineering 

product development, by effectively supporting the formal representation, capture, 

retrieval and reuse o f product knowledge, becomes more critical (Szykman et al., 

2001).

Fractal theory, which has been adopted in the field of manufacturing system design 

and analysis (Wamecke, 1993), promises to help address these design representation
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and automation issues. The fractal structure has the potential to model combinations 

o f different types o f knowledge for different purposes, while the fractal specific 

characteristics can benefit the automation of the design process by providing design 

knowledge as a guide. This research was aimed at developing a systematic approach 

to intelligent design. In particular, the research was concerned with the application of 

case-based reasoning and fractal theory to conceptual design. It targeted the 

case-based design process and attempted to develop methods for providing computer 

support to automate it.

As the core o f the system, a comprehensive design case representation, called 

Fractal-like Design Modelling (FDM), has been introduced. The design model 

integrates various aspects o f design information, including knowledge related to 

design objects and design processes. Moreover, the design model has fractal 

characteristics, which can greatly benefit the process o f case-based reasoning. The 

model is employed to assess the similarity between a new design and the existing 

designs, and to adapt a retrieved design to suit a new situation. The similarity of 

design models is measured by considering both the features and the structures o f the 

design. The obtained design model is then adapted by the guidance o f the integrated 

design knowledge according to different purposes of re-design These include 

performance revision and goal-oriented substitution. In addition, the research also 

concerned user preference at every stage of the design process and attempted to 

develop a tool that can fulfil the designer’s requirements.

4



1.4 Research objectives

The main objectives o f this research were:

1) To identify and externalise design knowledge using a fractal-like model.

2) To understand the role of design knowledge in conceptual design.

3) To use design knowledge as a guide for every stage of concept development.

4) To provide a framework for supporting conceptual design, using the techniques o f 

case-based reasoning and fractal theory, for reasoning about design and 

development o f computer-based design aids.

1.5 Outline of the thesis

This thesis comprises six chapters and six appendices. The remainder o f its structure 

is as follows:

Chapter 2 reviews the background literature relevant to the work presented in the 

thesis.

Chapter 3 presents a fractal-like design modelling technique for representing the 

various aspects o f design knowledge in attributed graphs.

Chapter 4 describes an approach for measuring the similarity o f design models based

5



on the graph representation described in Chapter 3.

Chapter 5 addresses the fractal-based adaptation strategies and presents a systematic 

approach for automating the adaptive design.

Chapter 6 presents a case study demonstrating the application o f the proposed 

approach to a conceptual design problem.

Chapter 7 presents the conclusions o f the research and recommendations for further 

study.

Appendix A provides an overview o f the ICAD system for conceptual design. 

Appendix B gives the ICAD code for case representation.

Appendix C shows the ICAD code for the approach of graph-based similarity 

measure and case retrieval.

Appendix D lists the ICAD code for the adaptation approach o f performance 

retrieval.

Appendix E presents the ICAD code for the adaptation approach o f goal-oriented



substitution.

Appendix F contains the ICAD code for Fractal-Based Re-design, which integrates 

case retrieval, performance revision, and goal-oriented substitution.

7



Chapter 2

Literature Review

2.1 Overview

This chapter surveys the background literature relevant to the work presented in this 

thesis. The background o f conceptual engineering design is reviewed from four 

perspectives. First, engineering design as an essential activity of product development 

is reviewed. Next, the conceptual design stage as a part of the entire design process is 

highlighted. At the same time, some critical issues of intelligent engineering design 

are discussed. These include the modelling for conceptual design, concept generation, 

and concept selection. Then some AI techniques applied in design are reviewed. 

Case-Based Reasoning (CBR) techniques have been applied to many aspects o f the 

engineering design problem. This chapter also reviews the literature on the application 

o f CBR techniques to engineering design. It will be shown that, while CBR has been 

applied to many aspects of design, there is considerable scope for research into using 

CBR techniques to support the conceptual phase o f design. Finally, this chapter gives 

an introduction to fractal theory and its relevance to this research.



2.2 A review of conceptual design research

2.2.1 Engineering design

The UK-based Institution of Engineering Designers and the engineering design 

lecturer organisation SEED Ltd (Sharing Experience in Engineering Design) has 

defined engineering design as follows (Hurst, 1999).

“Engineering design is the total activity necessary to establish and define solutions to 

problems not solved before, or new solutions to problems which have previously been 

solved in a different way. The engineering designer uses intellectual ability to apply 

scientific knowledge and ensures the product satisfies an agreed market need and 

product design specification whilst permitting manufacture by the optimum method. 

The design activity is not complete until the resulting product is in use providing an 

acceptable level ofperformance and with clearly identified methods o f  disposal. ”

In other words, engineering design is such a process that uses scientific knowledge 

and methodologies to create an engineering product or a plan. An engineering design 

methodology provides knowledge including (Roozenburg & Eekels, 1995):

>  Models o f design and development processes, representing the structure of 

thinking and action in designing,

>  Methods and techniques to be used within these processes, and

9



> A system of concepts and corresponding terminology.

The majority o f the authors of the established design methodologies present the 

design activity as a linear process passing through a number o f discrete phases. For 

example, French (French, 1985) splits the design process into four main phases: 

analysis o f the problem, conceptual design, embodiment o f schemes, and detailing. 

These phases are conducted one after the other in a logical sequence that leads the 

designer from a need (or set o f requirements) to the final design solution. Feedback 

loops are often added to allow a return to previous phases if required (Daniel et al., 

2004).

Two widely accepted methodologies o f the engineering design process are discussed 

in this section.

Axiomatic design

Suh (Suh, 1990) argues that design involves four distinct aspects o f engineering and 

scientific endeavour:

>  The problem definition from a “fuzzy” array of facts and myths into a coherent 

statement o f the problem;

>  The creative process of devising a proposed physical embodiment of solutions;

>  The analytical process of determining whether the proposed solution is correct or

10



rational;

>  The ultimate check of the fidelity of the design product to the original perceived 

needs.

Axiomatic design defines the design process as the creation o f synthesised solutions 

that satisfy requirements by mapping within the four domains o f Customer Needs 

(CN), Functional Requirements (FR), Design Parameters (DP), and Process Variables 

(PV). The four-domain structure is schematically illustrated in Figure 2.1. As the 

mapping process is non-unique, the final outcome of the design depends on a 

designer’s individual creative process. Two design axioms are introduced as the 

principles that the mapping technique must satisfy to produce a good design, and as a 

basis for comparing and selecting designs (Suh, 1990):

> Axiom 1 The Independence Axiom —  maintain the independence of FRs.

>  Axiom 2 The Information Axiom —  minimise the information content o f the 

design.

Axiom 1 states that during the design process, when going from the FRs in the 

functional domain to the DPs in the physical domain, the mapping must be such that a 

perturbation in a particular DP must affect only its referent FR. Axiom 2 states that, 

among all the designs that satisfy the Independence Axiom (Axiom 1), the one with 

minimum information content is the best design. Based on the two axioms of design, a 

number of derived corollaries are discussed in Suh’s book (Suh, 1990).

l i



As shown in Figure 2.1, axiomatic design views the design process as a stepwise 

decomposition process where design functions are elaborated to more detailed 

functions as the design progresses. In axiomatic design, the design process is not a 

one step process unless only one decomposition is required. For each domain, 

designers are encouraged to decompose the top level objects to detailed objects and 

apply two design axioms along the way.

Systematic design

The theory of systematic design is based on the notion that the design process must be 

carefully planned and systematically executed. According to Pahl and Beitz (Pahl & 

Beitz, 1996), a systematic approach:

>  Defines the goals by formulating the overall goal, the individual sub-goals and 

their importance;

>  Clarifies the boundary conditions by defining the initial and marginal constraints;

> Dispels prejudice to ensure the most wide-ranging possible search for solutions 

and to avoid logical errors;

> Searches fo r  variants, that is to find a number o f possible solutions or 

combinations o f solutions from which the best can be selected;

> Evaluates based on the goals and the requirements;

> Makes decisions. This is facilitated by objective evaluations.

12



Customer Functional Physical Process

Abstract Domain Domain Domain Domain

Layer 1

Layer 2

Layer n

Detail

Figure 2.1: Layout o f axiomatic design process
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According to the systematic design theory, the design process must be split, first into 

phases and then into distinct steps, each with its own working methods. Pahl and 

Beitz (Pahl & Beitz, 1996) defines the following four main phases for the design 

process, as shown in Figure 2.2:

> Product planning and clarifying the task. Product planning, based on the 

company’s goals, is the systematic search for, and the selection and development 

of, promising product ideas. Clarification of the task is achieved by collecting 

information about the requirements to be fulfilled by the product and by the 

existing constraints together with their importance. This activity leads to the 

formulation o f a requirements list.

>  Conceptual design. This phase determines the principle solution. It is achieved by 

abstracting the essential problems, establishing function structures, searching for 

suitable working principles, and combining those principles into a working 

structure. Conceptual design results in the specification o f principle.

>  Embodiment design. In this stage, designers, starting from a concept (working 

structure, principle solution), determine the construction structure (overall layout) 

with technical and economic criteria. Embodiment design results in the 

specification o f layout.

> Detail design. This is the phase of the design process in which the arrangement, 

forms, dimensions, and surface properties of all the individual parts are finally 

decided, the materials are specified, production possibilities are assessed, costs

14



are estimated, and all the drawings and other production documents are produced. 

The result o f the detail design phase is the specification o f production.

Based on Pahl and Beitz’s theory, Aleixos et al. (Aleixos et al., 2004) proposed a new 

five-step approach, which distinguishes in detail the tasks embedded in embodiment 

design. The division separated the management of conceptual information from 

transferring and integrating this conceptual data into a commercial CAD system tool. 

This gives the possibility to try other alternative solutions without generating the final 

design geometry.

15
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2.2.2 Conceptual design

Conceptual design refers to the early stages of design, when major decisions are still 

to be made. It takes the statement of the problem, brings engineering science, practical 

knowledge, production methods, and commercial aspects together, and generates 

broad solutions to it in a form referred to as “schemes” (French, 1985). It is the phase 

where the most important decisions are taken and where there is the most scope for 

striking improvements. Decisions made during conceptual design have significant 

influence on the cost, performance, reliability, safety, and environmental impact of a 

product. At this stage, information is very fuzzy and incomplete, which makes the 

design process quite difficult and challenging. The tasks involved in conceptual 

design are characterised by tentativeness, trial-and-error, exploration, ambiguity, and 

imprecision (Nakakoji et al., 2001).

In modem industry, with companies participating in global design chains, product

design requires collaboration in a distributed environment. Extensive research has

been carried out to develop prototype systems and methodologies for collaborative

design (Kima et al., 2004; Sharma et al., 2006; Shyamsundar & Gadh, 2002). Work in

infrastructure design, communication algorithms and geometric computing algorithms

has been made to address the complexity of collaborative design activities and the

specific requirements of CAD systems. Huang et al. (Huang et al., 2003) developed a

system called ProDefine to support early product definition on the Internet. This

17



system supports collaboration, synchronously and/or asynchronously, through the 

Internet. Chen et al. (Chen et al., 2004) developed an Internet-enabled real-time 

collaborative assembly modelling system called e-Assembly. It allows geographically 

dispersed designers to jointly build an assembly model in real time over a distributed 

computing network such as the Internet. This e-Assembly system contributes to 

identifying and resolving assembly induced design conflicts arising from the 

outsourcing o f design activities in the early stages of team design. Some of the 

previous work related to collaborative design has been reported in the literature (Fuh 

& Li, 2005).

2.2.3 Intelligent design

It has been estimated that design decisions made in conceptual design account for 

more than 75% of final product costs (Hsu & Liu, 2000). More importantly, a poorly 

conceived design concept might never be compensated for by a good detailed design. 

Researchers have focused their attention in developing tools and techniques that are 

able to support conceptual design activity. A standard for a good design tool (problem 

solver) has been defined as follows (Pahl & Beitz, 1996). The tool must:

>  Have a sound and structured technical knowledge;

>  Find an appropriate balance between concreteness and abstraction, depending on 

the situation;

>  Be able to deal with uncertainty and fuzzy data;
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> Continuously focus on the goals while adopting flexible decision making 

behaviour;

> Possess a further ability referred to as heuristic competence, which involves: 

activating goal-directed creativity, recognising importance and urgency, planning, 

guiding, and controlling their work.

Intelligent design is aimed at modelling and automating the cognitive processes and 

knowledge representations which human engineers apply to design problems. The 

cognitive processes include searching, reasoning or inference and optimisation. 

Collaboratively they operate on environment artefacts to carry out routine and 

creative design. The elements which make up an intelligent design theory include a 

process model, a set of appropriate knowledge representations and a research 

approach (Preston & Mehandjiev, 2004).

The process model contains several models which together explain different aspects 

of the process. These are: Strategy (a textual description o f the process, in a manner 

similar to a general paradigm such as learning, searching, game playing, evolutionary, 

generative, or a stepwise approach), Descriptive (a textual and graphical description 

of the process, showing its main features, knowledge and control flows, and its 

general structure), Formal (these models provide mathematical rigor or make use of a 

logic to formalise the process and associated terms), and Computable (usually an 

algorithmic model, ready for translating it into supporting software).
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Knowledge in design is used for manipulating design objects, for showing the next 

stage in given situations, for producing and interpreting design specifications and for 

controlling the design process. Representing knowledge relies on the developments 

carried out: for example, function-based modelling, grammar and ontology, 

geometry-based methods, a logical approach, graph-based modelling, generative 

representation, the design rationale, rule-based systems.

The research approaches used by design researchers fall into the categories of concept 

generation and concept selection

This section reviews the work in intelligent design from the following perspectives.

> Modelling the knowledge and complex interactions between various facets of a 

product.

>  Generation and selection of feasible solutions.

>  Decision making and trade-off for the feasible solutions.

2.2.3.1 Conceptual design modelling

Designers have limited time to build up experience in all relevant fields. Hence, there 

is a need to capture, store, and reuse knowledge. The goal o f any knowledge 

representation is to enable and facilitate automated and semi-automated reasoning

processes (Bo & Salustri, 1999). There are two important issues for modelling
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(Vancza, 1999): the models should be re-usable and shareable, and the models should 

not only involve physical models, which cannot support commonsense reasoning and 

efficient design problem solving. A few design modelling methods are reviewed in 

this section.

Function-based modelling

Engineering design can be defined as mapping from a requirement specification at the 

functional level into a set of attribute values of concrete products. Functionality plays 

a crucial role in the conceptual design of engineering devices. Knowledge of 

functionality is essential in a wide variety of design-related activities, such as the 

specification, generation, modification, evaluation, selection, explanation and 

diagnosis o f designs. Function-based design modelling helps guide, constrain and 

solve the design problem by reasoning about the functions that the designs provide. 

Function is often integrated into a complete design approach.

The most well-known approach is “Function-Behaviour-Structure (FBS)”. The FBS 

scheme has been applied to support design synthesis based on function (Qian & Gero, 

1996). This scheme uses the relationships between the physical structure, behaviour, 

and functionality of designs to provide a basis for product development. The eight 

processes depicted in the FBS framework are claimed to be fundamental for all 

designs (Gero & Kannengiesser, 2004):
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> Formulation transforms the design requirements, expressed in function, into 

behaviour that is expected to enable this function.

>  Synthesis transforms the expected behaviour into a solution structure that is 

intended to exhibit this desired behaviour.

> Analysis derives the “actual” behaviour from the synthesised structure.

> Evaluation compares the behaviour derived from structure with the expected 

behaviour to prepare the decision if the design solution is to be accepted.

> Documentation produces the design description for constructing or manufacturing 

the product.

>  Reformulation type 1 addresses changes in the design state space in terms of

structure variables or ranges of values for them if  the actual behaviour is

evaluated as unsatisfactory.

> Reformulation type 2 addresses changes in the design state space in terms of 

behaviour variables or ranges of values for them if the actual behaviour is 

evaluated as unsatisfactory.

>  Reformulation type 3 addresses changes in the design state space in terms o f

function variables or ranges of values for them if  the actual behaviour is

evaluated as unsatisfactory.

Some researchers presented an extended model o f FBS, called the

Function-Environment-Behavior-Structure (FEBS) design model (Deng et al., 2000),

in which the newly added “environment” stands for those environmental elements
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contributing to the functions of the design. Bo and Salustri (Bo & Salustri, 1999) 

proposed a representation of product function, which has “function descriptor, input 

descriptor, output descriptor, how link, why link and value”. O ’Sullivan (O'Sullivan, 

1999, 2002) applied a function-means map to model functional design knowledge, 

indicating how functions can be provided by physical means. Anthony et al. (Anthony 

et al., 2001) developed an approach, Conceptual Understanding and Prototyping 

(CUP), which integrates the description of formally represented engineering 

knowledge (function and behavior) with 3D graphical conceptual modeling. Kitamura 

and Mizoguchi (Kitamura & Mizoguchi, 2003) proposed an ontology-based method 

for capturing the knowledge of function decomposition. How functional reasoning has 

successfully established representation o f function in design has been reported in the 

literature (Umeda & Tomiyama, 1997).

Geometry-based methods

In conceptual design various solutions are usually generated from a non-spatial 

perspective and lack detailed geometric structure. However, geometry is also 

important at the conceptual design stage. It is important to consider all critical 

geometric and spatial relationships that are relevant.

Geometry modelling focuses on representing the structural aspects o f a product. Gero 

and Jupp (Gero & Jupp, 2003; Jupp & Gero, 2004) developed an approach to shape
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and spatial representation for architectural design and the 2D building plan. The core 

idea is that design drawings can be uniquely characterised by the representation of 

embedded shape and spatial features. Each embedded shape and spatial feature is 

described by qualitative values and stored as a series of symbols in a ID string and 

graphs.

STEP (STandard for the Exchange of Product model data) may also be considered as a 

tool to support knowledge representation (Denkena et al., 2005). STEP has been 

widely used for product data exchange and management. Its data models and methods 

provide a common basis for integrated collaboration processes in enterprises, 

allowing a holistic view that encompasses areas like design, engineering, testing, 

manufacturing, and quality assurance.

The realised product o f engineering design is a 3D model. However, the traditional 

2D modelling restrains the designer’s creativity and imagination and hampers 

innovation. The development o f 3D modelling and virtual manufacturing provides a 

good platform for conceptual design and innovation. Designers can start directly from 

a 3D concept to implement conceptual design, decide the framework of the product, 

then with the techniques of engineering analysis, simulation, Virtual Reality (VR), etc., 

analyse and evaluate the feasibility o f the solution and the quality and reliability of the 

product. This design method makes full use of designer’s intelligence and creativity, 

without the constraints of 2D modelling. With the newly available VR technology, it
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is nowadays possible to build a design system that allows full three-dimensionality in 

all stages of the design process (Arangarasan et al., 2000). Spacedesign (Fiorentino et 

al., 2002) is an approach which uses task-specific configurations to support the design 

workflow from concept to mock-up evaluation and review. The first-phase conceptual 

design benefits from a workbench-like 3D display for free hand sketching, surfacing, 

and engineering visualisation.

Recently, aesthetic criteria have caught more attention in CAD (Fiorentino et al., 2002) 

(Juster et al., 2001). Aesthetic engineering and artistic shape optimisation (Sequin, 

2005) needs more support from CAD tools. In a traditional CAD setting, a computer 

primarily serves as a precise drafting and visualisation tool, permitting the designer to 

view the emerging geometry from different angles and in different projections. 

Nowadays, a computer actively supports the creation o f geometric shapes by 

procedural means and can even optimise a surface by maximising some beauty 

functionalities.

Grammar

Design grammar includes a vocabulary o f engineering entities, a set o f terminal 

symbols, a design start symbol, and knowledge about valid configurations of 

engineering entities (Andersson, 1993). There are two main categories of design 

grammar: graph grammars and shape grammars.
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Andersson (Andersson, 1993) introduced a structure and components o f a vocabulary 

for conceptual design of mechanical products. The components o f this vocabulary 

consist o f engineering concepts represented as engineering entities, using Conceptual 

Graphs and classified into taxonomies. Each engineering entity is defined by its 

position in the taxonomy and by a type description. This vocabulary can be utilised 

for generating the resulting design descriptions of the conceptual design phase and for 

representing both syntactic knowledge and interpretative knowledge. Semantics and 

syntax have also been used by some researchers. Ding and Gero (Ding & Gero, 2001) 

developed a syntax-semantics model to interpret style, with semantics to be the 

implicit properties o f style and syntax to be the explicit representation of style. Deng 

(Deng, 2002) proposed a semantic and syntactic representation of mechanical 

function and behaviour.

Shape grammars derive designs in the language they specify by successive application 

of shape transformation rules to some evolving shape, starting with an initial shape. 

Shape grammars are essentially a rule set defining how shapes in a set can be 

modified. In addition, shape grammars allow labels to be associated with shapes to 

carry non-geometric information and guide the generation process. Finally, their 

parametric nature allows the same small and finite rule set to generate an infinite 

number of designs, allowing a generative system to explore a wide variety o f designs 

(Agarwal & Cagan, 2000). Shape grammar has been used to represent engineering 

knowledge and to analyse designs (Agarwal & Cagan, 2000). McCormack et al.
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(McCormack et al., 2004) applied shape grammars as a method for encoding the key 

elements of a brand into a repeatable language, which is used to generate products 

consistent with the brand.

Ontology

Ontology is a set o f common terms and concepts that are general enough to describe 

different types o f knowledge in different domains but specific enough for application 

to particular design problems (Hsu & Woon, 1998). Noy and McGuinness (Noy & 

McGuinness, 2001) defines an ontology as a formal explicit description of concepts in 

a domain o f discourse (classes or concepts), properties o f each concept describing 

various features and attributes o f the concept (slots or roles or properties), and 

restrictions on slots (facets or role restrictions). Ontology, together with a set of 

individual instances o f classes, constitutes a knowledge base. A design ontology has 

an intentional semantic structure that defines and arranges all related notions (Horvath 

et al., 1998).

A certain amount of research on the use of ontology in design has been conducted 

(Setchi et al., 2005). Borst (Borst, 1997) developed an ontology collection called 

PHYSSYS that covers a wide, multidisciplinary range of physical systems and their 

engineering. This collection contains different types: highly generic ontologies

(mereology, topology, and systems theory), base ontologies valid for a whole field
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(e.g. technical components, physical processes, representing natural categories or 

viewpoints within a broad field), and domain ontologies (specialisations of base 

ontologies to a specific domain, e.g. thermodynamics). Horvath et al. (Horvath et al., 

1998) introduced ontologies for formalising conceptual design concepts, which 

include structure and shape as well as functionality. Kitamura and Mizoguchi 

(Kitamura & Mizoguchi, 2003) developed functional ontologies including a 

device-centered ontology and a functional concept ontology, aiming at systematisation 

of functional knowledge for design. Ahmed (Ahmed, 2005) argued that the 

descriptions o f designing a particular component or assembly could be classified in 

four ways: steps o f the design process; components or assemblies; the function; the 

issues; or any combination o f these. Based on this, he identified four taxonomies, 

which are design process, product, functions, and issues. These form the taxonomies 

for ontology for engineering design referred to as Engineering Design Integrated 

Taxonomy (EDIT).

Logical approach

Salustri (Salustri, 1996) attempted to use logic to describe the structure o f design. He

developed a framework named Artefact-Centered Modelling (ACM) to partition the

problem of describing design into manageable components. ACM partitions the

overall design endeavour by abstracting both by function and by structure. These

abstractions form the axes of a two-dimensional matrix o f design aspects. Based on

2 8



the ACM, the Axiomatic Information Model for Design (AIM-D) was developed. It 

provides formal bases for quantities, features, parts and assemblies, systems and 

sub-assemblies, which help designers to think about design problems in a more 

structured manner, and to form the logical foundations for tools to aid designers in 

their daily task. Salustri (Salustri, 2002) introduced the use of a logical theory, Design 

Mereotopology (DMT), in product modelling and spatial reasoning of designed 

products. Mereotopology (MT) is a branch of logic dealing with the qualitative 

formalisation o f two fundamental relationships between entities: parthood (i.e. one 

entity being part o f another) and connection. DMT provides a framework for 

improved understanding o f product modelling knowledge.

Graph-based modelling

Graphs are popular representations in the conceptual design stage. They have been 

used to model all aspects of a product (Castano et al., 1998). Conceptual graphs can 

represent both functional and manufacturing-related information. Conceptual graphs 

have been applied for representing assemblies, components, features, low level 

geometric objects, and constraints (Salomons et al., 1995). Qian and Gero (Qian & 

Gero, 1996) used a graph, which consists o f five finite sets for elements, attributes, 

relationships, operations, and processes, to describe a design structure. Al-Hakim et al. 

(Al-Hakim et al., 2000) applied graph theory to represent a product and the 

relationships between its components. Zha and Du (Zha & Du, 2001) utilised a
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Knowledge Petri net graph with objects scheme to uniformly model a mechanical 

system or an assembly and its design process. They represented the hybrid design 

object model in terms of a four level hierarchy: function-behaviour, structure, 

geometry, and feature. The structure model is described as a place-transition based 

component-connector or part-joint multilevel hierarchical graph, while the functions, 

behaviours, geometries, features, and constraints are embedded as objects in such a 

hierarchy, and their causal relations are described by the corresponding Knowledge 

Petri net graphs. Salustri and Parmar (Salustri & Parmar, 2003) introduced Design 

Schematics (DS), which is a diagramming method intended to capture product 

information at early design stages. It is based on concept maps. Gero and Tsai (Gero 

& Tsai, 2004) used bond graphs as a foundation for the development of a 

representation o f buildings and their uses, called Archi Bond Graphs (ABGs). Bond 

graph modelling has also been applied to air pump system design (Seo et al., 2005).

Generative representation

Generative representation, which is different from the traditionally parameterised 

representations, does not encode complete design concepts but rather rules on how to 

develop, or “grow” these designs. This representation method has been mostly applied 

to evolutionary design. This is because in evolutionary design, parameterised 

representations are inadequate to seek novel designs, and they have some scaling-up 

problems as the design application problems increase in size and complexity. These

30



generative representations (Kicinger et al., 2005b) improve the scalability of 

evolutionary design systems and produce novel designs exhibiting interesting and 

qualitatively different patterns from known designs (Kicinger et al., 2005c).

Design rationale

Design rationale encompasses a broad context surrounding product development 

processes, including information about decisions, why they have been made, as well 

as relationships or dependencies that may link decisions either to part of the product 

representation (a function, artefact, etc.), or to other decisions (Szykman et al., 2001). 

Design rationale is considered to play an important role in design modelling. A survey 

on the research on design rationale has been reported (Hu et al., 2000).

There are two fundamental and complementary representations of design rationale. 

First is the notion o f design rationale as the recording of the design intent of an 

artefact. For example, in traditional mechanical design, rationale might include a 

functional description, geometric or assembly constraints, and performance criteria. 

Second is design rationale as a record of the design process, the communications 

among agents, the decision-making that occurs as well as the decision-making 

process.

A generic structure of design rationale systems consisting o f three main layers has

31



been identified as follows (Lee, 1997):

> Decision layer characterising the decision process. The decision layer contains 

five sub-layers: argument, alternative, evaluation, criteria, and issue.

> Design artefact layer containing information relating the components of an 

artefact and linking these to the decision layer.

>  Design intent layer representing information about the design decisions, e.g. 

requirements, strategies, and goals.

Model process history has also been integrated in the design modelling. Hayes and 

Regli (Hayes & Regli, 2001) attempted to unite traditional CAD and solid model data 

structures with a representation o f the temporal design process. They presented a 

representational formalism called Model Process Graphs (MPGs). MPGs integrate a 

model's description with a model of temporal changes that occur during the design 

process. They argued that model process graphs can be used as a substrate on which 

design history, intent, and rationale can be captured.

Other methods

A number o f conceptual design modelling methods have been reported in the 

literature (Salustri, 2001, 2005; Seebohm & Wallace, 1998; Zavbi & Duhovnik, 2000). 

Amongst the approaches taken are the use of natural language, physical laws, and 

rule-based systems. These methods address different aspects o f the design modelling
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of conceptual design and general engineering design.

2.2.3.2 Concept generation

An “ideal” approach for concept generation should be a process o f repeated 

divergence and convergence (Liu et al., 2003). Liu et al. presented an approach 

consisting o f a series of generation and evaluation rather than a single step of 

generation and evaluation. Their approach consists of three levels o f solution 

abstraction, namely topological solution, spatial configuration, and generic physical 

embodiment level. Expansion o f solutions consists of three synthesis processes. The 

processes o f narrowing down solutions involve applying sets o f heuristics to each 

level. They argued that such an approach should increase the effectiveness of the 

exploration o f concepts with minimum compromise to the richness of the solution 

space explored.

Design can be divided into two groups: routine design and non-routine design. 

Routine design is a design process based only on selection or on modification. In both 

cases, no changes in the representation space occur. Non-routine or creative design is 

a conceptual design process which is based on innovation, invention, or discovery. In 

all these cases, changes in a representation space occur. Thus, there are two major 

differences between the routine and creative design: the number o f changes o f the 

representation space and the nature of inference. There are no changes in the
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representation space for routine design, and at least one change for non-routine or 

creative design. Routine design typically employs deductive inference (selection and 

modification), while creative design employs inductive inference (innovation, 

invention and/or discovery) (Arciszewski et al., 1995).

2.2.3.2.1 Creative design

Innovation plays an important role in conceptual design. The essence of innovation in 

conceptual design is to discover new ideas, especially when the current products 

cannot satisfy the user requirements. Creative design involves not just a search within 

a defined space but also the introduction o f either new variables or new schemas - a 

process called exploration (Gero, 1996). In other words, a design process is creative 

when it explores not only the values o f attributes (decision variables) within 

individual design spaces but also develops the number of these attributes, i.e. when 

changes in the representation space occur.

According to the innovation levels, conceptual design can be distinguished by five 

major paradigms (Arciszewski et al., 1995). This classification is based on the 

taxonomy proposed by Altschuller (Altshuller, 1969) and modified and adapted by 

Arciszewski et al.

>  Selection: the design concept is produced by selecting it from a class of known 

concepts in a given engineering domain.
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> Modification: the design concept is produced as a combination and/or 

modification of known design concepts from a given domain. The modification 

process is based on a deterministic or random generation process.

> Innovation: the design concept is produced as a combination o f known concepts 

from a given domain and other domains.

> Invention: the design concept is produced as a combination o f known concepts 

from a given domain and from new concepts based on a new technology, which 

have been recently introduced.

> Discovery: the design concept is produced as a combination o f known concepts 

from a given domain and new concepts based on new scientific principles.

Redistribution o f functions is also considered a creative technique (French, 1985), 

because redistribution of functions among parts can often make improvements in 

schemes.

TRIZ, first developed by Altshuller (Altshuller, 1984), is a human-oriented 

knowledge-base systematic methodology of inventive problem solving. TRIZ uses a 

relatively small number of heuristics for solving inventive technical problems. These 

main heuristics and instruments include Preliminary Analyses, Contradiction Matrix, 

Separations Principles, Substance-Field Analysis, Standard Approaches to Inventive 

Problems, Algorithm for Inventive Problem Solving (ARIZ), Agents Method, etc. The 

detail of these has been reported (Mann, 2002; Savransky, 2000). Interest in the
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principle of TRIZ has result in the development of a number o f approaches to 

innovative design (Pham & Liu, 2006; Pham et al., 2006).

2.2.3.3 Concept selection

Concept selection is a decision making process in nature. A critical analysis and 

evaluation o f current engineering design methodologies from a decision making 

perspective has been reported in the literature (Ng, 2006). The selection procedure 

usually involves two steps, namely elimination and preference.

A language-based framework (White, 1995) for the evaluation of product design has 

been developed. Deng et al. (Deng et al., 2000) proposed a generic functional design 

verification model for conceptual design. In their work, design verification is 

achieved by identifying input and output design variables, developing a variable 

dependency graph, propagating constraints over the variable dependency graph, and 

checking the values o f the design variables against these constraints. Dezfuli (Dezfuli, 

2001) proposed a value-based approach to conceptual design decision making. The 

approach introduces the notion of design values and design objectives plus their 

importance in guiding the design decision making process. Designers develop their 

value structures through a design objective structuring process and use them to 

identify, expand, and search through the design context space. The objective

structuring process provides valuable insights into the design process and points out
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those aspects o f the requirements which are important for the designer. It also helps 

the designer to avoid unnecessary searches among alternative concepts which do not 

provide value to the design process. A framework was also developed for an 

engineering conceptual design process based on some important properties of design 

values and design objective structures. This framework provides the means for 

designers to incorporate the uncertainties of design alternative concepts into the 

process in a formal way and provides an evaluation method for designers to compare 

different design concepts with each other in a more consistent way.

2.2.4 Artificial Intelligence techniques in design

Engineering design needs to be formulated and supported by specific design methods. 

Design methods may help design in the following ways (French, 1985):

> By increasing insight into problems, and increasing the speed o f acquiring 

insight;

>  By diversifying the approach to problems;

> By reducing the size of the mental steps required in the design process;

> By prompting inventive steps, and reducing the chances of overlooking them;

> By generating design philosophies (synthesising principles, design rationales) for 

the particular problem in question.

Artificial Intelligence (Al) has been playing an important role in the field of
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engineering design. The scientific and practical aims of Al (Doyle & Dean, 1996) are: 

constructing intelligent machines; formalising knowledge and mechanising reasoning; 

using computational models to understand the psychology and behaviour of people, 

animals and artificial agents; making working with computers as easy and as helpful 

as working with skilled cooperative, and possibly expert people. Al can learn new 

concepts, reason, and draw useful conclusions about a design problem; understand the 

natural languages o f designers; perceive and comprehend a visual scene (Wang et al., 

2002).

This section reviews the use o f a few frequently used Al techniques in engineering 

design.

Constraint satisfaction problem

Constraint processing is concerned with the development o f techniques for solving the 

Constraint Satisfaction Problem (CSP). CSPs involve finding values for variables 

subject to restrictions on which combinations of values are acceptable. A large 

number of problems in engineering design can be formulated as CSPs. For design 

problems, starting from a list of design requirements, design objectives and important 

factors in a successful design are collected in an unstructured manner. Each 

requirement can be formulated as a testable constraint rule. The advantage of CSP is 

that it is a reasoning model that both provides modelling and solves a problem within
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the same framework (Sqalli et al., 1999). O ’Sullivan proposed a constraint-based 

approach to providing support to a designer during conceptual design (O'Sullivan, 

1999, 2002).

There has also been a focus on research and applications that integrate CSP with CBR 

(Sqalli et al., 1999). Purvis and Pu (Purvis & Pu, 1995) investigated a methodology 

which formalises the adaptation process using constraint satisfaction techniques. They 

represented each case as a primitive CSP with additional knowledge that facilitates 

retrieving and applied an existing repair-based CSP algorithm to combine these 

primitive CSPs into a globally consistent solution for the new problem.

Agent-based approach

Decomposition and parallel execution in collaborative design naturally lend 

themselves to an agent-based approach. A design process can be considered as a 

discrete-event system occurring as the result o f multiple "agents" acting towards a 

common general goal, with each agent having its own priorities, context, and domain 

knowledge (Salustri, 2000). Agents have incomplete information and limited 

reasoning capabilities and resources. In a community of agents, there is no global 

control and centralised data and the computations are asynchronous (Sycara, 1998). 

The motivations for applying multi-agent systems are: to solve problems that are too

large for a centralised agent to solve, to provide solutions to problems that can
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naturally be regarded as a society of autonomous interacting components-agents and 

to provide solutions in situations where expertise is distributed. The concept and 

technology of agents has given considerable support to distributed design.

Campell et al. (Campbell et al., 1999) introduced a new design generation theory 

known as A-Design, which is an agent-based and adaptive strategy for performing 

conceptual engineering design. The methodology has four distinct subsystems: an 

agent architecture, a multi-objective design selection scheme, a functional 

representation for electro-mechanical systems and an iterative-based algorithm for 

evolving optimally directed design states. Cvetkovic and Parmee (Cvetkovic & 

Parmee, 2002) presented the use o f software agents within an interactive evolutionary 

conceptual design system. Several different agent classes are introduced, including 

search agents, interface agents, and information agents.

Evolutionary algorithms

Genetic Algorithms (GAs) model natural selection and the process o f evolution.

Conceptually, genetic algorithms use the mechanisms of inheritance, genetic

crossover, and natural selection in evolving individuals that, over time, adapt to their

environment. They also can be considered as a search process, searching for better

individuals in the space of all possible individuals. Also, genetic algorithms have

increasingly been applied in engineering design. Basically, genetic algorithms have
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been considered as tools for optimisation and parameter tuning in engineering design. 

Genetic algorithms have been used to generate candidate solutions to particular types 

of design problems. Several advanced genetic algorithms have been introduced, which 

have proved to be efficient in solving difficult design problems (Renner & Ekart, 

2003). A tool called Emergent Designer has been developed, which involves 

evolutionary algorithms to represent engineering systems and their related design 

processes (Kicinger, 2004; Kicinger et al., 2005a).

Machine learning

Both learning and conceptual design processes are based on performing various forms 

of inference. All experience, therefore, from machine learning research that studies 

learning as an inferential process is relevant to design and can be used for developing 

a formal model o f design processes (Arciszewski et al., 1995).

Model-based reasoning

Model-based reasoning can guide the design process by evaluating partial designs, or 

alternatively, can constrain the space of feasible design solutions (Vancza, 1999).
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Rough set theory

Many approaches to the handling of incomplete information have been developed. 

These include fuzzy set theory, rough set theory, and Dempster-Shafer theory of 

evidence (Alisantoso et al., 2005). Alisantoso et al. (Alisantoso et al., 2005) proposed 

a rough set-based approach to early design analysis.

2.2.5 Discussion

Conceptual design is a very important phase of engineering design process. It has 

been shown in the previous sections that a number o f tools and techniques have been 

developed to support conceptual design activity. However, most o f these tools and 

techniques offer few possibilities for the reuse of existing designs. Case-Based 

Reasoning (CBR) has the potential to support design by reminding designers of 

previous solutions that could help in new situations (Maher et al., 1995). An 

advantage of CBR is that it starts from once satisfactory solutions and most o f the 

design knowledge is available after a design case has been retrieved. There is 

considerable scope for research into using CBR techniques to support the conceptual 

phase of design. Case-based approaches to supporting engineering design have been 

reported in the literature and will be reviewed in the next section.
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2.3 A review of Case-Based Reasoning for design

The reliance on past experience has motivated the use of Case-Based Reasoning 

techniques. A CBR system stores past problem solving episodes as cases which can be 

retrieved to help solve a new problem. CBR is based on two observations about the 

nature o f the world: (1) the world is regular and similar problems have similar 

solutions; and (2) the types of problems encountered tend to recur.

A number o f researchers have applied CBR to engineering design problems. Bilgic 

and Fox (Bilgic & Fox, 1996) discussed similarity based retrieval in engineering 

design. They focused on how requirements, i.e. goals and constraints, can be used to 

dynamically retrieve relevant cases from a case library, and how cases in the library 

should be represented to support this style of dynamic indexing. Leake et al. (Leake et 

al., 1999) argued that CBR fits naturally into a new mode o f knowledge management 

that not only tracks where documents are but tracks how they are used and where they 

are needed to access multiple information sources to provide the right information at 

the right time. They demonstrated their approach in automotive body design. CBR has 

also been widely applied to various specific engineering problems. Qin and Regli 

(Qin & Regli, 2000, 2003) presented a case study of how to apply CBR to a specific 

engineering problem, mechanical bearing design. Waheed and Adeli (Waheed & Adeli,

2005) presented the use of CBR in steel bridge engineering. A few efforts have been 

made to build a fully automated gripper design system based on CBR (Gourashi, 2003;
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Pham et al., 2005).

Traditionally, CBR systems draw their cases from a single local case base tailored to 

their task. However, when a system’s own set o f cases is limited, it may be beneficial 

to supplement the local case base with cases drawn from external case bases for 

related tasks. The effective use of external case bases requires strategies for 

multi-case-base reasoning (MCBR): (1) for deciding when to dispatch problems to an 

external case base, and (2) for performing cross-case-base adaptation to compensate 

for differences in the tasks and environments that each case base reflects (Leake & 

Sooriamurthi, 2002, 2003). Al-Shihabi & Zeid (Al-Shihabi & Zeid, 1998) used 

multi-case adaptation and case built-in adaptation knowledge to produce a design plan 

for a new design problem.

CBR has also been used in combination with other Al techniques. Rosenman 

(Rosenman, 2000) developed a case-based model of design, using an evolutionary 

approach, for the adaptation in spatial layout design. Saridakis et al. (Saridakis et al.,

2006) developed a system that retrieves existing design solutions, by using a fuzzy 

case representations and neural-network-based retrieval mechanism. The system has 

been used in structural design.

Representing a case, measuring the similarity of the cases and adapting a case are key 

issues in CBR. These will be discussed in detail in the remaining of this section.

44



2.3.1 Represent a design case

One of the main difficulties in supporting conceptual design is the complexity o f 

modelling the different aspects of a product. The common representation of a design 

case includes feature-based representation, graph-based representation and geometric 

representation.

Feature-based representation

Feature-based representation is the most common form of representation of a design 

case. Each case is described by a set of attributes and each attribute takes a value. A 

feature is an information unit describing a region o f interest of some characteristics of 

a product. It can be an individual attribute, a set o f attributes or one or more derived 

attributes. Attributes define the vocabulary for explaining a design; values identify the 

specific information for each design. In most feature-based representation cases, 

design is formalised as classes. A generalisation of this representation is shown in 

Figure 2.3.

Bilgic and Fox (Bilgic & Fox, 1996) defined individual cases with a finite number of 

attribute-value pairs and a retrieval context with a finite number o f constraints on the 

attributes.
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Figure 2.4 shows a design of a bolt which helps illustrate how this representation 

paradigm is used. In the example, the list o f features determines how to describe a 

bolt design. As shown in the figure, a bolt can be expressed by its nominal diameter, 

material and so on. A specific bolt is determined by the specific values for each of the 

attributes.

Graph-based representation

Graph-based representation focuses on the relationships between the elements of a 

design. Usually, in a graph-based representation, nodes represent distinct features and 

edges represent associations among features.

An example of a graph-based representation o f a bolt is shown in Figure 2.5. The 

function and structure of a bolt is represented as labels of the nodes in the graph. The 

links in the graph represent dependencies among function and structure. The attribute 

“connecting components” is embodied by the values of head, shank, thread and end. 

By representing a design case in this way, nodes and relationships between nodes 

determine a bolt design.
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Case-1 

Class-1

Attributre-1: value-1;

Attribute-n: value-m; 

Class-2

Attributre-1: value-1;

Attribute-n: value-n; 

Class-I

Figure 2.3: A generalisation of feature-based representation
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Case: Bolt 001 

FUNCTION:

Function-1: Connecting components 

Function-2: Tightening components 

BEHAVIOUR

Maximum working load: 70550N 

STRUCTURE

Nominal diameter: 33mm 

Bolt head shape: cylindrical 

Bolt head thickness: 25mm 

Diameter of bolt head: 50mm 

Diameter of shank: 27mm 

Length of shank: 20mm 

Length of thread: 32mm 

Pitch of thread: 2mm 

Material: steel

Figure 2.4: A feature-based representation of a bolt design

ThreadShank EndHead

Tightening componentsConnecting components

Figure 2.5: A graph-based representation of a bolt design
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Geometric representation

Geometric representation is a direct way of carrying design information. It enables a 

design to be described as a geometric model which includes 2D or 3D geometric 

shapes. General representations of geometric shapes include: B-rep (Boundary 

representation), CSG (Constructive Solid Geometry), variational geometry and feature 

representations (Hsu & Woon, 1998). Geometric representation focuses on 

representing the structural aspects of a product. It requires intuitive experience for the 

user to understand and recognise the design. Francois and Medioni (Francois & 

Medioni, 1996) presented a symbolic and structured shape description model which 

can be used for the efficient indexing and retrieval of 2D or 3D generic object shapes.

Every representation technique has its own focus. In order to build a comprehensive 

design model, it is necessary to integrate various aspects of design information.

2.3.2 Existing approaches to measuring similarity

Methods of similarity assessment have been reported in the literature (Smyth & Keane, 

1998). Bridge (Bridge, 1998) classified the approaches to measuring the similarity of 

object representation as geometric, structural, and feature-based.
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Geometric approach

With a geometric approach, a set of features is extracted from the structural 

representation, which is used as an ^-dimensional vector to which distance measures 

can be applied. Assume there are two objects with n features each: 01(xl, x2...xn) and 

0 2 (yl, y2...yn). Similarity between these two objects can be measured by calculating 

the Euclidean d istance:^(x l-y l)2 + (x 2 -y 2 )2 +... + (.xn -yri)  • R estively  simple distance

measures include the Euclidean distance, Manhattan distance, and Hausdorff distance 

(Ohbuchi et al., 2002). Ohbuchi et al. employed the Euclidean distance and the 

elastic-matching distance as the measures o f distance between pairs of feature vectors 

in their work. They investigated this method to compare the shape similarity of 3D 

models, which was to compute a set o f shape features from a given model, as well as 

the distance between those pairs o f shape features.

Structural approach

With a structural approach, similarity is measured by graph matching (Bespalov et al., 

2003; El-Mehalawi & Miller, 2003; Hilaga et al., 2001; Iyer et al., 2003; Le et al., 

2004). Cost-based Distance Measurement is frequently adopted for this purpose 

(Francois & Medioni, 1996; Papadopoulos & Manolopoulos, 1999). This method 

involves modifying the graph for an object to transform it into the graph for the object 

with which it is to be compared. The number of the required modifications is then
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taken as the similarity measure. An example o f comparing graphs using this method is 

illustrated in Figure 2.6. Three graphs G1, G2, and G3 are shown in the figure. It is 

obvious that G1 is more similar to G2 than to G3. This is because only one edge needs 

to be added to G1 in order to obtain G2, whereas one edge and one node are needed in 

order to obtain G3.

Feature-based approach

In a feature-based approach, objects are represented by sets of features and measuring 

similarity is based on feature commonality and differences. The similarity of the 

features is usually measured by numerical weighting methods (Castano et al., 1998). 

Weights are assigned to each feature and the similarity is the sum of a weighted 

number of equal features. Bilgic and Fox (Bilgic & Fox, 1996) counted the 

occurrences where the two cases satisfy the same constraints and normalised it using 

the weights. Tversky's theory of similarity, as described in (Keane et al., 2001), 

characterised the similarity between two entities, a and b, as being a weighted sum of 

a function of the identical features o f a and b and a function of the distinctive features 

in each o f the entities. The model is characterised as:

5 (a, b) = Of (A B) -  a f  (A -  B) -  (B -  A), 

where A and B  represent the set of attributes that respectively make up the entities a 

and b; (A <-> B) represents the set of attributes that are common to A and B; (A - B) 

represents the distinctive features in A while (B - A) represents the distinctive features
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in B; and 0, «, and /? are factors of importance.

The existing methods compare different aspects design. In order to have a 

comprehensive similarity measure, it is helpful to involve various design knowledge 

in the process of similarity assessment.

2.3.3 Existing methods of adaptation

In general, the methods relevant to case adaptation vary in different tasks or problems 

to be solved. Adaptation can substitute some components o f a previous solution, or 

modify the overall structure of an old solution. Existing methods of adaptation can be 

classified as follows.

Human intervention

The simplest method o f adaptation is human intervention, in which the designers are 

responsible for modifying the design according to their knowledge.
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Figure 2.6: Similarity among graphs



Substitution method

As the name implies, this method relies on the substitution o f values or components 

relevant to the new problem in the retrieved case. The structure o f the new solution 

remains unchanged. Some researchers believe that substitution adaptation is the best 

means for automatic knowledge acquisition (Jarmulak et al., 2001). Substitution 

adaptation is applied for both nominal and numerical values and is suitable for 

decomposable design problems, in particular formulation and configuration.

Transformation method

Transformation method deals with the structure of the solution. Rules or procedures 

are used to transform a selected case into a new solution. It supports the 

reorganisation o f solution elements and permits the addition and deletion of such 

elements under certain conditions. Generally, transformational adaptation systems 

employ a mixed set o f adaptation operators and transformation rules. Bergmann and 

Wilke (Bergmann & Wilke, 1998) developed a formal model o f transformational 

adaptation. The model is based on the “quality” of a solution to a problem, where 

quality signifies a more general sense and denotes some kind o f appropriateness, 

utility, or degree of correctness.

Derivational replay

Derivational replay assumes that the retrieved case includes the method or procedure 

used to generate the solution in the case description and that the same method is
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reused for the specifications of the new problem. Derivational replay has been applied 

in some researchers’ work (Rivard & Fenves, 2000).

Multiple case combination

Recent research has demonstrated the power of delivering solutions through retrieval, 

adaptation and subsequent composition of multiple cases. This leads to multiple case 

combination, where design cases or components from multiple cases are combined to 

provide new design solutions. Newer approaches indicate that it is helpful to compose 

a solution from parts o f several old cases. This is possible if  the solution consists of 

different parts which can be adapted more or less independently. It will be effective if 

few conflicts exist between these components so that a change in one component will 

not have many side-effects on the other components.

Hierarchical adaptation

Hierarchical adaptation is another development o f adaptation (Bergmann & Wilke, 

1995; Smyth & Cunningham, 1992). Cases are stored at several levels of abstraction 

and the adaptation is performed in a top-down fashion. At first, the solution is adapted 

at the highest level of abstraction. The solution is then refined in a stepwise manner 

and the required details are added. Hierarchical adaptation reuses either a single case 

or different cases for different levels of abstraction or refines different details o f the 

solution.
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Instead o f using these methods on their own, a combination o f these approaches is 

often adopted.

Different strategies have been applied to guide the process of adaptation. The 

strategies used for the modification and evaluation of a design case include constraint 

satisfaction, model-based reasoning, rule-based reasoning, heuristic reasoning and 

qualitative reasoning. Some researchers argue that the more radical the adaptation, the 

greater the danger o f losing the quality of the original design, as adaptation changes a 

once satisfactory design. Whatever adaptation strategies are used, extensive domain 

specific knowledge is required to guide the process of adaptation.

2.3.4 Discussion

The application of CBR to many aspects of engineering design has been presented in 

this section. It can be seen that representing a design, measuring similarity o f designs 

and adapting a design all hinge on various aspects of design information. A 

comprehensive design model is needed to integrate various aspects o f design 

information, and design knowledge needs to be effectively used to measure the 

similarity o f designs and to guide the process of adaptation. Fractal theory, which has 

been adopted in the field o f manufacturing systems design and analysis (Wamecke, 

1993), promises to help design modelling and the reuse o f design knowledge. An

introduction o f fractal based thinking is presented in the next section.
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2.4 Fractal based thinking

The “fractal factory” idea was introduced by Wamecke (Wamecke, 1993). A fractal is 

“an independently acting corporate entity whose goal and performance can be 

precisely described”, and it has following characteristics:

> Self-similarity

Fractals are self-similar; each one performs services.

>  Self-organisation

Operatively, procedures are optimally organised by applying suitable methods. 

Tactically, fractals determine and formulate their goals in a dynamic process and 

decide upon internal and external contacts. Fractals restructure, regenerate and 

dissolve themselves.

> Self-optimisation

The system of goals, which arises from the goals of the individual fractals, is free 

from contradictions and must serve the objective of achieving corporate goals.

>  Goal-orientadon

Fractals are networked via an efficient information and communication system. 

They themselves determine the nature and extent of their access to data.

>  Dynamics and vitality

The performance of a fractal is subject to constant assessment and evaluation.

In recent years, the fractal factory idea has been applied in manufacturing systems. A
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Fractal Manufacturing System (FrMS) (Ryu & Jung, 2003; Ryu et al., 2003) is based 

on the concept o f autonomous cooperating agents referred to as fractals. A conceptual 

structure of FrMS is shown in Figure 2.7. The major component of an FrMS is a Basic 

Fractal Unit (BFU), which consists of five functional modules: observer, analyser, 

resolver, organizer and reporter. A fractal architecture is a hierarchical structure built 

on BFUs. The design of a basic unit incorporates a set of pertinent attributes that can 

fully represent any level in the hierarchy. Theses attributes serve to describe a specific 

structure and a functionality of a particular represented level, as well as its 

coordination with adjacent levels (Tirpak et al., 1992). In other words, the term 

“fractal” can represent an entire manufacturing factory at the top level or a machine at 

the bottom level. Each BFU provides services with an individual goal and acts 

independently. To function as a coherent whole, goal consistency is maintained by a 

goal-formation process. BFUs resolve conflicts through cooperation and negotiation.
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Fractal 
Manufacturing /  

System

Input
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Fractal 2

Fractal 3
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Sub-unit
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Figure 2.7: Conceptual structure of FrMS (Ryu & Jung, 2003)



Engineering design is also fractal in nature because a design problem can be 

considered as a consequence of “sub-designs” acting towards common general goals, 

with each sub-design having its own context and knowledge. A design therefore has 

the potential to be represented in a fractal-like form. This research takes the fractal 

based approach from manufacturing and applies it in the design context. To represent 

a design in a fractal-like form helps externalise design knowledge in a systematic way 

and provide a basis to guide the generation of design concepts based on this design 

knowledge. A fractal-like design model may be integrated with CBR to work in the 

following ways.

>  For design case representation. A fractal-like design model can represent the 

various aspects of design knowledge in a well-structured way. A fractal structure 

supports design concept generation and self-organisation of the design concept 

structure.

> For design case retrieval, the similarity of design models can be measured by 

incorporating design knowledge based on the fractal-like design model.

>  For design case adaptation, a fractal-based adaptation approach can use design 

knowledge such as performance and goals to guide the process o f adaptation. The 

fractal specific characteristics such as self-similarity, self-organisation, 

goal-orientation can also play an important role in the automation of the 

adaptation process.
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As noted before, successful conceptual design has a powerful impact on product 

quality. It is this need which is a primary motivation for the research presented in this 

thesis. The details o f the proposed fractal-based approach will be explained in the 

subsequent chapters. The approach involves three elements:

> Design case representation. This research proposes a new representation 

technique, Fractal-like Design Modelling (FDM), which integrates design 

knowledge in a graph-based form, and has fractal-specific characteristics. This 

will be discussed in Chapter 3.

> Design case retrieval. Based on FDM, a novel method of the similarity 

assessment between a new design and the existing designs is developed. This will 

be explained in Chapter 4.

> Design case adaptation. With the help of fractal characteristics, a new approach 

to adaptive design is developed, which is called fractal-based adaptation. This 

will be addressed in Chapter 5.

These three parts work together to achieve an automated, case-based, conceptual 

design method: Fractal-Based Re-design.

2.5 Summary

In this chapter the research relevant to the work presented in this thesis has been
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reviewed. The background of conceptual engineering design was reviewed from four 

perspectives. Firstly, the literature on engineering design research was reviewed. Two 

widely accepted models o f engineering design process were considered. Secondly, 

conceptual design out of the engineering design process was highlighted. Thirdly, 

intelligent design was reviewed from three perspectives: design modelling, concept 

generation, and concept selection. Then some important AI techniques applied in 

design were discussed. This chapter also reviews the literature on the application of 

CBR techniques to engineering design. Finally, this chapter gives an introduction to 

fractal theory and its relevance to this research.
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Chapter 3

Fractal-like design modelling using attributed graphs

3.1 Preliminaries

This chapter presents a design modelling technique developed to represent design 

knowledge. A new representation technique, Fractal-like Design Modelling (FDM) is 

proposed, which integrates design knowledge in a graph-based form, and has fractal 

specific characteristics. FDM is then used as the basis for assessing the similarity 

between a new design and existing designs, and for adapting a retrieved design to suit 

a new situation, which is presented later in this thesis.

The rest of the chapter is organised as follows: Section 3.2 explains fractal-like design 

modelling in detail; Section 3.3 presents the characteristics of a fractal-like design 

model which can help the process of design.

3.2 Fractal-like design modelling

Design modelling is a basis for case indexing, case retrieval and case adaptation.
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Modelling the different aspects of a product is useful to support conceptual design. As 

mentioned in Chapter 2, the common representations of a design case, e.g. 

feature-based representation, graph-based representation and geometric representation, 

have their own focuses. In order to build a comprehensive design model, it is 

necessary to integrate various aspects of design knowledge.

Usually, design knowledge exists in a variety of forms. It can be related to design 

objects or to a design process. The knowledge is generally used for manipulating 

design objects, showing the next stage in given situations, producing and interpreting 

design specifications and controlling the design process (Preston & Mehandjiev, 

2004). In order to effectively support the process of conceptual design, different types 

of design knowledge need to be defined and modelled in a formal way. This section 

discusses how to model design knowledge. Section 3.2.1 describes how to represent a 

design case. Representing the knowledge related to design objects is discussed in 

Section 3.2.2, and representing the knowledge related to the design process is 

discussed in Section 3.2.3.

3.2.1 Representing a design case in attributed graphs

Usually, a representation of an engineering design is a description o f an engineering 

system expressed in terms of attributes (Arciszewski et al., 1995). Likewise, the 

proposed fractal-like design model applies attributed graphs as a carrier to represent
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design cases. Design knowledge is represented by nodes and relations o f the attributed 

graphs. The function, feature and structure models consist o f primitive units 

comprising Elements (E), Attributes (A) and Relationships (R), which make up a 

graph. This is denoted as G = [E, A, R].

Element

An element is a basic unit. It is represented by a node of a graph. An element can be 

either an abstract entity or a physical entity. For example, in a function model, an

element is a function, which is an abstract entity; whereas in a structure model, an

element is a physical part, which is a physical entity. An element is identified by its 

label (name).

Attribute

Most elements have attributes, e.g., colour, shape, and material. Each attribute has a 

value. The value may be numerical (e.g., the width of a chair), or nominal (e.g., the

material from which a chair is made can be wood or plastic).

65



Relationship

In addition to attributes, relations o f elements are also important to represent a design. 

Relationships between elements are represented by edges in a graph and are described 

with relation variables included in the data structure. If the elements are abstract 

entities, the relationships will be abstract. For example, a seat’s function has two 

abstract entities: to support the legs and to support the back. The relationship between 

these two entities “and” is an abstract relationship. If the elements are real objects, the 

relationships can be abstract or they can be positional relationships involving 

numerical or nominal data. Some examples of the configuration of mechanical 

components are shown as follows:

> A chair is composed o f  a seat, a back, and four legs (abstract relationship);

> The legs are parallel to each other (nominal relationship);

>  The back and the seat lie at an angle o f  60 degrees (numerical relationship).

Using these three primitive units, the models of a design case can next be explained.

3.2.2 Representing knowledge related to design objects

Generally, design knowledge is represented categorically. Coyne et al. (Coyne et al., 

1990) characterised design as concerned with design descriptions, a vocabulary of 

elements, interpretations, and design knowledge in their symbolic model o f a design
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system. Maher et al. (Maher et al., 1995) considered the content o f a design case to be 

design drawings, requirements and solutions, or function-behaviour-structure. Bilgic 

and Fox (Bilgic & Fox, 1996) defined three crucial elements which must be explicitly 

represented in a case base, namely concepts (fit, form, function, behaviour, working 

principle), issues, and requirements. It is believed that design needs a multiplicity of 

representations (Dym, 1994). This research, therefore, proposes to represent different 

aspects of design knowledge by three models: a “Function” model, a “Feature” model 

and a “Structure” model, which originate from the well-known FBS model.

Function model

The function model refers to the purpose of the design and explicitly describes the 

way in which the design is to be used. For instance, the purpose o f a bolt is to connect 

and tighten the components. In a function model, an element is a function and a 

relationship is the abstract interrelation between two functions. A function model can 

be denoted as Gfunctkn^ [E, R].

An example o f a function model of a car body is illustrated in Figure 3.1(a). In the 

figure, the function model o f a car body is composed o f three elements (support 

chassis, protect passengers, and stylise) and three relationships (and, and, and). The 

representation o f the function model in case base is shown in Figure 3.1(b).
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Feature model

A feature model describes the characteristics of a design. It is an extended model 

compared to “behaviour” in an FBS model, which describes the effect o f a design 

after it is used. A feature model not only includes the behaviour of a design, but also 

the important functional and structural characteristics. A feature model represents the 

design in terms of features. Each element corresponds to a feature, which has an 

individual attribute, a set o f attributes or derived attributes taken from elements of 

other models. A feature model can be denoted as Gfeature= [E, A],

An example o f a feature model o f a car body is shown in Figure 3.2(a). The feature 

model of a car body is composed of three elements (behaviour features, function 

features, structure features), and each element has its own attributes. The 

representation o f the feature model in the case base is shown in Figure 3.2(b).
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Stylise

And
And

And
Support Chassis Provide space

for passengers

Figure 3 .1(a): A function model o f a car body

FUNCTION MODEL 

Function-1: Support chassis 

Function-2: Provide space for passengers 

Function-3: Stylise

Relationship ((Function-1, Function-2, and), 

(Function-2, Function-3, and), 

(Function-3, Function-1, and))

Figure 3 .1(b): Representation o f a function model o f a car body in case base
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Length, Width, Height, 

Wheelbase,

Type,

Fuel consumption,

Front track,
Top speed,

Rear track
Acceleration 0-100km/h

Weight

Structure Feature Behaviour FeatureFunction Feature

Figure 3.2(a): A feature model of a car body

FEATURE MODEL

Behaviour feature 

((Length 5029mm) 

(Width 1902mm) 

(Height 1492mm) 

(Wheelbase 2990mm) 

(Front track 1578mm) 

(Rear track 1582mm))

Function feature 

((Type Saloon)

(Fuel consumption 15.5 ltr/100km) 

(Top speed 237km/h)

(Acceleration 0-100km/h 8.1 sec))

Structure feature 

((Weight 1865kg))

Figure 3.2(b): Representation of a feature model of a car body in case base
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Structure model

The structure model concerns the physical organisation o f a design. It exists at three 

levels: assembly model, part model, and geometric model. An assembly model 

consists of elements representing assemblies and relationships signifying the 

connections between the assemblies. An assembly contains attributes describing its 

characteristics and relationships between elements, including nominal and numerical 

relationships. A part model is made up of parts, which are the basic units of a design 

model. A complex design can be considered to be composed o f sets of parts. A part is 

represented by a node in a graph. A node contains all the attributes of a part and a 

relationship can be either nominal or numerical. A geometric model provides a direct 

way to illustrate a design. Each node represents a geometric entity. A geometric entity 

can be any geometric model, e.g. line, curve, and box. There are positional 

relationships between the nodes, which can be nominal or numerical. Among these 

three levels, there are relationships between the assembly model and part model, as 

well as between the part model and geometric model. These relationships are 

subordinate relationships and are abstract. There are two types of relationships, 

therefore, in a structure model: positional relationships (numerical and nominal) and 

subordinate relationships (abstract). A structure model can be denoted as Gstmcture = [E, 

A, R].

Figure 3.3(a) illustrates an example of a structure model o f a car body. At the first
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level, the assembly model comprises three elements: engine compartment, passenger 

cabin, and luggage compartment. Every element has attributes such as length, width, 

and height. The relationships between elements is positional. Similarly, at the other 

levels, the models contain attributed elements with positional relationships among 

them. There are subordinate relationships between the levels, such as the one that 

denotes that the engine compartment is composed of bonnet, front panel, left front 

wing, and right front wing. For simplicity, only the representation o f the assembly 

model in the case base is shown in Figure 3.3(b).

The use of graph-oriented representation to describe a design is intended to enable the 

integration o f different kinds of knowledge expressed in different forms. The notion 

of integration here is, therefore, more in terms of types o f knowledge and concepts 

than just of representation.

3.2.3 Representing design knowledge related to the design process in a fractal 

model

Design knowledge related to the design process, e.g. adaptation knowledge, is 

represented through generalised schemes and stored within individual design cases in 

this research. This research proposes to use fractals to describe these schemes.
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Length,

Width,

Height

Assembly

model

Luggage compartmentEngine compartment

Height
Front panel

Part model;ide Right side Left rear Right re<

panel panel wing wing
Left front wing |ht front wing

Style line 1

Style line 2

GeometricPoint 1, 

Point 2, 

Point 3, 

Point 4

model

Subordinate relationship 

Position relationship

Figure 3.3(a): A structure model of a car body
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ASSEMBLY MODEL

Luggage compartment 

((Length: 1139mm) 

(Width: 1900mm) 

(Height: 850mm))

Passenger cabin 

((Length: 2090mm)

(Width: 1902mm)

(Height: 1120mm))

Engine compartment 

((Length: 1800mm) 

(Width: 1900mm) 

(Height: 746mm))

Position relationship ((engine compartment, passenger cabin, connected), (Passenger cabin, 

luggage compartment, connected))

Subordinate relationship ((engine compartment, bonnet, has), (engine compartment, front panel, 

has), (engine compartment, left front wing, has), (engine compartment, right front wing, has), 

(passenger cabin, roof panel, has), (passenger cabin, left side panel, has), (passenger cabin, right 

side panel, has), (luggage compartment, luggage compartment door, has), (luggage compartment, 

rear panel, has), (luggage compartment, left rear wing, has), (luggage compartment, right rear wing, 

has))

Figure 3.3(b): Representation of an assembly model of a car body in case base
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In a structure model, a part (or a set o f parts) that has particular goals and can provide 

a certain performance to a design is referred to as a fractal. Basic fractal units form a 

fractal model. A fractal model is an extended representation o f a part model and an 

assembly model. In a basic fractal unit, as well as geometric attributes, design 

knowledge is also incorporated to guide the process of adaptation. This research 

proposes to represent design knowledge by Performance and Goal.

Performance describes the task of a fractal. For example, in car body design the 

performance o f an engine compartment is “to provide space for the engine”.

Goal specifies the objective(s) o f a fractal. Each fractal has individual goals which 

cooperate with those o f other fractals. Knowledge of how fractals achieve the ultimate 

goals is integrated into fractals. In this research, it is proposed that a goal consists of 

four parts:

>  An attribute which has effect on the goal.

>  An operation on the attribute, which can be “maximise” or “minimise”.

>  Type of goal, which can be individual goal (:i) (the goals that cannot propagate to 

another level) or corporate goal (:c) (the goals that are able to propagate to 

another level).

> The corporate goal to which this goal contributes.

A goal can be described by a 4-tuple. For example, :G1-G1 (:minimise :volume :c :G1)
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indicates that the goal :G1-G1 is to minimise the volume of the fractal. It is a

corporate goal and its parent goal is :G1.

An example of a basic fractal unit is shown in Figure 3.4, and an example of 

representing an engine compartment as a fractal is shown in Figure 3.5.

A design can be decomposed into a hierarchy o f fractals, with each fractal providing a 

specific problem description and a corresponding solution. Each fractal performs its 

own role in a structure, while all the fractals work together to produce the desired

functions of a design. The term “fractal” can represent an entire fractal model at the

assembly level or a basic fractal unit at the part level. Such a hierarchical stmcture 

allows the use of both specific design knowledge in each fractal and overall design 

knowledge in an entire fractal model. Figure 3.6 shows a fractal structure. The 

structure can be reconfigured according to a change in customer requirements. In 

addition, under this architecture, a series o f knowledge architecture can be generated. 

Each category o f components in the fractals can form their own system. For example, 

goals o f fractals constitute a structure that describes the context and relationship of the 

goals. This information will be used for design adaptation. The detail will be 

discussed in Chapter 5.
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Figure 3.4: An illustration o f a basic fractal unit
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Engine compartment

Sub-Fractals: Bonnet, Front panel, Left front wing, Right front wing 

:performance (list :provide_space_for_the_engine)

Goals

:G1-G1 (list :minimse ivolume :c :G1)

:G3-G1 (list :minimse ilength :i :G3)

Bonnet

performance (list :provide_top_cover_for_the_engine_compartment) 

:G1-G1-G1 (list :minimise :length :i :G1-G1)

Front panel

performance (list :provide_front_cover_for_the_engine_compartment) 

:G1-G1-G4 (list :minimise :width :i :G1-G1)

Left front wing

performance (list :provide_left_side_cover_for_the_engine_compartment) 

:G1-G1-G2 (list :minimise iheight :i :G1-G1)

Right front wing

performance (list :provide_right_side_cover_for_the_engine_compartment) 

:G1-G1-G2 (list :minimise :height :i :G1-G1)

Geometric Information:

Figure 3.5: An example of representing an engine compartment as a fractal
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Figure 3.6: An overview of the fractal structure

79



So far, a fractal-like design model has been introduced. The complete architecture of 

the proposed fractal-like model is illustrated in Figure 3.7. In the figure, function 

model and feature model form the abstract level o f the architecture, and fractal model 

and geometric model make up the physical level.

The approach described above has been implemented using ICAD (KTI, 2001), a 

knowledge-based environment that allows the development of “intelligent” 

conceptual design systems. The ICAD environment only provides basic reasoning and 

knowledge representation facilities (for example, forward and backward chaining, and 

rule and objective-oriented representation). The proposed approach has been coded in 

the ICAD shell. The development language is the ICAD Design Language (IDL), 

which is based on Common Lisp. For an overview o f ICAD and the features that 

motivated its adoption in this research, see Appendix A.

3.2.4 An illustrative example

An example of representing a car body as a fractal-like design model is shown in 

Figure 3.8 to illustrate the proposed fractal-like design model. The ICAD code for the 

example is shown in Appendix B.
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Feature model
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Figure 3.7: A structure o f a fractal-like design model
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FUNCTION MODEL 

Function-1: Support chassis 

Function-2: Provide space for passengers 

Function-3: Stylise

Relationship ((Function-1, Function-2, and), 

(Function-2, Function-3, and), 

(Function-3, Function-1, and))

FEATURE MODEL

Behaviour feature Function feature

((Length 5029mm) ((Type Saloon)

(Width 1902mm) (Fuel consumption 15.5 ltr/100km)

(Height 1492mm) (Top speed 237km/h)

(Wheelbase 2990mm) (Acceleration 0-100km/h 8.1 sec))

(Front track 1578mm)

(Rear track 1582mm)) Structure feature

((Weight 1865kg))

Figure 3.8: An example of representing a car body as a fractal-like design model (to be

continued)
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STRUCTURE MODEL: cb001

Sub-Fractals: Engine compartment, passenger cabin, luggage compartment 

performance (list :provide_space_for_the_engine :provide_space_for_the_passengers 

:provide_space_for_the_luggage)

:G1 (list :minimise :volume :c)

:G2 (list:maximise :comfort :c)

:G3 (list :maximise visualisation :c)

Assembly

model

Engine compartment

Sub-Fractals: Bonnet, Front panel, Left front wing, Right front wing 

performance (list :provide_space_for_the_engine)

: Goals

:G1-G1 (list :minimise volume :c :G1)

:G3-G1 (list :minimise :length :i :G3)

Part model

Bonnet

performance

(list :provide_top_cover_for_the_engine_co 

mpartment)

:G1-G1-G1 (list :minimise Mength :i :G1-G1)

Part model

Front panel 

performance

(list :provide_front_cover_for_the_engine_c 

ompartment)

:G1-G1-G4 (list :minimise :width :i .G1-G1

Part model

Left front wing 

performance

(list :provide_left_side_cover_for_the_engi 

ne_compartment)

:G1-G1-G2 (list :minimise :height :i :G1-G1)

Part model

Right front wing

performance

(list :provide_right_side_cover_for_the_eng

ine_compartment)

:G1-G1-G2 (list :minimise :height :i :G1-G1)

Part model

Passenger cabin Luggage compartment

Figure 3.8: An example of representing a car body as a fractal-like design model (continued)
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3.3 Characteristics of FDM

Characteristics that differentiate FDM from other design modelling techniques 

include self-similarity, self-organisation, goal-orientation, and dynamism.

3.3.1 Self-similarity

The characteristic of self-similarity refers to both the organisation o f fractal structure 

and the manner in which fractals work. In a fractal factory, fractals, which have 

different internal stmctures, are self-similar if  they can generate the same outputs with 

the same inputs without considering their structures, as illustrated in Figure 3.9. A 

design problem can be described as a single black box constituting a transformation 

between input and output. It is possible for problems with identical input and output 

variables to have different internal structures. In other words, there are a variety of 

possible solutions for a problem specification. Each solution may differ from others in 

many respects (features, stmcture etc). However, they are self-similar if they have the 

same performance. This characteristic can be used to substitute one fractal with 

another one to obtain a new solution without changing performance. This will be 

discussed in Section 5.2.2. It is also possible to combine multiple fractals in different 

design cases to create a new design solution.
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internal structureinputs outputs

Figure 3.9: Self-similar fractals with different internal structures (adapted from

Wamecke 1993)



3.3.2 Self-organisation

When confronted with new customer requirements, fractals restructure themselves to 

suit the new situation. The relationships between fractals are reconfigured and the 

fractals are reorganised. This reorganisation o f fractals is normally supported by an 

appropriate design modelling language. The structure o f the whole design can be 

changed depending on the goals o f the fractals and the customer requirements. This 

will be discussed in Section 5.2.2.

3.3.3 Goal-orientation

Each fractal has individual goals. These are networked together from the bottom level 

to the top level to contribute towards corporate goals. The goals of the fractals form a 

structure, a Goal Dependency Graph (GDG), which describes the context of the goals 

and the relationships between them. A GDG starts from corporate goals and ends at 

individual goals. A GDG propagates the corporate goals to individual goals, thus 

facilitating the propagation of goals from the top-level fractals to the bottom-level 

fractals. If there are contradicting or duplicated goals in the GDG, a simplified GDG 

can be built by removing them, and adaptation can be executed according to that. 

These will be further discussed in Section 5.2.2.
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3.3.4 Dynamism

Dynamism, or vitality (Wamecke, 1993), which originated from the field of biology 

or medicine, denotes the “power to sustain life” . In this research, the term dynamism 

is used to describe the adaptability of a fractal in the process of case-based design. 

During its lifetime, a fractal serves a design by modifying its performance and goals 

and cooperating with other fractals. The dynamism of a fractal is determined by the 

“enduring” and “non-enduring” attributes inside it. The idea o f “enduring” and 

“non-enduring” attributes was introduced by Gourashi (Gourashi, 2003). An attribute 

is enduring if it remains unchanged during the life o f a design, and if  the very concept 

of the design will change should the attribute be modified. A non-enduring attribute, 

on the other hand, is an attribute that, if  changed, does not alter the design concept, 

but only creates another instance of it. The more non-enduring attributes a fractal has, 

the more dynamism it gains.

3.4 Discussion

This chapter has proposed a design modelling method named FDM for case-based 

reasoning in conceptual design, which is the first effort to apply fractal theory to 

design modelling. In this method, a design is represented by function model and 

feature model at the abstract level, and by fractal model (including assembly model 

and part model) and geometric model at the physical level. All these representations
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are in the form of attributed graphs. A fractal model is designed for representing the 

knowledge related to the design process, while the other models are designed for 

representing the knowledge related to the design objects. Knowledge related to the 

design objects includes product function, feature and structure, while knowledge 

related to the design process includes performance and goal. A summary of a 

fractal-like design model is shown in Figure 3.10.

Moreover, a fractal-like design model possesses important fractal characteristics, 

which can greatly benefit the process of case-based design in the following aspects:

>  Self-similarity enables the substitution of fractals and the combination o f multiple 

fractals in different design cases.

> Self-organisation facilitates the reorganisation o f fractals.

> Goal-orientation helps guide the process o f case adaptation.

> Dynamism helps realise the adaptability of a fractal.

In addition, FDM has several advantages:

>  It is sufficiently comprehensive to represent engineering design problems in

different fields.

> It helps the recognition o f designs at both an abstract level and a practical level.

> FDM enables the integration o f different kinds o f knowledge expressed in

different forms.
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Figure 3.10: A summary of fractal-like design model
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3.5 Summary

The research reported in this chapter is aimed at developing a systematic approach for 

intelligent case-based design. A design model is at the core of the system. The model 

will be employed to assess the similarity between a new design and the existing 

designs, and to adapt a retrieved design to suit a new situation. The model is in the 

form of attributed graphs containing knowledge about function, feature, structure, 

performance, and goal, and has the fractal characteristics o f self-similarity, 

self-organisation, goal-orientation, and dynamism.

The chapter studied the approach of fractal-like design modelling and discovered the 

key properties of fractals that make it work.

90



Chapter 4

Similarity Assessment on Attributed Graphs in Design Case Retrieval

4.1 Preliminaries

In many CBR systems, case retrieval relies on the similarity between the new problem 

context and cases in the case base. Methods o f grading similarity have been developed. 

However, some methods do not incorporate sufficient product information to allow 

detailed comparisons of similarity among complex designs, while some involve 

complicated geometric comparisons that do not measure similarity according to 

criteria for domain specific technical knowledge (Elinson & Nau, 1997).

This chapter introduces an approach for assessing the similarity o f design models

presented in Chapter 3. Methods of similarity assessment have been reported in the

literature (Smyth & Keane, 1998). As mentioned in Chapter 2, the existing methods

compare either features or structures separately. In order to have a more

comprehensive similarity measure, this research considers both structure and feature

factor. The aim is to develop a method to query a case base o f design models, which

are in the form of attributed graphs containing design knowledge about function,
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feature and structure and to identify existing designs with graphs similar to the target 

problem. Similarity of design models is measured by concurrently applying 

feature-based similarity measures and structure-based similarity measures.

The rest of the chapter is organised as follows: section 4.2 introduces the generation 

of the compared model; section 4.3 describes the proposed approach to measure the 

similarity of designs; section 4.4 gives an example to explain the method.

4.2 Compared model generation

The first step towards case retrieval is to build a compared model. A compared model 

is used to query a case base of design models. Some researchers have constructed a 

Model Dependency Graph as a query, which is a representation o f the design features 

and interdependencies of those design features o f a CAD model (Cicirello & Regli, 

2001). The nodes o f this graph correspond to individual design features and an edge 

between two nodes corresponds to some spatial dependence between the features. As 

discussed in Chapter 3, cases in the case base are represented in three models: 

function model, feature model, and structure model. Accordingly, a compared model 

which is in the form of attributed graphs containing design knowledge about function, 

feature, and structure, needs to be specified to identify existing designs with graphs 

similar to the target problem. The user should be able to select these models by 

preference.
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To begin case retrieval, a user is asked to give a description of function, feature, and 

structure to query the case base. For structures, structure models in the case base can 

be selected as a query. Constructing a compared model that integrates new 

requirements and existing models is the usual method for re-design.

An example o f a compared model is shown in Figure 4.1. Used as the query are: 

functions and their relationships, features (including length, width, height, car type, 

wheelbase, front track, rear track, weight, fuel consumption, and acceleration), and 

input structure (which is “CAB” in the case-base).

4.3 Similarity measure

It is proposed that design similarity is evaluated using a combination of two methods: 

Structure-based similarity evaluation and Feature-based similarity evaluation. The 

structure-based similarity measure is based on the minimum number o f the primitive 

operations on the structure to equalise the target model and the case. It makes a 

premise for easy adaptation, as most retrieval approaches expect that a case, which is 

similar to the target problem, should also be easy to adapt. The feature-based 

similarity measure is a traditional method. It measures similarity by counting the 

number of common features between the case and the target problem (often with 

some priority weighting of features).
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Function 

(Function-1: Support chassis)

(Function-2: Provide space for passengers)

(Function-3: Stylise)

Function Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3, 

Function-1, and))

Input Features

((Length 5029mm)

(Width 1902mm)

(Height 1492mm)

(Wheelbase 2990mm)

(Front track 1578mm)

(Rear track 1582mm)

(Type Saloon)

(Fuel consumption 15.5 ltr/100km)

(Top speed 237km/h)

(Acceleration 0-100km/h 8.1 sec)

(Weight 1865kg))

Input structure

(THE :CASE-BASE :CAB)

Figure 4.1: A compared model
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4.3.1 Structure-based similarity measure

To assess similarity of structure, the equivalence of two graphs needs to be defined 

first. Assume there are two graphs G1 and G2. Ei(G)= \ei(G), e2 (G), ... e„(G)] is used 

to denote the elements at the ith level, in which en(G) is the nth element of graph G in 

level i. Ri(G)= \ri(G), r2(G), ... rn(G)] denotes the relationships between the elements 

in level i and Pi(G)= \pi(G), p 2(G), ... p n(G)\ denotes the relationships between level i 

and level i-1. There is equivalence between graphs G1 and G2 at the ith level, i.e. 

Qi(Gl, G2), as a Boolean variable, is true if and only if:

a. the numbers of elements at the ith level in G1 and G2 are equal;

b. the numbers of relationships at the ith level in G1 and G2 are equal;

c. for each ej(Gl), there is a corresponding ek(G2) such that e /G l)  = ek(G2);

d. for each r /G l) , there is a corresponding rk(G2) such that rj(Gl)= rk(G2)\

e. for eachp /G l) ,  there is a correspondingp k(G2) such thatp j(G l)= p k(G2). 

e/G l)=  ek(G2) if  the labels of the elements are the same. Attributes are not 

considered in assessing structural equivalence, because only structure is of interest 

here; rj(Gl) = rk(G2), pj(G l) = p k(G2) if  the types o f the relationships are the same. Let 

Tj(Gl, G2) be a Boolean variable and Ti(Gl, G2) = Q i A ... A Q i. TtfGl, G2) is true if 

Qi(Gl, G2), Q2(G1, G2),..., Qi(Gl, G2) are all true. Then two graphs G1 and G2 are 

equal if and only if for all i, Tt(Gl, G2) is true.

For ease of adaptation, a cost-based distance calculation method is applied to grade
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similarity. The degree of similarity between G1 and G2 can be determined by 

assessing the minimum number of primitive operations (structural modifications) that 

need to be applied to G l, in order to make G1 and G2 equivalent. Primitive operations 

that can be performed on a graph are adding, removing, and replacing an element or a 

relationship. Adding/removing an element or a relationship is to append/delete an 

element or a relationship to/from a graph. Replacing an element or a relationship is 

the operation of removing an existing element or a relationship and adding a new one. 

The dissimilarity Ds is given by the sum o f the number o f primitive operations as 

shown in Eq. (1).

where n2 is the number o f added/removed elements and relationships; n2 is the 

number of replaced elements and relationships.

In Eq. (1), n2 is multiplied by 2 because the replacement operation involves two steps, 

removal and addition.

The structure-based similarity Ss is defined in Eq. (2), so that the lower the degree of 

dissimilarity is, the more similar the graphs are.

Ds = Z2ni + 2 E n 2 (1)

Ss = 1/ Ds (2)
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This method of accessing similarity is applied to the function model and the structure 

model. Operating on the geometric level o f the structure model is different from 

operating on the other levels. The first difference is that entity types instead of labels 

are compared. As geometric entities may have different names in different designs 

(for example, the same curve can be named curveOOl and curve002 in different cases 

d l  and d2 respectively), elements cannot be identified by their labels. The second 

difference is that only subordinate relationships are compared. There are many 

positional relationships in a geometric model and they can be easily modified and 

generated. It is difficult and unnecessary to compare all the positional relationships in 

a complex design. The collection of subordinate relationships is defined in Figure 4.2. 

The similarity measure for the function model and structure model are defined in 

Figure 4.3 and Figure 4.4.

This method calculates the similarity o f the graph structure, which reflects the 

difficulty of modifying the structure o f a given design model into a target structure. 

Following the similarity measure, all the compared designs are arranged in an 

ascending order of similarity. Two lists are obtained, which respectively represent 

function similarity and structure similarity between a particular design and a given set 

of design cases.
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Repeat

Search the objects in the case base 

if the object is : sub-relations

then write the contents of the object in a list A 

end-if

until the complete case base is searched.

Figure 4.2: Obtaining the subordinate relationships

Repeat

Select a case in the case base 

Repeat

Read an input function

if the input function is in the function model o f the case 

then count equal functions 

end-if

until all the input functions are searched 

Repeat

Read an input function relationship

if the input function relationship is in the function model o f the case 

then count equal function relationships 

end-if

until all the input function relationships are searched 

Count the sum of equal functions and function relationships 

Calculate the dissimilarity 

Sort the cases in an ascending order of similarity 

until the complete case is searched

Figure 4.3: Structure-based similarity measure on function model
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Repeat

Select a case in the case base 

Repeat

Read an element of the input structure 

if the element is in the structure model o f the case 

then count equal elements 

end-if

until all the elements in input structure are searched 

Repeat

Read a subordinate relationship in the input structure 

if the subordinate relationship is in the structure model o f the case 

then count equal relationships 

end-if

until all the subordinate relationships in the input structure are searched 

Count the sum of equal elements and relationships 

Calulate the dissimilarity 

Sort the cases in an ascending order o f similarity 

until the complete case is searched

Figure 4.4: Structure-based similarity measure on structure model
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4.3.2 Feature-based similarity measure

This research proposes that features used for comparison are of two types, as defined 

in Figure 4.5. One is features from the feature model, which are usually attributes 

describing function, stmcture and behaviour. The other type is optional features, 

which are attributes or elements extracted from other models by the user.

The equivalence of attributes is defined as follows:

>  For nominal attributes, they are equal if  the strings are equal.

>  For numerical attributes, they are equal if  they are in the range of tolerance band.

The tolerance bands are given by the user, as shown in Figure 4.6. Taking the first

element in the list of the tolerance band for example, 0.1 indicates that the input 

value Vi and the compared value Vc are equal if  0.9Vc <Vi < l.lV c .

In order to find design cases that are really needed by the designer, features are 

subjectively graded by the user, as shown in Figure 4.7. Let Ne denote the number of 

pairs of features that are equal to each other within a specified tolerance band and Nm 

the number o f features in the presented case that do not exist in the given design. 

Feature-based similarity Sf can be calculated using the following equation:
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.‘optional-features (list (list :passenger-cabin : length
3000)(list :passenger-cabin :width 1902) (list :passenger-cabin :height 1490) 
(list :luggage-compartment :length 529) )

: input-features
(list (the :length) (the :width) (the iheight) (the :wheelbase) (the :fronttrack) 

(the rreartrack)
(the :car-type)(the :fuel-consumption) (the :top-speed) (the :acceleration)
(the :weight))

Figure 4.5: Features for comparison

tolerance-band (list 0.1 0.08 0.05 0.08 0.05 0.05 1 0.1 0.1 0.1 0.3)

Figure 4.6: Tolerance band

weights (list 0.5 0.5 0.2 0.2 0.2 0.2 0.5 0.3 0.3 0.3 0.3)

Figure 4.7: Grades for features
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Sf = Z k iNe- Z k iNm (i—1, ...n, O ^ k -^ 1 ) (3)

where

ki -grades of features,

Ne - number of equal features,

Nm - number of missing features.

Feature-based similarity measures on a feature model and optional features are 

defined in Figure 4.8 and Figure 4.9 below. The sum-up o f these two similarity 

measures are defined in Figure 4.10.
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Repeat

Read a case in the case base 

Repeat

Read an input feature

Find the according feature in the case base 

Read Tolerance-band 

Read Weight

if the features equal in a tolerance-band 

then add Weight to Feature-equal 

end-if

until all the input features are read 

Sort the case by a descending order o f Feature-equal 

until all the cases in the case base are read

Figure 4.8: Feature-based similarity measure on feature model
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Repeat

Read a case in the case base 

Repeat

Read an optional feature

Find the according optional feature in the case base 

Read Tolerance-band 

Read Weight

if the optional features equal in a tolerance-band 

then add Weight to Optional-feature-equal 

end-if

until all the optional features are read

Sort the case by a descending order of Optional-feature-equal 

until all the cases in the case base are read

Figure 4.9: Feature-based similarity measure on optional features
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Repeat

Read an item in the ranking list of feature-based similarity measure on 

optional features as A 

Rank A 

Repeat

Read an item in the ranking list of feature-based similarity measure on 

feature model as B 

if A and B are the same case 

then rank B 

end-if

until A and B are the same case 

Calculate the weighed sum of the ranking of A and B 

Sort the cases according to descending sum 

until all the items in the feature-based similarity measure ranking list are read 

Figure 4.10: Feature-based similarity measure
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4.3.3 Similarity assessment

The previous sections have described two methods of measuring similarity. Compared 

to feature similarity, structure similarity is usually recognised as the first factor to be 

considered, because the aim of similarity evaluation is to use an existing design model 

as the basis for further design. The more similar a structure is to a desired 

specification, the easier the modification will be. On the other hand, feature similarity 

is also important due to the ease with which features can be compared. As for the 

difference between function and structure, function is the basis o f a design and 

determines its purpose, while structure reflects the organisation of the design. With 

regard to structure, an assembly model and a part model represent the general 

organisation of a design; on the other hand, a geometric model explicitly expresses a 

design. As previously mentioned, geometric models are easily modified so that they 

are less important during design reuse. Due to the complex nature of a design, users 

may encounter different situations and may require different similarity measures.

This research proposes a numerical weighting method to address this problem. The 

user may define a parameter w (O ^ w ^ l)  to signify the importance o f each measure. 

The overall similarity measure is the sum of the weighted similarity values. Thus, 

based on the similarity values for the feature model, function model, and specified 

levels of structure model, the overall similarity measure S  can be obtained as follows:
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S  W ] Nfeature W2 ^[function Astructure ( O ^ W j ,  W 2> 00

where Nfeature, Nfunction and Nstructure denote the positions of a design on the lists ranking 

its feature, function, and structure similarity with a given design. wj,w2 and w3 denote 

the weights for feature, function and structure similarity measures. The design with 

the largest S  is the most similar to the specified design. The method of similarity 

assessment is defined in Figure 4.11.

By adopting this weighting method, the user can freely choose from the measures to 

be employed and decide their importance in a particular situation. For example, if 

someone wants to compare the similarity of a function model only, they can set 0 as 

the weights for all the other measurements.

The whole procedure is illustrated in Figure 4.12. The ICAD code for the proposed 

similarity measure approach is shown in Appendix C.
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Repeat

Read an item in the feature-based similarity measure ranking list as A

Rank A

Repeat

Read an item in the ranking list of structure-based similarity measure 

on function model as B 

if  A and B are the same case 

then rank B 

end-if

until A and B are the same case 

Repeat

Read an item in the ranking list of structure-based similarity measure 

on structure model as C 

if A and C are the same case 

then rank C 

end-if

until A and C are the same case 

Calculate the weighed sum of the ranking of A, B and C 

Sort the cases according to descending sum 

until all the items in the feature-based similarity measure ranking list are read

Figure 4.11: Similarity assessment
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Feature-based similarity measure

Feature

model

Structure-based similarity measure
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Optional feature 
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Function

model

Iz w2

Structure model

Part

Model

Assembly

model

Y
W3Iz

Geometric

model

Similarity assessment

Selected design model

Figure 4.12: An illustration of similarity assessment method
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4.4 An illustrative example

Design models o f car bodies are used to exemplify the method. A representation o f a 

car body using style lines is illustrated in Figure 4.13. A car body can be classified 

into three assemblies: engine compartment, passenger cabin, and luggage 

compartment. Each assembled part is composed of a few parts. For example, a 

passenger cabin is composed of roof panel, left side, and right side.

Assume there are three models dO, d l , and d2, where dO is the input model while 

d land d2 are the models in the case base, d l  and d2 are to be compared to dO in order 

to determine which of them is more similar to dO.

Feature-based similarity measure

Table 4.1 shows comparisons between the feature models o f dO and d l  using the 

feature-based similarity measure (Sf). Various features are compared, including type, 

length, width, height, wheelbase, front track, rear track, weight, fuel consumption, top 

speed, and acceleration 0-100km/h. The parametric features require offsets to 

constrain the range o f the equal features, which is given in Figure 4.14. Weights are 

assigned to each feature as shown in Figure 4.15.
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P assen ger  cabin

Engine compartment Luggage compartment

Rear panelLuggagi 

compartrhent door 

Left rear wing

Left side

Bonnet Left front wing Roof panelFront panel

Figure 4.13: Car body represented by style lines

k, Tolerance

band

dO d1 Comparison 

with d1
d2 Comparison 

with d2

Type 0.5 - Saloon Saloon E Compact NE

Length 0.5 +  0.1 5029 4775 E 4262 NE

Width 0.5 +  0.08 1902 1800 E 1751 E

Height 0.2 ±0 .05 1492 1435 E 1408 NE

Wheelbase 0.2 +  0.08 2990 2830 E 2725 NE

Front track 0.2 +  0.05 1578 1512 E 1484 NE

Rear track 0.2 +  0.05 1582 1526 E 1493 NE

Weight 0.3 +  0.2 1865 1570 E 1375 E

Fuel

consumption

0.3 +  1 15.5 12.2 E 9.7 E

Top speed 0.3 +  0.1 237 226 E 201 NE

Acceleration

0-100km/h

0.3 +  0.1 8.1 9.1 NE 11.1 NE

E: equal; NE: not equal

Table 4.1: Comparison of the feature models of dO and d l and o f dO and d2 using S/
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A c c e p t ! [ D e f a u l t ! Cancel!

Cbr
Enter to le ran c  e-band fo r leng th , width, height, wheelbase, f ro n ttra c k , re a rtra c k , c a r- ty p e , fuel-consum ption, top-speed, 
a c c e le ra tio n  and weight (a l i s p  expression)

S e le c t Accept! or D efault! to  use d e fa u lt (0.1 0.08 0.05 0.08 0.05 0.05 1 0.1 0.1 0.1 0 .3 )

[LIST 0.1 0.08 0.05 0.08 0.05 0.05 0 . 1  0 . 1  0 . 2 )

Figure 4.14: Input tolerance band

Choice Mribute

Cbr
E nter w eigh ts  fo r  le n g th , w idth , heigh l 
a c c e le ra t io n  and w eight (a  l i s p  ex pres 

S e le c t  A ccept! o r D efa u lt 

([LIST 0 .5  0.

A cce p t! D e fa u lt ! C an cel!

w heelbase, f r o n t t r a c k ,  r e a r t r a c k ,  c a r - ty p e ,  fu e l-c o n su m p tio n , to p -sp eed , 
ssion)
! to  use d e f a u l t  (0 .5  0 .5  0 .2  0 .2  0 .2  0 .2  0 .5  0 .3  0 .3  0 .3  0 .3 )

5 0 .2  0 .2  0 .2  0 .2  0 .5  0 .3  0 .3  0 .3  0 .3 )

Figure 4.15: Input weights for features
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Table 4.2 shows a comparison between dO and d l  on the optional features using S/. 

Attributes including length, width, and height o f passenger cabin and the length o f 

luggage compartment are extracted from the structure model and used as optional 

features for comparison. As for the feature model, the parametric feature is given a 

tolerance band and every feature is assigned a weight as shown in the table.

According to Table 4.1 and Table 4.2, the result of comparing dO and d l  and dO and 

d2 is listed in Table 4.3.

The feature-based similarity measure 6/-can be calculated according to Eq.(3):

Sf (dO, d l) = Hki Ne-HkiNm = 0.5 X5+0.3 X5+0.2 X 4  = 4.8 

Sf (dO, d2) = E k tN e - E k iN ^  0.5 X2+0.3 X2-0.3 X I  = 1.3

S/(dO, d l) > Sf(dO, d2), which means that from the perspective o f features, d l  is more 

similar to dO.
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kj Tolerance

band

dO d1 Comparison 

with d1
d2 Comparison 

with d2

Passenger

cabin\length

0.5 ±0.1 2090 1967 E 2725 NE

Passenger

cabin\width

0.5 ±0.1 1902 1800 E 1751 E

Passenger

cabin\height

0.3 ± 0 .0 6 1120 1100 E 1000 NE

Luggage

compartmentMength

0.3 ±0 .1 1139 1080 E

'

M

E: equal; M: missing feature; NE: not equal

Table 4.2: Comparison o f the optional features o f dO and d l  and o f dO and d2 using Sf

dO and d1 dO and d2

Number of equal features k= 0.5: 2+3=5, /c=0.5: 1+1=2,

fr=0.3: 3+2=5, /c=0.3: 2+0=2,

k= 0.2: 4+0=4. k=0.2: 1+0=1.

Number of missing features 0 k= 0.3: 1

Table 4.3: Summary of comparison results
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Structure-based similarity measure

Since the function models o f dO, d l  and d2 are all the same,

Ds(fun){dO, dl}=  0,

Ds(fun){dO, d2}= 0,

and S/fun) {dO, d l}  = Ss(fun){dO, d2}.

In this example, the structure-based similarity measure Ss is applied at all the levels of 

the stmcture model. The illustration of the structure models o f dO, d l  and d2 are listed 

in Figure 4.16. Different styles o f lines are used to distinguish the relationships: The 

thick line represents the positional relationship between the parts, which includes 

non-parametric relationship and parametric relationship; the thin line identifies the 

subordinate relationship between parts or between parts and assemblies. As described 

in Section 4.3.1, from Eq. (1) the result o f comparison is obtained as:

Ds(str){dO, dl}=  8,

Ds(str){dO, d2}=25.

Therefore, Ss(str){dO, dl}>  Ss(str){dO, d2j, which means that from the perspective of 

structures, d l is more similar to dO.

So far, the following results have been obtained:
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Passenger
CabinEngine bay

Hatchi Bonnet

Passenger
Cabin

Bonnet Hatch

Passenger
'CabinEngine bay

Bonnet:

(a) (b) (c)

Figure 4.16: Structure models o f (a), (b) and (c)
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Feature-based similarity measure:

Sf (dO, d l) > Sf (dO, d2).

Structure-based similarity measure on function model:

Ss(fun){dO, d l}  = Ss(fun){dO, d2}.

Structure-based similarity measure on structure model including all levels:

Ss(str){dO, dl}>  Ss(str){dO, d2}.

A set of weights is provided by the user to determine the importance of each result, 

which is shown in Figures 4.17 - 4.19. Weights for this example are given as (0.4, 0.3, 

0.3) and the similarity assessment is executed according to Eq. (4):

S(d0, d l)  = 0 .4X 2  + 0 .3 X 2  + 0 .3 X 2  = 2 

S (dO, d2) = 0.4 X I  + 0 . 3 X 2  + 0.3 X I  = 1.3 

S(d0, dl)>  S  (dO, d2).

Thus, the conclusion can be drawn that d l  is more similar to dO than d2. Figure 4.20 

shows the result o f the retrieved case d l. In the figure, a geometric model of d l is 

shown on the left and the structure model o f d l  is shown on the right.
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Choice Attribute

A ccept! D efa u lt!  Cancel!

Cbr
Enter weight fo r  fe a tu re -b a se d  s im i l a r i t y  measure (a  number g re a te r  th an  or equal to  0 and l e s s  than  or equal to  1)

S e le c t  A ccept! or D e fa u lt!  to  use  d e f a u l t  0 .4

[O '..

Figure 4.17: Weights for feature-based similarity measure

Choice Attribute

Accept! | D e fa u ltfj  Cancel! |
Cbr

Enter weight for s tru c tu re -b ased  s im ilc r i ty  measure on function  (a number g rea te r than or equal to  0 and le s s  than or equal 
to  1)

S e lec t Accept! or D efault! to  use d e fa u lt 0.3
joT T

Figure 4.18: Weights for structure-based similarity measure on function model

Choice Attribute

Accept! j D efault! j Cancel!
Cbr

Enter weight fo r s truc tu re-based  s im ila r i ty  measure on s tru c tu re  (a  number g re a te r than or equal to  0 and le s s  than or equal 
to  1)

S e lec t Accept! or D efault! to  use d e fa u lt 0.3
[O ’

Figure 4.19: Weights for structure-based similarity measure on structure model
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\lnttomce Viewport

L: S e le c t H: Hatch R; E ditV ieu  Menu
sh-L: Match sh-M: U nclip sh -.t: E x p l ic i t  S e le c t

Figure 4.20: The retrieved case d l
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4.5 Discussion

This chapter has proposed a new approach to measuring the similarity of designs 

using graph-based representations. It enables the user, when given a new design, to 

query a case base of design models, which are in the form of attributed graphs 

containing design knowledge about function, feature, and structure and to identify the 

existing designs with graphs similar to the new design. A graph consists of elements, 

attributes, and relationships: G = [E, A, R]. Two similarity measure methods 

(structure-based similarity measure and feature-based similarity measure) are applied 

on this form concurrently, in order to perform a complete comparison.

The approach of similarity measure can be outlined as follows:

>  Specify a compared design model.

> Assess feature-based similarity and structure-based similarity.

♦  Feature-based similarity measure on feature model and structure model;

♦  Structure-based similarity measure on function model;

♦  Structure-based similarity measure on structure model;

> Assign weights to each measure.

Compared to the previous methods, the proposed approach has the following 

advantages:
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> It incorporates design knowledge to assess design model similarity. Previous 

research had the problems that product information was insufficiently 

incorporated to compare similarity o f complex designs and that complicated 

geometric comparisons were conducted without taking account of the criteria of 

domain specific technical knowledge. Design is a stage in which human 

knowledge is involved. It is the knowledge rather than the shape model that 

should be compared. In the proposed method, design knowledge such as 

functions, features and structures is extracted and used for the comparison of 

designs.

> It assesses similarity by considering both the features and the structure of the 

product. In previous research, either feature or structure is compared individually, 

which will cause an incomplete comparison. The proposed research develops an 

approach to measure the similarity o f the designs considering all these factors.

>  It achieves flexibility o f measuring similarity. User preference is applied to fulfil 

the designer’s requirements. At different stages o f the similarity assessment 

operation, users are involved by giving their preferences to guide the operation, 

for example, assigning weights, specifying optional features, and selecting the 

levels of structure model to be compared.



4.6 Summary

This chapter has presented a novel approach for measuring similarity of design. At 

first, the generation o f compared model was discussed. A method for measuring the 

similarity between this model and existing models in the case base was then addressed. 

The method consists o f structure-based similarity measure, feature-based similarity 

measure, and similarity assessment. Finally, an example o f the comparison of car 

body was given to exemplify the proposed method.
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Chapter 5

Fractal-based Adaptation and Fractal-Based Re-design

5.1 Preliminaries

Design is a complex open-ended task and it is unreasonable to expect a case base to 

contain representatives of all possible designs. Adaptation is, therefore, a desirable 

capability for case-based design systems. Research in adaptive design considers how 

to adapt existing design cases in order to tackle new design problems. However, case 

adaptation is often considered to be the most difficult part o f a case-based reasoning 

system (Purvis & Pu, 1995). The difficulties arise from the fact that adaptation often 

does not converge, especially if it is not done in a systematic way. Furthermore, in the 

design domain, multiple cases must be considered in conjunction in order to solve the 

new problem, resulting in the difficulty o f how to efficiently combine the cases into a 

global solution for the new problem.

The proposed work develops a systematic approach for adaptation in the CBR process. 

The approach adapts the fractal-like design model, which was discussed in Chapter 3, 

with the help of fractal characteristics. The research presented in this thesis
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investigates an efficient way to develop a systematic method for automating 

adaptation, to investigate the use o f fractal characteristics in adaptation and to use the 

performance and goals o f a design problem to guide the process of adaptation. A 

description of the fractal-based adaptation method is presented with examples in 

Section 5.2. Section 5.3 reports the whole process of Fractal-Based Re-design.

5.2 Fractal-based adaptation

Design case adaptation is a complicated problem solving process. Design case 

adaptation involves identifying the differences between the new and the old design 

contexts and modifying the previous design by taking those differences into account. 

The issues to be addressed in developing an adaptation method include the 

representation of domain knowledge to be used in adaptation and the strategy for 

adaptation.

For strictly engineering optimisation problems, representations should be direct (i.e.

they should encode possible solutions) and parameterised (allowing only for slight

variations). They usually incorporate domain knowledge in order to make the search

more efficient (Kicinger et al., 2005b). Case adaptation can be considered as an

optimisation problem. Traditionally in case-based reasoning, adaptation knowledge

has taken the form of solution transformation rules. Adaptation knowledge structures

and processes can take many forms, from the use of declarative rules for substitutional
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adaptation to the use o f more complex operator-based or derivational knowledge in 

first-principles approaches. In this research, the adaptation knowledge is represented 

through generalised schemes, i.e. fractals, which are stored within the individual 

design cases as discussed in Chapter 3.

In adaptive design, depending on the demands o f the requirements list, the fractal 

structure can be modified by the variation, addition, or omission of individual 

sub-fractals or by changes in their combination. An advantage o f setting up a fractal 

structure is that it allows a clear definition of sub-designs. I f  an assembly can be 

substituted directly as a fractal, the subdivision of the fractal structure can be 

discontinued at a fairly high level o f complexity. In those cases requiring further 

development, the division into sub-fractals o f decreasing complexity can be continued 

until the search for a solution seems promising.

The purpose of re-design can be divided into two. These are modifying the 

performances and improving the goals o f the existing designs. In this research, these 

two issues are resolved with the help o f the fractal characteristics. This research 

proposes performance revision and goal-oriented substitution as the main 

manipulations o f adaptation.
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5.2.1 Performance revision

As discussed in Chapter 3, every design case can be represented as a group of fractals 

working together to deliver a particular overall performance. A description of a new 

design problem is represented as a group o f sub-performances that may be provided 

by a number of fractals. These sub-performances are indexed to identify the fractals. 

The new sub-performances are compared to the sub-performances of the retrieved 

design case as shown in Figure 5.1. The differences between the two sets of 

sub-performances reveal the discrepancies between the two cases. In this way, it can 

be seen where the transformation to the old design case should be applied so as to 

fulfil the new requirements.

Once the discrepancies have been identified, the adaptation process starts. If  there is 

performance discrepancy, the fractals are restructured to adapt to the new design 

problem. The system automatically selects the operation according to the performance 

discrepancies under different situations as outlined below.
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Repeat

Read the performance in the retrieved case 

Add the performance in a list Retrieved-case-performance 

until all the performance is added 

Repeat

Read an item in the list Retrieved-case-performance 

if the item is in the input performance 

then add it in Kept-performance

end-if

until all items in the list Retrieved-case-performance are read 

Removed-performance<- Retrieved-case-performance - Kept-performance 

Repeat

Read an item in the list Kept-performance 

if  the item is in the input performance

then remove it from Input-performance

end-if

until all items in the list Retrieved-case-performance are read 

Added-performance<-Input-performance

Figure 5.1: Comparison o f performance
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> Situation 1: The performances are identical in the new problem and in the old 

case.

> Situation 2: Some performances in the old case are not in the new problem, while 

all performances in the new problem are in the old case.

> Situation 3: Some performances in the new problem are not in the old case while 

all performances in the old case are in the new problem.

> Situation 4: Some performances in the new problem are not found in the old case 

and some performances in the old case are not found in the new problem.

This research proposes the following rules for adapting the design case:

Operation 1: Add component.

Operation 2: Remove component.

> Rule 1: if  it belongs to situation 1, no manipulation is needed.

> Rule 2: if  it belongs to situation 2, those fractals whose performance is not in the

new problem will be “removed”.

> Rule 3: if  it belongs to situation 3, fractals from other cases that contain those 

distinguished performances will be “added”;

> Rule 4: if it belongs to situation 4, which is a combined situation of situation 2 

and situation 3, the solution is to “remove” the redundant fractals and to “add” the 

required fractals.
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The process o f performance revision is defined in Figure 5.2. The ICAD code for 

performance revision is shown in Appendix D.

5.2.1.1 An illustrative example

Presented here is an example o f performance revision for a car body. It is supposed 

that the aim of re-design in this example is to re-design a saloon car body to a 

compact one. At first, the system asks the user for the performances, as shown in 

Figure 5.3. In this example, the performances for a compact car are listed below:

> To provide space for the engine.

> To provide space for the passengers and the luggage.

Then the system asks the user to select the case for re-design as shown in Figure 5.4. 

A saloon car body “cb003” is selected as the re-design object. The performances of 

“cb003” (the saloon car) are listed below:

> To provide space for the engine.

>  To provide space for the passengers.

>  To provide space for the luggage.

As can be seen, the first performance exists in the previous case but the second

performance does not. According to the rules, operations “add” and “remove” are

used to revise the existing design. A fractal providing the second performance is
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selected from the case base to help construct the new design solution. This selection is 

conducted randomly in the case base. The whole process and the result are shown in 

Figure 5.5. As shown in the figure, the passenger cabin in cb002 is used to replace the 

cabin in cb003, and the luggage compartment of cb003 is removed to obtain the 

result.
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Start

Are all the performance 

in the old case now in the 

new problem?

Are all the performance 

in the new problem in the 

old case?

Are all the performance 

in the new problem in the 

old case?

Situation 3 Situation 2 Situation 4

r r r

Rule 3 Rule 2 Rule 4

Output adapted case

Figure 5.2: The process of performance revision
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Cbr

Choice Attribute

A c c e p t ! D e f a u l t ! C a n c e l!

C l i c k  u p  t o  t h r e e  o f  t h e  b u t t o n s  b e l o w  a r i d  c l i c k  " A c c e p t ! "  
o r  c l i c k  " D e f a u l t ! "  t o  s e l e c t  ( " P r o v i d e _ S p a c e _ F o r _ T h e _ E r i g i n e " )

P r o v i  de_Spac e _ F o r _T h e_ E n g i ne

| P r o v i  de_Spac e _ F  o r  _T he_Pas s e n g e r s A n d L  uggage  

Pr o v i  de_Spac e _F  o r  _T he_Pas s e n g e rs j  

Pr o v i de_Spac e_F  o r  _T he_L u g g a g e !

Figure 5.3: Performance selection

Choice Attribute

A c c e p t!  [) e f a u l t ! C a n c e l!

Cbr
E n t e r  t h e  c a s e  n a m e  by c l i c k i n g  o n e  o f  t h e  

o r  c l i c k  " D e f a u l t ! "  t o  u s e  t h e

CbOO1!

Cb0°2j

|cb003

b u t t o n s  b e l o w  a n d  c l i c k  " A c c e p t ! "  
d e f a u l t  c a s e  " C b 0 0 1 "

Figure 5.4: Re-design case selection

1 3 2



FBR c

Re-design object 
cb003

“Performance substitutes’ 
cb002

Figure 5.5: An illustration o f the process o f re-design
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5.2.2 Goal-oriented substitution

Designers often encounter such situations where the existing designs no longer satisfy 

the particular requirements in some specific aspects. In this situation, the aim of 

re-design is to improve the existing design towards particular goals. Goal-oriented 

substitution is developed to solve this kind of problem.

Every fractal has individual goals. As defined in Section 3.3.3, a goal consists of four 

parts:

> An attribute which has effect on the goal.

>  An operation on the attribute, which can be “maximise” or “minimise”.

> Type of goal, which can be individual goal (:i) (the goals that cannot propagate to 

another level) or corporate goal (:c) (the goals that are able to propagate to 

another level).

>  The corporate goal to which this goal contributes.

The goals of each fractal are somewhat different from those o f the others. To achieve 

these goals coherently, goal consistency should be maintained. A goal formation 

process is proposed here. Under the architecture of the fractals, the goals of the 

fractals form a structure that describes the context and relationship of the goals. A 

Goal Dependency Graph (GDG) can be generated. As a graph representing the 

dependencies between the goals, a GDG propagates the corporate goals to individual
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goals. The process o f the input goals propagation is defined in Figure 5.6.

Inside the individual goals, the attributes and the desired operations can be obtained. 

This is the knowledge which guides the design on how to obtain the goals. As some 

operations on the same attributes might be contradicted, these goals will be removed. 

Then a simplified GDG is obtained. The identification of contradicted goals and the 

generation of a simplified GDG are defined in Figure 5.7. These attributes and 

operations can be used as constraints to query the case base. Fractals containing more 

suitable attributes to achieve the goals are selected to substitute the fractals in the 

previous design. The fractal structures after substitution are self-organised by 

changing the specific substituted fractals’ attributes. The characteristic of 

self-similarity guarantees that the performance of the fractals is not affected. The 

generation of substitution is defined in Figure 5.8. The ICAD code for 

goal-orientation substitution is shown in Appendix E.
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Find Individual-goals in the case base and make a list 

Repeat

Read an input goal in the list o f Input-goals 

Repeat

Search in the list o f Individual-goals

if  the corporate goal that individual goal contributes equals the input goal 

then add the individual goal to a list A 

end-if

until all the Individual-goals are searched 

list B<-Add the input goal to list A 

GDG<-Add list B 

until all the input goals are read

Figure 5.6: The process o f input goal propagation
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GDG

Conflict? If aa1=a1 and

aa3=a3 and aa2!=a2

yes no

no

m<=lenqth of b?

yes

yes no

n<=length of GDG?

simplified GDG = remove c from GDG

m=m+1

m,n=1

bb=bb+a

c=c+bb; n=n+1

aa=mth goal in b

a=nth goal in the GDG

b=Remove a from the GDG

a1 =1 st element of a; a2=2nd element of a; a3=3rd element of a

aa1=1st element of aa; aa2=2nd element of aa; aa3=3rd element of aa

Figure 5.7: The process o f generation of simplified GDG
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Repeat

Read a goal in SGDG as A 

Repeat

Search in the case base

Check the name o f object B

If  object B is the fractal where A is from

Then if  the attribute o f B > the attribute of A

and Operation on attribute of A is maximise 

or if  the attribute o f B < the attribute of A 

and Operation on attribute of A is minimise 

then substitute B to replace A

end-if

end-if

until a substitution is found or all the case base are searched 

until all the items in SGDG is read

Figure 5.8: Definition of generation of substitution
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5.2.2.1 An illustrative example

The following is an example of automated adaptive design for goal-oriented 

substitution for a car body. The structure of the goals is illustrated in Figure 5.9. As 

can be seen in the figure, G l, G2 and G3 are affected by the sub-goals in the lower 

layered fractals. For example, G l is affected by G l-G l, G1-G2 and G1-G3 in engine 

compartment, passenger cabin and luggage compartment, and G l-G l is affected by 

another lower layered fractals. Figure 5.10 shows the GDG of the goals, which 

illustrate the dependencies between the goals, and shows how the corporate goals G l, 

G2 and G3 propagate to individual goals.

Suppose the aim of re-design is to improve all three goals. As can be seen, :G1-G2 

(list m inim ise : volume :c :G1) and :G2-G1

(list maxim ise :volume :c :G2), :G1-G2-G1 (list m inim ise :height :i :G1-G2) 

and :G2-G1-G1 (list m axim ise rheight :i :G2-G1), :G1-G2-G4

(list m inim ise :length :i :G1-G2) and :G2-G1-G3 

(list maxim ise dength :i :G2-G1), :G1-G2-G3 (list m inim ise dength :i :G1-G2) 

and :G2-G1-G2 (list m axim ise dength d :G2-G1) are contradicted. So these goals are 

removed, and a simplified GDG is:

:G1->(:G1-G1-G1 :G1-G1-G4 :G1-G1-G2 :G1-G1-G3 :G1-G2-G2 .G1-G3-G1 :G1-G 

3-G4 :G1-G3-G3 :G1-G3-G2) :G3-> (:G3-G1)
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G1 G2 G3

Engine compartment Luggage compartmentPassenger caroin

G1-G3-G1G1-G1-G1 G1-G2-G1

G2-G1

G1-G3-G2G1-G1-G2 G1-G2-G2
G1-G2

G1-G3
G1-G1 G3-G1

G1-G3-G3G1-G1-G3 G1-G2-G3 G2-G1-G1

G1-G2-G4G2-G1-G2G1-G2-G4
G1-G1-G4

Figure 5.9 (a): Structure o f the goals o f a case o f a saloon car body
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:G1 (list :minimise ivolume :c)

:G2 (list :maximise icomfort :c)

:G3 (list :maximise :visualisation :c)

Engine compartment :G1-G1 (list :minimise :volume :c :G1) :G3-G1 (list iminimise :length :i :G3) 

Bonnet :G1-G1-G1 (list iminimise ilength :i :G1-G1)

Front panel :G1-G1-G4 (list iminimise iwidth :i :G1-G1)

Left front wing :G1-G1-G2 (list iminimise iheight :i :G1-G1)

Right front wing :G1-G1-G3 (list iminimise iheight :i :G1-G1)

Passenger cabin ;G1-G2 (list iminimise ivolume :c :G1) :G2-G1 (list imaximise ivolume :c :G2) 

Roof panel:G1-G2-G1 (list iminimise iheight :i :G1-G2) :G1-G2-G2 (list iminimise iwidth :i :G1-G2) 

:G2-G1-G1 (list imaximise iheight :i :G2-G1)

Leftside :G1-G2-G4 (list iminimise ilength :i :G1-G2)

:G2-G1-G3 (list imaximise ilength :i :G2-G1)

Right side :G1-G2-G3 (list iminimise ilength :i :G1-G2)

:G2-G1-G2 (list imaximise ilength :i :G2-G1)

Luggage compartment :G1-G3 (list iminimise ivolume :c :G1)

Luggage compartment door :G1-G3-G1 (list iminimise ilength :i :G1-G3)

Rear panel :G1-G3-G4 (list iminimise iwidth :i :G1-G3)

Left rear wing :G1-G3-G3 (list iminimise iheight :i :G1-G3)

Right rear wing :G1-G3-G2 (list iminimise iheight :i :G1-G3)

Figure 5.9 (b): The goals o f a case o f a saloon car body
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G1

G2 G3

G1-G2

G1-G3

G1-G1

G3-G1G2-G1

G1-G3-G3

G1-G3-G2

G1-G3-G4

G1-G3-G3

G1-G3-G4

G1-G3-G2

G1-G3-G1

G1-G3-G1

G1-G1-G4

G1-G1-G1

G1-G1-G2

G1-G1-G3

G2-G1-G1

G2-G1-G2

Figure 5.10: The GDG of a case o f a saloon car body
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These goals are used as constraints to query the case base for the fractals. In this 

example, bonnet with minimised length, front panel with minimised width, left front 

wing with minimised height, right front wing with minimised height, roof panel with 

minimised height, luggage compartment door with minimised length, rear panel with 

minimised width, left rear wing with minimised height, right rear wing with 

minimised height and engine compartment with minimised length are searched in the 

case base. If  they are found, they will be used to substitute the according fractals of 

the re-design object.

5.3 Fractal-Based Re-design (FBR)

So far, with the adaptation strategies discussed in the previous section, together with 

case representation and case retrieval discussed in Chapter 3 and Chapter 4, a 

complete case-based design system has been established. These three parts are 

integrated as a systematic approach which can help the designer query a case base of 

design models, identify similar existing designs and adapt the retrieved design to suit 

the new situation. The framework of Fractal-Based Re-design (FBR) is illustrated in 

Figure 5.11. As shown in the figure, FBR starts with a design model describing the 

design requirements. Then the query model is compared to the models in the case base 

by a feature-based similarity measure and by a structure-based similarity measure. 

Next, these two similarity measures are assessed to determine the most similar cases 

in the case base compared to the query model. This case is then used as the base for
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Specifying the query 
requirements---------------- Design Model

Assign weights
Feature-based similarity measureand tolerance band

Assign weights Case
Structure-based similarity measure

retrieval

Assign weights

Similarity assessment

© -
Assign weightsUser Retrieved design modeland tolerance band

Adaptive

design
Specify performanc 3

Performance revision

Specify goals
Goal-oriented substitution

Adapted design model

Figure 5.11: The framework o f FBR
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adaptive design. The user can choose to re-design according to performance or goals. 

Finally, the adapted design model is achieved. The designer is involved in the whole 

process of FBR by specifying inputs at each step. The designer can also assign 

weights to manipulations to control the process. Furthermore, the process can start not 

only with design requirements, but also start from the middle o f the process, i.e. the 

designer can specify an existing model and begin adaptive design straight away. The 

ICAD code for FBR is shown in Appendix F.

5.4 Discussion

Adaptive design is a method used for conceptual design. With this method, when the 

design team is confronted with a new design problem, an old design case, which has 

some similarity to the requirements for the new design problem, can be retrieved and 

then modified to suit those new requirements. An advantage o f this method is that 

most of the design knowledge is available once a design case has been retrieved. Only 

minor changes are required so as to modify the old design case.

Two main issues are involved in adaptive design. The first is the representation of the 

domain knowledge for the adaptation. In FBR, adaptation knowledge is distributed 

over fractals. The second is the strategy for adaptation. This chapter has addressed the 

strategy for adaptation. Design knowledge, such as performance and goals, is 

employed to develop a systematic method for automating adaptation. Performance
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revision adapts a design by substituting fractals according to the identified 

performance; goal-oriented adaptation provides an efficient way for adaptation by 

using the goals of a design problem to guide the process o f adaptation. The fractal 

specific characteristics such as self-similarity, self-organisation, goal-orientation play 

an important role in the automation of the adaptation process.

This chapter has also addressed Fractal-Based Re-design as a whole CBR process. 

FBR is intended to be a formal framework for tasks that include reasoning about 

design, formulating new design solutions, and the development o f computer-based 

design aids. FBR aids in thinking about design at both the abstract and the practical 

levels and realises the automation of design processes.

5.5 Summary

In this chapter, the fractal-based adaptation strategy was presented with examples in 

Section 5.2. This included performance revision and goal-oriented substitution. Then 

Section 5.3 presented the whole process o f FBR.
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Chapter 6

A Case Study of Fractal-Based Re-design in Automotive Body Design

6.1 Preliminaries

Through the use of a case study, this chapter describes how the approach to 

conceptual design proposed in this thesis can be applied to support the design o f an 

engineering product. The chapter starts with a short review o f automotive body design 

in Section 6.2. A case study in automotive body design is presented in Section 6.3 and 

the results are discussed in Section 6.4.

6.2 Automotive body design

Automotive body design is a crucial task in automotive development. Body design has 

a profound impact on the vehicle's appeal and function. The body is the most 

expensive component of the vehicle to manufacture. It is designed under constraints 

arising from aesthetic considerations, structural and functional requirements, cost 

concerns and the availability of manufacturing resources. Engineers base their
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judgments on specific experiences with prior designs. However, new engineers begin 

their work without these experiences and even experienced engineers may not have 

had experience with the most relevant designs for a particular problem. Multiple 

information resources exist to aid the design task, such as records o f experiences with 

prior designs, stored in paper and electronic forms. However, it may be difficult or 

excessively time-consuming for engineers to find the information needed. Key 

questions for improving this process are how to provide better access to experiences 

and other engineering knowledge and how to improve the usefulness o f the 

information when it is re-applied (Leake et al., 1999).

6.3 A case study of Fractal-Based Re-design in automotive body design

A case base has been built using the FDM technique proposed in Chapter 3. The 

models of automotive bodies in the case base are illustrated in Figure 6.1. Design 

knowledge such as functions, features, structures, performance and goals is 

represented as shown in the figure.
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Cb001

FUNCTION MODEL 

Function-1: Support chassis 

Function-2: Provide space for passengers 

Function-3: Stylise

Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3, 

Function-1, and))

FEATURE MODEL

Behaviour feature Function feature

((Length 5029mm) ((Type Saloon)

(Width 1902mm) (Fuel consumption 15.5 ltr/100km)

(Height 1492mm) (Top speed 237km/h)

(Wheelbase 2990mm) (Acceleration 0-100km/h 8.1 sec))

(Front track 1578mm)

(Rear track 1582mm)) Structure feature

((Weight 1865kg))

STRUCTURE MODEL

Sub-Fractals: Engine compartment, passenger cabin, luggage compartment

performance (list :provide_space_for_the_engine :provide_space_for_the_passengers

:provide_space_for_the_luggage)

:G1 (list :minimise :volume :c) Assembly j

:G2 (list :maximise :comfort :c)
model

:G3 (list :maximise visualisation :c)

Figure 6.1 (a): The model o f  automotive body in the case base :Cb001
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Cb002

FUNCTION MODEL 

Function-1: Support chassis 

Function-2: Provide space for passengers 

Function-3: Stylise

Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3, 

Function-1, and))

FEATURE MODEL

Behaviour feature 

((Length 4262mm) 

(Width 1751mm) 

(Height 1408mm) 

(Wheelbase 2725mm) 

(Front track 1484mm) 

(Rear track 1493mm))

Function feature 

((Type Compact)

(Fuel consumption 9.7 ltr/100km) 

(Top speed 201 km/h)

(Acceleration 0-100km/h 11.1 sec))

Structure feature 

((Weight 1375kg))

STRUCTURE MODEL

Sub-Fractals: Engine compartment, passenger cabin, luggage compartment 

performance

(list :provide_space_for_the_engine :provide_space_for_the_passengers_and luggage)

:G1 (list :minimise :volume :c)

:G2 (list :maximise :comfort :c)

:G3 (list :maximise visualisation :c)

Assembly

model M ,r̂

Figure 6.1 (b): The model of automotive body in the case base: Cb002
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Cb003

FUNCTION MODEL 

Function-1: Support chassis 

Function-2: Provide space for passengers 

Function-3: Stylise

Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3, 

Function-1, and))

FEATURE MODEL

Behaviour feature 

((Length 4775mm) 

(Width 1800mm) 

(Height 1435mm) 

(Wheelbase 2830mm) 

(Front track 1512mm) 

(Rear track 1526mm))

Function feature 

((Type Saloon)

(Fuel consumption 12.2 ltr/100km) 

(Top speed 226km/h)

(Acceleration 0-100km/h 9.1sec))

Structure feature 

((Weight 1570kg))

STRUCTURE MODEL

Sub-Fractals: Engine compartment, passenger cabin, luggage compartment 

performance (list :provide_space_for_the_engine :provide_space_for_the_passengers 

:provide_space_for_the_luggage)

:G1 (list :minimise :volume :c)

:G2 (list :maximise :comfort :c)

:G3 (list :maximise visualisation :c)

Assembly

m odel

Figure 6.1 (c): The model o f automotive body in the case base: Cb003
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Cb004

FUNCTION MODEL 

Function-1: Support chassis 

Function-2: Provide space for passengers 

Function-3: Stylise

Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3, 

Function-1, and))

FEATURE MODEL

Behaviour feature Function feature

((Length 4100mm) ((Type Compact)

(Width 1700mm) (Fuel consumption 13.7 ltr/100km)

(Height 1400mm) (Top speed 210km/h)

(Wheelbase 2750mm) (Acceleration 0-100km/h 11.5sec))

(Front track 1484mm)

(Rear track 1493mm)) Structure feature

((Weight 1500kg))

STRUCTURE MODEL

Sub-Fractals: Engine compartment, passenger cabin, luggage compartment 

performance

(list :provide_space_for_the_engine :provide_space_for_the_passengers_and_luggage) 

:G1 (list :minimise :volume :c)

:G2 (list :maximise :comfort :c)

:G3 (list :maximise visualisation :c)

Figure 6.1 (d): The model o f  automotive body in the case base: Cb004

Assembly

model
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Cb005

FUNCTION MODEL 

Function-1: Support chassis 

Function-2: Provide space for passengers 

Function-3: Stylise

Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3, 

Function-1, and))

FEATURE MODEL

Behaviour feature Function feature

((Length 4569mm) ((Type Estate)

(Width 1853mm) (Fuel consumption 39.2 ltr/100km)

(Height 1674mm) (Top speed 198km/h)

(Wheelbase 2795mm) (Acceleration 0-100km/h 8.3sec))

(Front track 1524mm)

(Rear track 1542mm)) Structure feature

((Weight 1820kg))

STRUCTURE MODEL

Sub-Fractals; Engine compartment, passenger cabin, luggage compartment 

performance

(list :provide_space_for_the_engine :provide_space_for_the_passengers_and luggage) 

:G1 (list :minimise :volume :c)

:G2 (list :maximise :comfort :c)

:G3 (list :maximise visualisation :c)

Figure 6.1 (e): The model o f automotive body in the case base: Cb005

Assembly

model
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Cb006

FUNCTION MODEL 

Function-1: Support chassis 

Function-2: Provide space for passengers 

Function-3: Stylise

Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3, 

Function-1, and))

FEATURE MODEL

Behaviour feature Function feature

((Length 5500mm) ((Type Saloon)

(Width 2000mm) (Fuel consumption 19.5 ltr/100km)

(Height 1492mm) (Top speed 180km/h)

(Wheelbase 2990mm) (Acceleration 0-100km/h 10.1 sec))

(Front track 1578mm)

(Rear track 1582mm)) Structure feature

((Weight 2000kg))

STRUCTURE MODEL

Sub-Fractals: Engine compartment, passenger cabin, luggage compartment 

performance (list :provide_space_for_the_engine :provide_space_for_the_passengers 

:provide_space_for_the_luggage)

:G1 (list :minimise :volume :c)

:G2 (list :maximise :comfort :c)

:G3 (list :maximise visualisation :c)

Figure 6.1 (f): The model o f automotive body in the case base: Cb006

Assembly

model
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Cb007

FUNCTION MODEL 

Function-1: Support chassis 

Function-2: Provide space for passengers 

Function-3: Stylise

Relationship ((Function-1, Function-2, and), (Function-2, Function-3, and), (Function-3, 

Function-1, and))

FEATURE MODEL

Behaviour feature 

((Length 4871mm) 

(Width 1855mm) 

(Height 1372mm) 

(Wheelbase 2781mm) 

(Front track 1567mm) 

(Rear track 1584mm))

Function feature 

((Type Saloon)

(Fuel consumption 19.1 ltr/100km) 

(Top speed 248km/h)

(Acceleration 0-100km/h 4.6sec))

Structure feature 

((Weight 1785kg))

STRUCTURE MODEL

Sub-Fractals: Engine compartment, passenger cabin, luggage compartment 

performance (list :provide_space_for_the_engine :provide_space_for_the_passengers 

:provide_space_for_the_luggage)

G1 (list :minimise :volume :c)

G2 (list :maximise :comfort :c)

G3 (list :maximise visualisation :c)

Assembly

model

Figure 6.1 (g): The model of automotive body in the case base: Cb007
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To query the case base, a set o f requirements for the desired product can be 

formulated based on the requirements for an automotive body. The set o f requirements 

for the design o f this new automotive body are presented in Table 6.1. These 

requirements are implemented in an ICAD input model to query the FBR system. This 

is presented in Figure 6.2. Then the user is asked whether he wants to retrieve a case 

only or to retrieve and adapt a case, as shown in Figure 6.3. In this example, the user 

selects to retrieve and adapt. Using the similarity assessment method proposed in 

Chapter 4, the similarity between the input model and the cases in the case base is 

measured, and the most similar case is retrieved. Figure 6.4 shows the result of 

retrieval. By tracing into “lisp-listener”, it can be found that it is the case “cb007” that 

has been retrieved. The system next asks the user to select the adaptation method. 

According to the initial requirement, the user selects the goal-oriented substitution as 

the method to be used in adaptation as shown in Figure 6.5. The method is as 

described in Chapter 5. By tracing into “lisp-listener”, the simplified GDG is 

generated as shown in Figure 6.6. It indicates that the FBR is looking for maximised 

“roof panel height”, maximum “right side length”, maximum “left side length” and 

minimised “engine-compartment length”. The detail o f goal-oriented adaptation is 

illustrated in Table 6.2. In the table, it can be found that the retrieved roof panel 

(ROOFPANEL007), right side (RIGHTSIDE007), left side (LEFTSIDE007), engine 

compartment (EC007) have been substituted by ROOFPANELOOl, RIGHTSIDE 001, 

RIGHTSIDE001 and EC001. This is because the latter fractals are able to maximise 

or minimise the particular attributes to realise the goals. As shown in the table, the
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engine compartment EC001 directly substitutes EC007, while the others substitute 

only the structure without changing the dimensions. This is because the engine 

compartment is a fractal at the assembly level and the others are at the part level. 

Fractals at assembly level can be substituted as a whole, while the dimensional 

changes made at part levels may affect other parts. Finally, the result o f adaptation is 

presented in Figure 6.7.
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Feature Requirement

Car-type Saloon

Length About 4700mm

Width About 1700mm

Height About 1300mm

Wheelbase About 2900mm

Front track About 1600mm

Rear track About 1600mm

Fuel-consumption About 201tr/ 100km

Top-speed 220km/h

Length o f passenger-cabin 2400mm

Width o f passenger-cabin 1700mm

Height o f passenger cabin 1300mm

Goal “to maximise visualisation and comfort”

Table 6.1: A design specification for the automotive design
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FUNCTIONS: C L I S T  : S U P P O R T - C H A S I S  : P R O T E C T - P A S S E N G E R  : S T !  
Y L I N G )

FUNCTIOH-RELATIONSHIP:
(  L I S T  : S U P P O R T - C H A S I S - A N D - P R O T E C T - P A S S E N G E R  ! 
: P R O T E C T - P A S S E N G E R - A N D - S T Y L I N G  : S T Y L I N G - A N D - !  
S U P P O R T - C H A S I S )

LENGTH: 4 7 0 0
WIDTH: 1 7 0 0
HEIGHT: 1 3 0 0

WHEELBASE: 2 7 0 0

FRONTTRACK: 1 6 0 0
REARTRACK: 1600
CAR-TYPE: : S A L O O N
FUEL-CONSUMPTION: 2 0

OPTIOHAL-FEATURES:
( L I S T  ( L I S T  : P A S S E N G E R - C A B I N  : L E N G T H  2 4 0 0 )  ( !  
L I S T  : P A S S E N G E R - C A B I N  : W I D T H  1 7 0 0 )  ( L I S T  : P A !  
S S E N G E R - C A B I N  : H E I G H T  1 3 0 0 ) )

WEIGHTS: ( L I S T  0 .  5  0 .  5  0 .  5  0 .  5  0 .  5  0 .  5  0 .  5  0 .  5  0 .  5  0 . !
5)

TOLERANCE-BAND: ( L I S T  0 . 1  0 . 0 8  0 .  0 5  0 . 0 8  0 .  0 5  0 . 0 5  0 . 2 )
WEIGHT S-OPTIONAL-FEATURES: ( L I S T  0 . 5  0 . 5  0 .  5 )
T OL ERANCE-BAND-OPTIONAL-FEAT URES: |( L I S T  0 . 1  0 . 1  0 . 1 )
W1: 1
W2: 0
W3: |0

Figure 6.2: Inputs to query the FBR system

Choice Attribute

A c c e p t ! D e f a u l t ! C a n c e l!

Cbr
D o  y o u  n e e d  t o  r e t r i e v e  o r  r e t r i e v e  a n d  a d a p t  a  d e s i g n ?  ( c h o o s e  o n e )  

S e l e c t  A c c e p t !  o r  D e f a u l t !  t o  u s e  d e f a u l t  " R e t r i e v e "

R e t r ie v e j  

jR e t r ie v e  And A d ap t

Figure 6.3: Selection o f retrieval or adaptation
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♦i" IC A D Ib c r  I n l c r f a t a  0 0 M 1 N 1 4

ICAD F i le  E d it In s lu iiL t Tree Op H uns C rupliits
Jndance Vitnpori

L: S e le c t M: Match R: EditV ieu  Menu
sh-L: Match sh -li: U ncllp  sh-R: E x p l ic i t  S e le c t

J . B j H

For Display 
Engine-Conpai tn e n t
  Bonnet

tO S\ \ \  S urf 1 
\ \  'R igh t f ro n tu in g

W\ \  \surf-?
\ T e f tf ro n tu ln g

\ ^S urf-3  
'Front panel 1

NNL-2 
NSur f-3  

T’as  s enger Cabi n 
V ~"-R aofpanel

\  \  S u rf-I  
\  'R ig h ts id e\%:i

\  '''•Surf-2
'L e f ts id e

^NL-2 
V L -3  
^S ur f-3  

Luggage C onpartnent 
F~--—Lcdoor

'R iqhtreurtirirai

Figure 6.4: The result of retrieval

Choice Attribute

A c c e p t!  1 D e f a u l t !  C a n c e l!

Cbr
P e r f o r m  a n c  e - r  e v i  s i  i 

S e l e c t  A c c e p t !  o r  D i
o n  o r  g o a l - o r i e n t e d  a d a p t a  
e f a u l t !  t o  u s e  d e f a u l t  " P e

t i o n ?  ( c h o o s e  o n e )  
r f o r m a n c e  R e v i s i o n "

P e r fo rn a n c e  R e v is io n )

|G oal O r ie n te d

Figure 6.5: Selection of adaptation methods
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(OROOFPANEL iMAXIMISE :HEIGHT :I :G2)

(:RIGHTSIDE :MAXIMISE :LENGTH :I :G2)

(:LEFTSIDE :MAXIMISE :LENGTH :I :G2» 

(:ENGINE-COMPARTMENT :MINIMSE :LENGTH :I :G3))

Figure 6.6: Tracing simplified GDG in lisp-listener

Height of 
roof panel

Maximise #<ROOFP
ANEL007
31408>

1372 #<ROOFP
ANEL001
24333>

1492 #<ROOFP
ANEL001
24333>

1372

Length of 
right side

Maximise #<RIGHT
SIDE007
31567>

2781 #<RIGHT
SIDE001
24552>

3000 #<RIGHT
SIDE001
24552>

2781

Length of 
left side

Maximise #<LEFTS
IDE007
31726>

2781 #<LEFTSI
DE001
24769>

3000 #<LEFTSI
DE001
24769>

2781

Length of
engine
compartment

Minimise #<EC007
27085>

1790 #<EC001
27085>

1500 #<EC001
27085>

1500

Table 6.2: Detail o f goal-oriented adaptation
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L: S e le c t M: Match R: EciitVieu Menu
sh-L: Match sh-H: U ncllp  sh-R: E x p l ic i t  S e le c t

Figure 6.7: The result o f adaptation
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6.4 Discussion

In this chapter, it was illustrated how the approach presented in this thesis could be 

applied to support the design of a real-world product. The knowledge that was 

required to design the product was presented, which demonstrated how this can be 

formalised using the fractal-based modelling approach presented in Chapter 3. A 

formal design case for automotive body design was presented. In this case study, each 

model is comprised o f approximately ten basic fractal units, fifty elements, ninety 

attributes and fifty relationships. The entire case base contains about eighty basic 

fractal units, three hundred elements, four hundred attributes and three hundred 

relationships. It was also demonstrated how to use this knowledge to guide the 

process o f design. Measuring the similarity between an input model and existing cases 

was discussed using the method presented in Chapter 4. A goal-oriented substitution 

method was then employed to adapt the retrieved case study product, as presented in 

Chapter 5.

A comparison between the requirements and the results is given in Table 6.3. It can be 

seen that the initial design requirements have been fulfilled. The conclusion can thus 

be drawn that FBR has successfully retrieved and adapted the automotive body 

design.
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Feature # Requirement Retrieved 
ease

Substituting Adapted case 
case

Car-type Saloon Saloon Saloon

Length About
4700mm

4871mm 4581mm

Width About
1700mm

1855mm 1902mm

Height About
1300mm

1372mm 1372mm

Wheelbase About
2900mm

2781mm 2781mm

Front track About
1600mm

1567mm 1567mm

Rear track About
1600mm

1584mm 1584mm

Fuel-consumption About 
201tr/100km

19.11tr/100km 19. lltr/100km

Top-speed 220km/h 248km/h 248km/h
Length o f 
passenger-cabin

2400mm 2781mm 2781mm

Width o f 
passenger-cabin

1700mm 1855mm 1855mm

Height of passenger 
cabin

1300mm 1372mm 1372mm

Height o f roof 
panel

1372mm 1492mm 1372mm

Length o f right side 2781mm 3000mm 2781mm
Length o f left side 2781mm 3000mm 2781mm
Length o f engine 
compartment

1790mm 1500mm 1500mm

Table 6.3: Comparison of the design specification and result of adaptation
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6.5 Summary

A case study in automotive body design was given to demonstrate the successful 

implementation of FBR. The chapter started with a short review of automotive body 

design in Section 6.2. A case study in automotive body design was presented in 

Section 6.3 and the results were discussed in Section 6.4.
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Chapter 7

Conclusions

7.1 Preliminaries

This chapter presents the conclusions of this work, outlines the main contributions of 

the research, and makes recommendations for further studies.

7.2 Conclusions

In Chapter 1, the objectives o f this research were presented. These were as follows:

1) To identify and externalise design knowledge using a fractal-like model.

2) To understand the role o f design knowledge in conceptual design.

3) To use design knowledge as a guide for every stage o f concept development.

4) To provide a framework for supporting conceptual design, using the techniques of 

case-based reasoning and fractal theory, for reasoning about design and 

development o f computer-based design aids.

This section discusses how the research presented in this thesis achieved these
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objectives.

Designers have limited time to build up experience and are, in any event, unlikely to 

become experts in all relevant fields. Design knowledge needs to be captured, stored 

and reused. In Chapter 3, to address objectives 1 and 2, a design modelling technique 

was presented upon which the research reported in this thesis was based. The model is 

in the form of attributed graphs containing design knowledge about function, feature, 

structure, performance and goal. It can represent a design from an abstract to a 

physical level. Knowledge related to both the design objects and to the design process 

is represented. Fractals are introduced to represent the design knowledge related to the 

design process. The presented model has the fractal characteristics o f  self-similarity, 

self-organisation, goal-orientation and dynamism. These characteristics play 

important roles in the process of case-based conceptual design. It can be concluded 

that design knowledge has been successfully externalised using a fractal-like model.

To address objective 3, this research incorporates design knowledge to assess design 

model similarity as described in Chapter 4. Previous research had the problems that 

product information was insufficiently incorporated to compare similarity o f complex 

designs and that complicated geometric comparisons were conducted without taking 

account o f the criteria o f domain specific technical knowledge. Design is a stage in 

which human knowledge is involved. It is the knowledge rather than the shape model 

that should be compared. In the proposed method, design knowledge such as function,
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feature and structure is extracted and used for the comparison o f designs. To address 

objective 3, this research also incorporates design knowledge, such as performance 

and goals, to guide the process of design adaptation as described in Chapter 5. 

Performance revision adapts a design by substituting fractals according to the 

identified performance; goal-oriented adaptation provides an efficient way for 

adaptation by using the goals of a design problem to guide the process of adaptation. 

Therefore, it can be seen that design knowledge has been successfully used as a guide 

for every stage o f concept development.

In addition to fractal theory, the thesis has also shown how CBR can be used to 

support the human designer during conceptual design. In Chapter 4, similarity 

assessment in case retrieval was introduced. Similarity of design models is measured 

by concurrently applying a feature-based similarity measure and a structure-based 

similarity measure. A weighting method is then adopted to assess the results. In 

Chapter 5, adaptation strategies which include performance revision and goal-oriented 

substitution with the help o f fractal characteristics were discussed. The integration of 

the case-based reasoning and fractal theory into a framework for supporting 

conceptual design has been presented to address objective 4. The approach was then 

validated using a case study on the automotive body design problem in Chapter 6. The 

goal to provide computer support for the conceptual design process using CBR and 

fractal theory has, therefore, been achieved.
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7.3 Contributions

The research presented in this thesis has contributed to the area of design modelling 

and knowledge representation. A fractal-like design modelling technique has been 

proposed, which is able to represent various aspects o f design knowledge from 

abstract to physical levels and from knowledge related to design objects to knowledge 

related to design processes.

The research also contributed to the area o f intelligent design. The research, for the 

first time, has applied fractal theory to conceptual design. The important fractal 

characteristics play very important roles from modelling to adaptation. The research 

has achieved the automation of the majority of the tasks involved in conceptual 

design.

Another important contribution has been in the area of case-based design. In particular, 

case retrieval has been conducted by measuring similarity using various aspects o f 

design knowledge; case adaptation has been treated as a performance revision process 

and as a goal-oriented process.

Finally, this work has added a contribution to the area o f similarity measure. A 

combinative feature-based and structure-based similarity measure method has been 

presented.
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7.4 Recommendations

This section presents a number of recommendations for further research. The possible 

topics are as follows:

> Collaborative fractal-based design. In a broader scope, fractals can be regarded as

an agent-based structure and the fractal-based design can be conducted in a

distributed environment. In industry, because o f the distributed nature of the 

design teams, a product is designed through the collective and joint efforts of 

many designers. There is a need to develop a tool in order to support 

collaborative design. Fractals will play a more important role in a dynamic 

collaborative environment.

> Automation o f creative design. Since this research mainly focuses on routine

design, it involves only knowledge related to this particular type. Creative design,

which constitutes the remaining challenge in the area o f design automation, also 

requires a supporting tool. One possible avenue for further study would be the 

development o f tools which assist in modelling the knowledge o f product 

evolution and which can then be used to generate innovative products.

> Integration of a CAD model. The geometric model used to query the case base is 

in the form of a graph model. A real CAD model, e.g. STEP, as a widely used
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geometric format, might be more effectively used to query the case base for a 

similar shape or geometric model.
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Appendix A

An overview of the ICAD system

This appendix outlines the ICAD system and some o f the features that make it 

particularly suitable for the work presented in this thesis.

ICAD is a knowledge-based engineering environment that can be used for developing 

“intelligent” design systems. It consists o f an Emacs editor, in which programs are 

written, and the ICAD browser. The programming language used is the ICAD Design 

Language (IDL), based on Common Lisp.

ICAD uses an engineering methodology known as generative technology to 

encapsulate the essential information required to design, analyse and manufacture a 

product. This information is stored in what is known as an ICAD Product Model. The 

product model represents the engineering intent behind the physical product. It can 

store information such as product information (attributes o f the physical product such 

as geometry, material type, and functional constraints), process information, drawings 

and reports. This makes ICAD different from conventional CAD systems which 

produce models that contain mostly geometric information only. An ICAD product 

model contains all o f the information required by the design. Once an ICAD product 

model is created, an engineer can use it to generate, evaluate, or configure new 

designs simply by changing the input to the model.
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Object-oriented programming; The fundamental building block in IDL is a “Defpart” 

(DEFinition o f a PART). Basically, a “Defpart” represents a class of parts. It is 

composed o f a defpart name, a mixin list (which allows the defpart to be built from 

other defparts), and features (which describe the rules and part structure). Specific 

designs are generated by providing different values for the input parameters. Design 

instances are generated by giving specific input values to a defpart. The process o f 

generating a design instance from a defpart is known as instantiation. By object- 

oriented programming, the design of complex systems is modularised by grouping 

similar parts into the same class; a part can be characterised by using different kinds 

of attributes, not just geometric attributes.

Part-whole representation: Complex parts and systems can be simplified by 

representing them within a tree-like structure. This “product-structure-tree”, as is 

called in ICAD, allows the division of complex assemblies into sub-assemblies. Each 

sub-assembly can be further divided. This more accurately reflects the way that design 

and manufacturing engineers think about design.

Attributes: Attributes provide a way to attach information to a part design. Any kind

of information can be represented in an attribute, including part geometry, engineering

information, process information, etc. These attributes can be written in many ways,

including arithmetic expressions, conditional rules, relationships to other attributes,

database lookups, connections to outside computer programs, and user inputs.

Demand-driven evaluation: The rules that are embedded in a product model are

evaluated only when they are required. For example, if  the system is required to draw
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the geometry o f a model, only those rules required to draw the geometry are evaluated. 

The system will not evaluate rules that determine the weight or cost o f that model 

when drawing the geometry. Once a rule has been calculated, its value is cached until 

it is needed again. The entire assembly structure is demand-driven. Sub-assemblies 

are not computed until they are needed. This means the designer can efficiently work 

on portions of an overall assembly without the system needing to compute the entire 

assembly. Demand-driven evaluation has such advantages: the system functions more 

efficiently; the IDL is order-independent; working on small pieces o f a large model is 

easier; traditional programming problems such as memory management and flow of 

control are avoided.
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Appendix B

Code for case base

This appendix gives the code for case representation. For simplicity, only the code for 

one case is given here. The case base used in this research consists o f a number of 

other cases like this. They are used in conjunction with the other codes listed in 

Appendix C, D, E, and F. This code can be used to illustrate the fractal-like design 

modelling technique discussed in Chapter 3. Part o f this code is used for the 

illustrative example o f Chapter 4, and the code as a whole is used for the example and 

case study of Chapter 5. The code is written in IDL, which is based on Common Lisp.

(defpart case-base ()
:parts
((cab :type cbOOl) (cab-2 :type cb002) (cab-3 :type cb003) (cab- 

4 :type cb004) (cab-5 :type cb005) (cab-6 :type cb006) (cab-7 :type 
cb007)

CASE cbOOl ;;;;;;;;;;;;;;;;;;;

(defpart cbOOl (box)
:attributes
(:functions (list :support-chasis :protect-passenger :stylise)
:function-relationship (list :support-chasis-and-protect- 

passenger :protect-passenger-and-stylise :stylise-and-support-chasis) 
:function-model (append (the :functions) (the :function- 

relationship) )
:width (max (the :engine-compartment rwidth) (the rpassenger- 

cabin :width) (the :luggage-compartment :width))
:length ( + (the ;engine-compartment :length) (the :passenger- 

cabin :length) (the :luggage-compartment : length))
rheight (max (the :engine-compartment :height) (the rpassenger- 

cabin :height) (the :luggage-compartment :height))
:car-type :saloon 
:wheelbase 2990 
:fronttrack 1578
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rreartrack 1582 
:weight 1865 
:fuel-consumption 15.5 
:top-speed 237 
:acceleration 8.1 
:behaviour-feature

(list (the : length) (the rwidth) (the rheight)
(the rwheelbase) (the rfronttrack) (the rreartrack))

rfunction-feature (list (the rear-type) (the rfuel-consumption) 
(the rtop-speed) (the racceleration))

rstructure-feature (list (the rweight))
rfeatures (append (the rbehaviour-feature) (the rfunction-feature) 

(the rstructure-feature)) 
r performance 
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rperformance))
(cc (collect! (defaulting bb () ))))

( (return-when empty? cc))) 
rcorporate-goals (list (the rGl) (the rG2) (the r G3)) 
rGl (list rminimise rvolume rc)
rG2 (list rmaximise rcomfort rc)
rG3 (list rmaximise rvisualisation rc)
r sub-goals 
(let-streams

( (aa (in-tree self))
(bb (defaulting (the-object aa rgoals)))
(dd (the-object aa rname-for-display))
(ee (if (not (equal bb mot-applicable))

(append bb (list (list dd)))
'nil))

(cc (collect! ee )))
((return-when empty? (remove 'nil cc))) )

r reform-sg 
(let-streams

((a (in (the rsub-goals)) )
(b (lastcar a) )
(c (remove b a))
(e (let-streams

((aa (in c))
(bb (append b aa))
(cc (collect! bb)))

((return-when empty? cc))))
(d (collect! e)))

((return-when empty? d)))

r reform-sg2 
(let-streams

((a (in (the rreform-sg)))
(b (stream-append a) ) )

((return-when empty? b)) )

r find-individual-goals 
(let-streams

((aa (in (the rreform-sg2)))
(bb (nth 3 aa))
(individual? (equal bb r i))
(cc (collect-if! individual? aa 'nil)))
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((return-when empty? (remove 'nil cc))))

:sub-relations 
(let-streams

( (aa (in (the :children)))
(bb (the-object aa :name-for-display)) 
(cc (collect! bb)))

( (return-when empty? cc)))
:sub-cases 
(let-streams

( (aa (in (the :children)))
(bb (the-object aa :type))
(cc (collect! bb)))

((return-when empty? cc)))

)

:report-attributes 
(:vrml-out
(write-vrml-file (list self)
"f:/cbOOl.wrl"
:specified-planarity 0.1 
:specified-linearity 0.1 
:camera-on? t))

:parts
((engine-compartment 

:type ecOOl
:position (:bottom 0.0))
(passenger-cabin 
.-type pcOOl
:position (:front (:from (the :engine-compartment) (the :engine- 

compartment :length))))
(luggage-compartment 
:type IcOOl
:position (:front (:from (the :passenger-cabin) (the :passenger- 

cabin : length)) :bottom 0.0 ))
) )

(defpart ecOOl (box)
:attributes 
( :width 1902 
:length 1500 
:height 1000
:performance (list :provide_space_for_the_engine! 
:goals (list (the :G1-G1) (the :G3-G1))
:G1-G1 (list :minimise rvolume :c :G1)
:G3-G1 (list rminimise :length :i :G3)

:sub-relations 
(let-streams

( (aa (in (the rchildren)))
(bb (the-object aa :name-for-display))
(dd (list (the :name-for-display) bb) )
(cc (collect! dd)))

((return-when empty? cc))))

:report-attributes
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(:vrml-out
(write-vrml-file (list self)
"f:/ecOOl.wrl"
:specified-planarity 0.1 
:specified-linearity 0.1 
:camera-on? t))

:parts
((bonnet :type bonnetOOl)
(rightfrontwing :type rightfrontwingOOl) 
(leftfrontwing :type leftfrontwingOOl) 
(frontpanel :type frontpanelOOl)))

(defpart bonnetOOl (box)
:attributes
( : s-l-points-1 (list (the (:edge-center :right : front))

(translate (the (:edge-center :right :top)) :down
100 :front 250)

(the (:vertex :top :right :rear))
)

:s-l-points-2 (list (translate (the (:face-center :front)) :front 
150)

(translate (the (:face-center :top)) :down
50 :front 200)

(the (:edge-center :rear :top))
)

:s-l-points-3 (list (the (:edge-center :left :front))
(translate (the (:edge-center :left :top)) :down

100 :front 250)
(the (:vertex :top :left :rear))

)

:display-controls (merge-display-controls 
' (:color :magenta))

:performance (list :provide_top_cover_for_the__engine_compartment) 
rgoals (list (the :G1-G1-G1))
:G1-G1-G1 (list :minimise :length :i :G1-G1)
:sub-relations 
(let-streams

( (aa (in (the :children)))
(bb (the-object aa :type))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

( (return-when empty? cc))))

:parts
((1-1 :type fitted-wire

rpoints (the :s-l-points-1))
(1-2 :type fitted-wire

:points (the :s-l-points-2))
(1-3 :type fitted-wire

rpoints (the .s-l-points-3))
(surf-1 :type lofted-sheet

:wires (list (the :1-1) (the :l-2) (the : 1 — 3)))

) )

(defpart rightfrontwingOOl (box)
:attributes
(:s-2-points-l (list (the (:edge-center :right :front))
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(translate (the (:edge-center :right :top)) :down
100 :front 250)

(the (:vertex :top :right :rear)))
:s-2-points-2 (list (translate (the (redge- 

center :right :front)) :down 100)
(translate (the (:face-center :right)) :right 100) 
(the (:edge-center :right :rear))

)

:s-2-points-3 (list (the (:vertex rbottom :front :right)) 
(translate (the (redge- 

center :right rbottom)) :right 100)
(the (:vertex :bottom :right :rear) ) )

:display-controls (merge-display-controls 
' (:color rmagenta))

:performance
(list :provide_right_side_cover_for_the_engine_compartment)

:goals (list (the :G1-G1-G2))
:G1-G1-G2 (list :minimise :height :i :G1-G1)
:sub-relations 
(let-streams

( (aa (in (the :children)))
(bb (the-object aa :type))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)) )

( (return-when empty? cc))))

:parts
((1-1 :type fitted-wire

rpoints (the :s-2-points-l) )
(1-2 :type fitted-wire

rpoints (the rs-2-points-2))
(1-3 rtype fitted-wire

rpoints (the rs-2-points-3))
(surf-2 rtype lofted-sheet

rwires (list (the r1—1) (the rl-2) (the rl-3)))

) )

(defpart leftfrontwingOOl (box) 
r attributes
(rs-3-points-l (list (the (redge-center rleft rfront))

(translate (the (redge-center rleft rtop)) rdown
100 rfront 250)

(the (rvertex rtop rleft rrear))
)

rs-3-points-2 (list (translate (the (redge- 
center rleft rfront)) :down 100)

(translate (the (rface-center rleft)) rleft 100) 
(the (redge-center rleft rrear))
)

rs-3-points-3 (list (the (rvertex rbottom rfront rleft))
(translate (the (redge- 

center rleft rbottom)) rright 100)
(the (rvertex rbottom rleft rrear))

)

:display-controls (merge-display-controls 
1(rcolor rmagenta))

r performance
(list rprovide_left_side_cover_for_the_engine_compartment) 

rgoals (list (the rGl-Gl-G2)) 
rGl-Gl-G2 (list minimise rheight ri rGl-Gl)
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: sub-relations 
(let-streams

( (aa (in (the :children)))
(bb (the-object aa rtype))
(dd (list (the :name-for-display) bb) )
(cc (collect! dd)))

( (return-when empty? cc))))
:parts
((1-1 rtype fitted-wire

rpoints (the rs-3-points-l))
(1-2 rtype fitted-wire

rpoints (the rs-3-points-2))
(1-3 rtype fitted-wire

rpoints (the rs-3-points-3))
(surf-3 rtype lofted-sheet

rwires (list (the r1 — 1) (the r1 — 2) (the rl-3)))
) )

(defpart frontpanelOOl (box) 
r attributes
(rs-4-points-l (list (the (redge-center rright rfront))

(translate (the (rface-center rfront)) rfront 150) 
(the (redge-center rleft rfront))

)

rs-4-points-2 (list (the (rvertex rbottom rfront rright))
(translate (the (redge- 

center rbottom rfront )) rfront 150)
(the (rvertex rbottom rfront rleft))

)

rdisplay-controls (merge-display-controls '(rcolor rmagenta))
rperformance (list rprovide_front_cover_for_the_engine_compartment)
rgoals (list (the rGl-Gl-G4))
rGl-Gl-G4 (list rminimise rwidth ri rGl-Gl)
r sub-relations
(let-streams

( (aa (in (the rchildren)))
(bb (the-object aa rtype))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

( (return-when empty? cc)))) 
rparts
((1-1 rtype fitted-wire

rpoints (the rs-4-points-l))
(1-2 rtype fitted-wire

rpoints (the rs-4-points-2))
(surf-4 rtype lofted-sheet

rwires (list (the r1—1) (the rl-2) ))
) )

(defpart pcOOl (box) 
r attributes 
(r width 1902 
rlength 3000 
rheight 1492
rperformance (list rprovide_space_for_the_passengers) 
rgoals (list (the rGl-G2) (the rG2-Gl)) 
rGl-G2 (list rminimise rvolume rc rGl) 
rG2-Gl (list rmaximise rvolume rc rG2) 
r sub-relations 
(let-streams

( (aa (in (the rchildren)))
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(bb (the-object aa :name-for-display) ) 
(dd (list (the :name-for-display) bb)) 
(cc (collect! dd)))

((return-when empty? cc))))

:report-attributes 
(:vrml-out
(write-vrml-file (list self)
"f:/pcO 01.wrl"
:specified-planarity 0.1 
:specified-linearity 0.1 
:camera-on? t)

)

:parts 
(

(roofpanel :type roofpanelOOl)
(rightside rtype rightsideOOl)
(leftside rtype leftsideOOl)

) )

(defpart roofpanelOOl (box) 
r attributes
(rs-l-points-1 (list (translate (the 

(rvertex rfront rbottom rright)) rup (the rengine- 
compartment rheight))

(translate (the
(rvertex rtop rfront rright)) rdown 100 rrear 800 rleft 200)

(translate (the (rvertex rtop rrear rright)) rdown 
100 rfront 800 rleft 200)

(translate (the 
(rvertex rrear rbottom rright)) rup (the rluggage- 
compartment rheight))

)

rs-l-points-2 (list (translate (the 
(rvertex rfront rbottom rleft)) rup (the rengine-compartment rheight))

(translate (the (rvertex rtop rfront rleft)) rdown 
100 rrear 800 rright 200)

(translate (the (rvertex rtop rrear rleft)) rdown 
100 rfront 800 rright 200)

(translate (the (rvertex rrear rbottom rleft)) rup 
(the rluggage-compartment rheight))

)

rdisplay-controls (merge-display-controls '(rcolor rmagenta)) 
rperformance (list rprovide_top_cover_for_the_passenger_cabin) 
rgoals (list (the rGl-G2-Gl) (the rGl-G2-G2) (the rG2-Gl-Gl)) 
rGl-G2-Gl (list rminimise rheight ri rGl) 
rGl-G2-G2 (list rminimise rwidth ri rGl) 
rG2-Gl-Gl (list rmaximise rheight ri rG2) 
r sub-relations 
(let-streams

( (aa (in (the rchildren)))
(bb (the-object aa rtype))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc)))) 
r parts
((1-1 rtype fitted-wire

rpoints (the rs-l-points-1))
(1-2 rtype fitted-wire
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:points (the :s-l-points-2))
(surf-1 :type lofted-sheet

rwires (list (the : 1 — 1) (the :l-2) ))
) )

(defpart rightsideOOl (box)
:attributes
(:s-2-points-l (list (translate (the 

(rvertex rfront rbottom rright)) rup (the rengine- 
compartment rheight))

(translate (the
(rvertex rtop rfront rright)) rdown 100 rrear 800 rleft 200)

(translate (the (rvertex rtop rrear rright)) rdown 
100 rfront 800 rleft 200)

(translate (the 
(rvertex rrear rbottom rright)) rup (the rluggage- 
compartment rheight))

)

rs-2-points-2 (list (translate (the 
(rvertex rfront rbottom rright)) rup (- (the rengine- 
compartment rheight) 100))

(translate (the (rface-center rright)) rright
100 rfront 500)

(translate (the (rface-center rright)) rright
100 rrear 500)

(translate (the 
(rvertex rrear rbottom rright)) rup (- (the rluggage- 
compartment rheight) 100))

)

rs-2-points-3 (list (the (rvertex rbottom rright rfront)) 
(translate (the (redge-

center rright rbottum)) rright 100 rfront 500)
(translate (the (redge-

center rright rbottom)) rright 100 rrear 500)
(the (rvertex rbottom rright rrear))
)

rdisplay-controls (merge-display-controls '(rcolor rmagenta)) 
rperformance

(list rprovide_right_side_cover_for_the_passenger_cabin) 
rgoals (list (the rGl-G2-G3) (the rG2-Gl-G2)) 
rGl-G2-G3 (list rminimise rlength ri rGl) 
rG2-Gl-G2 (list rmaximise rlength ri rG2) 
r sub-relations 
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rtype))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc)))) 
r parts
((1-1 rtype fitted-wire

rpoints (the : s-2-points-l))
(1-2 rtype fitted-wire

rpoints (the rs-2-points-2))
(1-3 rtype fitted-wire

rpoints (the rs-2-points-3))
(surf-2 rtype lofted-sheet

rwires (list (the r1—1) (the rl-2) (the rl-3) ))
) )

(defpart leftsideOOl (box)
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:attributes
( :s-3-points-l (list (translate (the 

(:vertex :front rbottom rleft)) rup (the rengine-compartment rheight))
(translate (the (rvertex rtop rfront rleft)) rdown

100 rrear 800 rright 200)
(translate (the (rvertex rtop rrear rleft)) rdown

(rvertex rrear rbottom rleft)) rup

r engine-

400

400

(- (-

(r face-center 

(r face-center

left)) r top 

left)) r top

rear rbottom rleft)) rup

left r front))

rear))

100 rfront 800 rright 200)
(translate (the 

(the rluggage-compartment rheight))
)

rs-3-points-2 (list (translate (the 
(rvertex rfront rbottom rleft)) rup (- (the 
compartment rheight) 100))

(translate (the 
rleft 100 rfront 500)

(translate (the 
rleft 100 rrear 500)

(translate (the (rvertex :
^the rluggage-compartment rheight) 100))

)

rs-3-points-3 (list (the (rvertex rbottom 
(translate (the (redge- 

center rleft rbottom)) rleft 100 rfront 500)
(translate (the (redge- 

center rleft rbottom)) rleft 100 rrear 500)
(the (rvertex rbottom rleft 

)

rdisplay-controls (merge-display-controls '(rcolor rmagenta)) 
r performance

(list rprovide_left _side_cover_for_the_passenger_cabin) 
goals (list (the rGl-G2-G4) (the rG2-Gl-G3))
G1-G2-G4 (list rminimise rlength 
G2-G1-G3 (list rmaximise rlength 
sub-relations 
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rtype))
(dd (list (the rname-for-display) bb) )
(cc (collect! dd)))

( (return-when empty? cc)))) 
rparts
((1-1 rtype fitted-wire

rpoints (the rs-3-points-l) )
(1-2 rtype fitted-wire

rpoints (the rs-3-points-2))
(1-3 rtype fitted-wire

rpoints (the rs-3-points-3))
(surf-3 rtype lofted-sheet

rwires (list (the r1 — 1)

rGl) 
r G2)

(the rl-2) (the rl-3) ))
) )

(defpart IcOOl (box) 
r attributes 
(r width 1900 
rlength 529 
rheight 1000
rperformance (list rprovide_space_for_the_luggage)
rgoals (list (the rGl-G3))
rGl-G3 (list rminimise rvolume rc rGl)
r sub-relations
(let-streams
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((aa (in (the :children)))
(bb (the-object aa :narae-for-display))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

( (return-when empty? cc))))

:report-attributes 
(:vrml-out
(write-vrml-file (list self)
"f:/IcOOl.wrl"
:specified-planarity 0.1 
:specified-linearity 0.1 
:camera-on? t)
)

:parts
( (lcdoor :type lcdoorOOl)
(rightrearwing :type rightrearwingOOl)
(leftrearwing :type leftrearwingOOl)
(rearpanel :type rearpanelOOl)

) )

(defpart lcdoorOOl (box)
:attributes
(:s-l-points-1 (list (the (:vertex :top :right :front))

(the (rvertex :top :right :rear)))
:s-l-points-2 (list (the (:edge-center :front :top))

(translate (the (:edge-center :rear :top)) :rear
150) )

:s-l-points-3 (list (the (rvertex :top :left :front))
(the (rvertex :top :left :rear)))

:display-controls (merge-display-controls 1(:color :magenta))
:performance (list :provide_top_cover_for_the_luggage_compartment) 
:goals (list (the :G1-G3-G1))
:G1-G3-G1 (list :minimise :length :i :G1)
:sub-relations 
(let-streams

( (aa (in (the tchildren)))
(bb (the-object aa :type))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))
:parts
((1-1 :type fitted-wire

:points (the :s-l-points-1) )
(1-2 :type fitted-wire

rpoints (the :s-l-points-2))
(1-3 :type fitted-wire

rpoints (the :s-l-points-3))
(surf-1 :type lofted-sheet

:wires (list (the :1-1) (the :l-2) (the :l-3) ))

(defpart rightrearwingOOl (box)
:attributes
(:s-2-points-l (list (the (:vertex :top :right :front))

(the (:edge-center :right :top))
(the (:vertex :top :right :rear))

)

:s-2-points-2 (list (the (:edge-center :right :front))
(translate (the (:face-center :right)) :right 100)
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(the (:edge-center :right :rear))
)

:s-2-points-3 (list (the (:vertex rbottom :front :right))
(the (:edge-center :right :bottom))
(the (:vertex rbottom :right :rear))

)

:display-controls (merge-display-controls '(:color :magenta)) 
:performance

(list :provide__right_side_cover_f or_the_luggage_compartment) 
rgoals (list (the :G1-G3-G2))
:G1-G3-G2 (list rminimise :height :i :G1)
:sub-relations 
(let-streams

( (aa (in (the .’children)))
(bb (the-object aa :type))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))
:parts
((1-1 :type fitted-wire

rpoints (the :s-2-points-l))
(1-2 :type fitted-wire

.•points (the : s-2-points-2) )
(1-3 :type fitted-wire

rpoints (the :s-2-points-3))
(surf-2 rtype lofted-sheet

rwires (list (the :1-1) (the :l-2) (the :l-3) ))
) )

(defpart leftrearwingOO1 (box)
:attributes
(:s-3-points-l (list (the (rvertex :top rleft :front))

(the (:edge-center rleft rtop))
(the (rvertex rtop rleft rrear))
)

rs-3-points-2 (list (the (redge-center rleft :front))
(translate (the (rface-center rleft)) rleft 100) 
(the (redge-center rleft rrear))

)

rs-3-points-3 (list (the (rvertex rbottom rfront rleft))
(the (r edge-center rleft .-bottom))
(the (rvertex rbottom rleft rrear))

)

rdisplay-controls (merge-display-controls 1(rcolor rmagenta)) 
r performance

(list r provide_left_side_cover_for_the_luggage_compartment) 
rgoals (list (the rGl-G3-G3)) 
rGl-G3-G3 (list rminimise rheight ri rGl) 
r sub-relations 
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rtype))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc)))) 
r parts
((1-1 rtype fitted-wire

rpoints (the rs-3-points-l))
(1-2 rtype fitted-wire

rpoints (the rs-3-points-2))
(1-3 rtype fitted-wire
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rpoints (the :s-3-points-3))
(surf-3 rtype lofted-sheet

rwires (list (the r1 — 1) (the r1 — 2) (the r1 — 3) ))
) )

(defpart rearpanelOOl (box) 
r attributes
(rs-4-points-l (list (the (rvertex rright rrear rtop))

(translate (the (redge-center rrear rtop)) rrear
150)

(the (rvertex rleft rrear rtop))
)

rs-4-points-2 (list (the (rvertex rbottom rright rrear))
(translate (the (redge- 

center rbottom rrear )) rrear 150)
(the (rvertex rbottom rleft rrear))

)

rdisplay-controls (merge-display-controls '(rcolor rmagenta)) 
r performance (list r provide_back_cover_for_the_luggage_compartment) 
rgoals (list (the rGl-G3-G4)) 
rGl-G3-G4 (list rminimise rwidth ri rGl) 
r sub-relations 
(let-streams

( (aa (in (the rchildren)))
(bb (the-object aa rtype))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

( (return-when empty? cc))))

r parts
((1-1 rtype fitted-wire

rpoints (the rs-4-points-l))
(1-2 rtype fitted-wire

rpoints (the rs-4-points-2))
(surf-4 rtype lofted-sheet

rwires (list (the r1—1) (the rl-2) ))
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Appendix C

Code for similarity measure and case retrieval

This appendix shows the ICAD code for the approach o f graph-based similarity 

measure and case retrieval presented in Chapter 4. It is used in conjunction with the 

code o f case base, which is partly presented in Appendix B.

(defpart case-retrieval (box)
: choice-attributes 
(: wl
(:prompt "Enter weight for feature-based similarity measure"
:domain (:number :from 0 :to 1)
:default 0.4)

: w2
(:prompt "Enter weight for structure-based similarity measure on 

function"
:domain (:number :from 0 :to 1)
:default 0.3)

: w3
(:prompt "Enter weight for structure-based similarity measure on 

structure"
:domain (:number :from 0 :to 1) 
rdefault 0.3)

:weights
(rprompt "Enter weights for length,width, height, wheelbase, 

fronttrack, reartrack, car-type, fuel-consumption, top-speed, 
acceleration and weight"

:default (list 0.5 0.5 0.2 0.2 0.2 0.2 0.5 0.3 0.3 0.3 0.3))
:tolerance-band
(:prompt "Enter tolerance-band for length,width, height, wheelbase, 

fronttrack, reartrack, car-type, fuel-consumption, top-speed, 
acceleration and weight"

:default (list 0 . 1 0 . 08 0 . 05 0 . 08 0 . 05 0 . 05 1 0 . 1 0.1 0.1 0.3))
)

:optional-inputs 
(

:functions (list :support-chasis :protect-passenger rstylise)
:function-relationship (list :support-chasis-and-protect- 

passenger :protect-passenger-and-stylise :stylise-and-support-chasis) 
:length 5029 
:width 1902
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:height 1492 
:wheelbase 2990 
:fronttrack 1578 
:reartrack 1582 
:car-type :saloon 
:fuel-consumption 15.5 
:top-speed 237 
:acceleration 8.1 
:weight 1865
:input-structure (the :case-base :cab)
:optional-features (list (list :passenger-cabin :length 

3000)(list :passenger-cabin :width 1902) (list ipassenger- 
cabin :height 1490) (list :luggage-compartment :length 529) )

:weights-optional-features (list 0.5 0.5 0.3 0.3)
:tolerance-band-optional-features (list 0.1 0.1 0.06 0.1)
)

:attributes 
(

:according-optional-features ;;get the according features in the 
case base

(let-streams
((a (in (the :case-contents)))

(case (the :case-base a))
(b (let-streams

( (c (in (the :optional-features)))
(cl (first c))
(c2 (second c))
(d (let-streams

((e (in-tree case))
(el (the-object e :name-for-display))
(equal? (equal el cl))
(f (collect-if! equal? (defaulting (list a el c2 

(the-object e c2))))))
((return-when empty? f)) ) )

(g (collect! d)))
((return-when empty? g))))

(data (collect! b)))
((return-when empty? data)))

:according-optional-features-1 ;; sort according-optional-features 
(let-streams

((a (in (the :according-optional-features)))
(b (stream-append a)))

((return-when empty? b)))

:according-optional-features-2 ;; sort according-optional- 
features-1

(let-streams
((a (in (the :according-optional-features-1)))

(b (stream-append a) ) )
( (return-when empty? b)))

:fbsm-optional-start ;; similarity measure on optional features 
(let-streams

((a (in (the :optional-features)))
(w (in (the :weights-optional-features)))
(tl (in (the :tolerance-band-optional-features)))
(b (let-streams

( (al (first a))
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(a2 (second a))
(a3 (lastcar a))
(c. (in (the : according-optional-features-2)) )
(cl (first c))
(c2 (second c))
(c3 (third c))
(c4 (fourth c))
(match? (and (equal c2 al) (equal c3 a2)))
(equal? (if match? (and (< c4 (+ (* tl a3) a3))

(> c4 (- a3 (* tl a3))))
nil) )

(result (if equal? (list w cl) nil))
(resultl (collect! result)))

( (return-when empty? (remove nil resultl))) )) ; ; ( cl
a3 c4 match? equal? result)

(data (collect! b)))
((return-when empty? data)) )

:fbsm-optional-2 ;; sort fbsm-optional-start, obtain a list of 
(weight, name of case)

(let-streams
((a (in (the :fbsm-optional-start)))

(b (stream-append a) ) )
((return-when empty? b)))

:fbsm-optional 
(let-streams

((a (in (the :case-contents)))
(b (let-streams

((c (in (the :fbsm-optional-2)))
(cl (first c))
(c2 (second c))
(match? (equal a c2))
(count (fby 0 (if match? (+ count cl) count))))

( (return-when empty? (list count a))) (a cl c2 match?
count) ) )

(data (collect! b)))
((return-when empty? (safe-sort data #'> : key # ’first))))

: fbsm
(let-streams

((a (in (the :fbsm-optional)))
(al (first a))
(a2 (second a))
(b (let-streams

((c (in (the :fbsm-feature)))
(cl (first c))
(c2 (second c))
(match? (equal a2 c2))
(count (fby al (if match? (+ count cl) count))))

((return-when empty? (list count a2))) (a cl c2 match?
count) ))

(data (collect! b) ) )
((return-when empty? (safe-sort data # ’> : key #'first))))

:input-features
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(list (the :length) (the :width) (the :height) (the :wheelbase) 
(the :fronttrack) (the :reartrack)

(the :car-type)(the :fuel-consumption) (the :top-speed)
(the :acceleration)

(the :weight) )

:input-functions (append (the :functions) (the :function- 
relationship))

:case-contents 
(let-streams

( (aa (in (the :case-base :children)))
(bb (the-object aa :name-for-display))
(cc (collect! bb)))

((return-when empty? cc)))

:fbsm-feature ;;feature-based-similarity-measure
(let-streams

((a (in (the :case-contents)))
(case (the :case-base a))
(matches (let-streams

((tl (in (the :input-features)))
(t2 (in (the-object case :features)))

(t3 (in (the :tolerance-band)))
(t4 (in (the :weights)))

(feature-equal (if (numberp tl)
(and (< t2 (+ (* t3 tl) tl))

(> t2 (- tl (* t3 tl)))) 
(equal t1 t2)))

(count (fby 0 (if feature-equal (+ t4 count)
count ))))

((return-when empty? (list count a)) )
) )

(data (collect! matches)))
((return-when empty? (safe-sort data #'> : key 

#'first))) ) ;;returns the list according to fbsm

:sbsm-f ;;structure-based-similarity-measure on function
model

(let-streams
((a (in (the :case-contents)))

(case (the :case-base a))
(matches (let-streams

( (tl (in (the :input-functions)))
(in? (member tl t2 ))
(t2 (fby (the-object case :function-model) (if in? 

(remove tl t2) t2)))
(equal-count (fby 0 (if in? (1+ equal-count)

equal-count)))
(nl (length (the :input-functions)))
(n2 (length t2))
(dissm (+ (- nl equal-count) n2)))

((return-when empty? (list dissm a)))
) )

(data (collect! matches)))
((return-when empty? (safe-sort data #'< :key #'first)))

(case)) ;;returns the list according to sbsm-f

:input-relations ;;get the relations of the elements from
input structure
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(let-streams
( (tl (in-tree (the :input-structure)))

(result (collect! (defaulting
(the-object tl :sub-relations) () ))))

((return-when empty? (remove nil result))) )

:compared-structure ;;make list of the relations
(let-streams

( (tl (in (the :input-relations)))
(result (fby () (append result tl))))

( (return-when empty? result)) )

:temp ;;get the relations of the elements from
cases and make a list of relations 

(let-streams
((a (in (the :case-contents)))

(relations 
(let-streams

((tl (in-tree (the :case-base a)))
(result (collect! (defaulting

(the-object tl :sub-relations) () ))))
( (return-when empty? (remove nil result))) ) )

(case (let-streams
((tl (in (the-object relations)))
(result (fby () (append result tl))))

((return-when empty? result)) ))
(data (collect! (list case a))))

((return-when empty? data)))

:sbsm-s ;;structure-based-similarity-measure on structure
model, calculate the amount of actions 

(let-streams
((a (in (the :temp)))

(b (first a))
(c (second a))
(matches (let-streams

((tl (in (the-object b)))
(in? (member tl t2 :test #'equal))
(t2 (fby (the :compared-structure) (if in? (remove 

tl t2 :count 1) t2)))
(equal-count (fby 0 (if in? (1+ equal-count) equal-

count) ) )
(nl (length (the-object b)))
(n2 (length t2))
(dissm (* 2 (+ (- nl equal-count) n2))))

( (return-when empty? (list dissm c) ))
) )

(data (collect! matches)))
((return-when empty? (safe-sort data #'< : key 

#'first))) ) ;;returns the list according to sbsm-f

:rank-fbsm 
(let-streams

((a (in (the :fbsm)))
(al (fby 1 (+ al 1)))
(a2 (append (list al) a))
(a3 (collect! a2)))

((return-when empty? a3)))

:rank-sbsm-f 
(let-streams
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((a (in (the :sbsm-f))) 
(al (fby 1 (+ al 1)))
(a2 (append (list al) a)) 
(a3 (collect! a2)))

((return-when empty? a3)))

:rank-sbsm-s 
(let-streams

((a (in (the :sbsm-s))) 
(al (fby 1 (+ al 1) ) )
(a2 (append (list al) a)) 
(a3 (collect! a2) ) )

((return-when empty? a3)))

: sa
(let-streams

((a (in (the :rank-fbsm)))
(al (first a))
(a2 (third a))
(bl (let-streams

((b (in (the :rank-sbsm-f)))
(b2 (third b))
(equal? (equal a2 b2))
(bll (if equal? (first b) 0)))

((return-when equal? bll)) (b b2 equal?) ))
(cl (let-streams

( (c (in (the :rank-sbsm-s)))
(c2 (third c))
(equal? (equal a2 c2))
(ell (if equal? (first c) 0)))

((return-when equal? ell)) (c c2 equal?) ))
(sa (+ (+ (* (the :wl) al) (* (the :w2) bl)) (* (the :w3) cl)))
(result (collect! (list sa a2))))

((return-when empty? (safe-sort result #'< : key #'first))) )

:retrieved-case-name (second (first (the :sa)))
:get-type 
(let-streams

( (aa (in (the :case-base :children)))
(bb (the-object aa :name-for-display))
(dd (the-object aa rtype))
(cc (collect! (list bb dd))))

((return-when empty? cc)))

:find-type 
(let-streams

( (aa (in (the rget-type)))
(bb (first aa))
(equals? (equal bb (the :retrieved-case-name)))) 

( (return-when equals? (second aa))))
)

rparts
( (retrieved-case

rtype (the rfind-type))
)

rpseudo-parts
((case-base rtype case-base)))
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Appendix D

Code for performance retrieval

This appendix lists the ICAD code for the adaptation approach o f performance 

retrieval introduced in Chapter 5. It is used in conjunction with the code o f case base, 

which is partly presented in Appendix B.

(defpart performance-revision (box)
:choice-attributes 
(:case-ca 
(rprompt "Enter the case name"
:domain (:item-list 

(list :cbOOl :cb002 :cb003 :cb004 :cb005 :cb006 :cb007))
:default :cb001)

:input-performance
(:prompt "Enter che performance"
:domain (:selection-list 

(list :provide_space_for_the_engine :provide_space_for_the_passengers 
_and_luggage :provide_space_for_the_passengers :provide_space_for_the 
_luggage)

rminimum-selections 1 
:maximum-selections 3)

:default (list :provide_space_for_the_engine))
)

:modifiable-defaulted-inputs 
(

:length 5029 
:width 1902 
:height 1492 
)

:attributes
(:retrieved-case (cond ((equal (the :case-ca) :cb001) (first 

(the :list-cases)))
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cases)))
((equal (the :case-ca) :cb002) (second (the : list-

cases)))
((equal (the :case-ca) :cb003) (nth 2 (the list-

cases)))
((equal (the :case-ca) :cb004) (nth 3 (the list-

cases)))
((equal (the :case-ca) :cb005) (nth 4 (the list-

cases)))
((equal (the :case-ca) :cb006) (nth 5 (the :list-

cases))))
( (equal (the :case-ca) :cb007) (nth 6 (the :list-

:retrieved-case-performance ;;give the performance of the
retrieved case 

(let-streams
((a (in (the :retrieved-case :performance)))

(b (stream-append a)) )
((return-when empty? b)))

:retrieved-case-subcases ;;give the performance of the
retrieved cased alongside with the according case name 

(let-streams
((a (in (the :retrieved-case-performance)))

(b (in (the :retrieved-case :sub-cases)))
(c (collect! (list a b))))

((return-when empty? c)))

:kept-subcases ;;subcases from the retrieved case that can be 
kept in the new situation 

(let-streams
( (aa (in (the :retrieved-case-subcases)))

(aal (first aa))
(aa2 (second aa))
(bb (member aal (the :input-performance)))
(cc (collect-if! bb (defaulting aa2))))

((return-when empty? cc)) )

:kept-performance ;;performance from the retrieved case that can 
be kept in the new situation 

(let-streams
( (aa (in (the :retrieved-case-subcases)))

(aal (first aa) )
(aa2 (second aa))
(bb (member aal (the :input-performance)))
(cc (collect-if! bb (defaulting aal))))

((return-when empty? cc)) )

:added-performance ;;performance that need to be added from the 
case base

(let-streams
((a (in (the :kept-performance)))

(b (fby (the :input-performance) (remove a b))))
( (return-when empty? b)))

:trial
(list :provide space_for the_passengers :provide_space_for_the_lugga 
ge)

:search-performance ;;search the added-performance provided by
which subcases
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(let-streams
( (aa (in (the :added-performance)))

(bb (let-streams
((a (in-tree (the :case-base)))
(al (the-object a :type))
(b (defaulting (the-object a :performance)))
(equal? (equal (list aa) b))
(c (collect-if! equal? al)))

((return-when empty? c)) ))
(cc (collect! (list aa bb))))

((return-when empty? cc)) )
((:PROVIDE SPACE_FOR_THE_PASSENGERS (PC001
PC003))(:PROVIDE_SPACE_FOR_THE_LUGGAGE (LC001 LC003)))

:added-subcases ;;sort the subcases to be added to the 
retrieved case 

(let-streams
((a (in (the :search-performance)))

(al (first a))
(a2 (second a))
(b (first a2))
(c (collect! (list al b))))

((return-when empty? c)))
((:PROVIDE_SPACE_FOR_THE_PAS SENGERS PC001)
(:PROVIDE_SPACE_FOR_THE_LUGGAGE LC001))

:kept-performance-and-subcases 
(let-streams

( (aa (in (the :retrieved-case-subcases)))
(aal (first aa))
(aa2 (second aa) )
(bb (member aal (the :input-performance)))
(cc (collect-if! bb (list (defaulting aal) aa2))))

((return-when empty? cc)) )

:adapted-subcases-list (append (the :added-subcases) (the :kept- 
perf ormance-and-subcases ) )

:sort-adapted-subcases-list 
(let-streams

((a (in (the :input-performance)))
(b (let-streams

( (bl (in (the :adapted-subcases-list)))
(bl1 (first bl))
(bl2 (second bl))
(match? (equal a bll))
(b3 (collect-if! match? bl2)))

((return-when empty? b3)) ))
(c (collect! b)))

((return-when empty? c)) (a b c) )

:sort-adapted-subcases-list-2 
(let-streams

((a (in (the :sort-adapted-subcases-list)))
(b (stream-append a)))

( (return-when empty? b)))

:list-cases (the :case-base :children)
)

:parts
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( (adapted-case
:type case-for-adaptation)

)

:pseudo-parts 
(

(case-base rtype case-base)
)

)

(defpart case-for-adaptation (box)
:attributes
(:functions (the-object (make-part 'cbr) :retrieved-case :functions) 
:function-relationship (the-object (make-part ’cbr) :retrieved- 

case :function-relationship)
:function-model (append (the :functions) (the :function- 

relationship) )
rwidth (max (the :engine-compartment :width) (the rpassenger- 

cabin rwidth) (the rluggage-compartment rwidth))
rlength (+ (the rengine-compartment rlength) (the rpassenger- 

cabin rlength) (the rluggage-compartment rlength))
rheight (max (the rengine-compartment rheight) (the rpassenger- 

cabin rheight) (the rluggage-compartment rheight))
rear-type (the-object (make-part 'cbr) rretrieved-case rear-type) 
rwheelbase (the-object (make-part ’cbr) rretrieved-case rwheelbase)
rfronttrack (the-object (make-part 'cbr) rretrieved- 

case rfronttrack)
rreartrack (the-object (make-part 'cbr) rretrieved-case rreartrack)
rweight (the-object (make-part 'cbr) rretrieved-case :weight)
:fuel-consumption (the-object (make-part 'cbr) :retrieved- 

case :fuel-consumption)
:top-speed (the-object (make-part 'cbr) :retrieved-case :top-speed)
:acceleration (the-object (make-part 'cbr) rretrieved- 

case :acceleration)
.•behaviour-feature

(list (the :length) (the rwidth) (the rheight)
(the rwheelbase) (the rfronttrack) (the rreartrack))

rfunction-feature (list (the rear-type) (the rfuel-consumption)
(the rtop-speed) (the racceleration))

rstructure-feature (list (the rweight))
rfeatures (append (the rbehaviour-feature) (the rfunction-feature) 

(the rstructure-feature)) 
r performance 
(let-streams

( (aa (in (the rchildren)))
(bb (the-object aa rperformance))
(cc (collect! (defaulting bb () ))))

( (return-when empty? cc)))

rlocal-adapted-subcases-list (the-object (make-part 'cbr) rsort- 
adapted-subcases-list- 2 ) 

r sub-relations 
(let-streams

( (aa (in (the rchildren)))
(bb (the-object aa rname-for-display) )
(cc (collect! bb)))

( (return-when empty? cc)))

)

r report-attributes
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(:vrml-out
(write-vrml-file (list self)
"f:/carbody.wrl"
:specified-planarity 0.1 
:specified-linearity 0.1 
:camera-on? t))

:parts
( (engine-compartment

:type (first (the :local-adapted-subcases-list))
:position (:bottom 0.0))
(passenger-cabin 
:type (second (the :local-adapted-subcases-list))
:position (:front (:from (the :engine-compartment) (the rengine- 

compartment :length))))
(luggage-compartment 
:type (if (equal (third (the :local-adapted-subcases-list)) nil)

'null-part
(third (the :local-adapted-subcases-list)) )

:position (:front (:from (the :passenger-cabin) (the rpassenger- 
cabin :length)) rbottom 0.0 ))

)

)
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Appendix E

Code for goal-oriented substitution

This appendix presents the ICAD code for the adaptation approach o f goal-oriented 

substitution described in chapter 5. It is used in conjunction with the code o f case base, 

which is partly presented in Appendix B.

(defpart cbr (box)
:modifiable-defaulted-inputs 
(:case-ca (list :cb001)
:Goall (list :minimise :volume :c)
:Goal2 (list :maxiraise :comfort :c)
:Goal3 (list rmaximise :visualisation :c]
:input-goals (list "Gl")

)

attributes
(:retrieved-case (cond ((equal (first (the :case -ca)) :cbOO1) (f

(the :list-cases))
((equal (first (the :case-ca)) :cb002) (second

(the :list-cases))
((equal (first (the :case-ca) ) :cb003) (nth 2

(the :list-cases))
((equal (first (the :case-ca)) :cb004) (nth 3

(the :list-cases))
((equal (first (the :case-ca)) :cb005) (nth 4

(the :list-cases))
((equal (first (the :case-ca)) :cb006) (nth 5

(the :list-cases))
((equal (first (the :case-ca)) :cb007) (nth 6

(the :list-cases))) )

:s-review-goals (the :retrieved-case :corporate-goalsi 
rmaximise :visualisation :c))

:review-goals (the :retrieved-case : corporate-goals)
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:review-individual-goals (the :retrieved-case :find-individual- 
goals)

:input-goals-propagation (let-streams
((a (in (the :input-goals)))
(b (let-streams

((aa (in (the :review-individual-
goals) ) )

(bb (lastcar aa))
(bbl (symbol-name bb))
(bb2 (char bbl 1))
(aal (char a 1))
(cc (equal aal bb2))
(dd (collect-if! cc aa nil)))

( (return-when empty? dd))))
(c (collect! b)))

( (return-when empty? c)))
:reform-igp (let-streams

((a (in (the :input-goals-propagation)))
(b (stream-append a) ) )

((return-when empty? b)) )

:find-conflict (let-streams
((a (in (the :reform-igp)))
(al (first a))
(a2 (second a))
(a3 (nth 2 a))
(b (remove a (the :reform-igp)))
(c (let-streams

((aa (in b))
(aal (first aa))
(aa2 (second aa))
(aa3 (nth 2 aa))
(conflict? (and (and (equal aal al) (equal 

aa3 a3)) (not (equal aa2 a2))))
(bb (collect-if! conflict? (list aa a) nil))) 
( (return-when empty? (remove nil bb)))))

(d (collect! c)))
((return-when empty? (remove nil d) ) ) )

:reform-find-conflict (let-streams
((a (in (the :find-conflict)))
(b (stream-append a)))

( (return-when empty? b)))
:reform-find-conflict-2 (let-streams

((a (in (the :reform-find-conflict)))
(b (stream-append a)))

((return-when empty? b)))
:simplified-goals (let-streams

((a (in (the :reform-find-conflict-2)))
(b (fby (the :reform-igp) (remove a b))))

( (return-when empty? b)))

:value-in-sg (let-streams
((a (in (the :simplified-goals)))
(al (first a))
(a2 (second a))
(a3 (nth 2 a))
(b (let-streams

((aa (in-tree (the :retrieved-case)))
(aal (the-object aa :name-for-display))
(bb (equal al aal))
(dd (collect-if! bb (the-object aa a3) nil)))
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( (return-when empty? (remove nil d d ) )) ( a a l
aal bb) ))

(c (collect! (append (list al a2 a3) b) ) ) )

( (return-when empty? c)) )

:find-substitution (let-streams
( (a (in (the :value-in-sg)))
(al (first a))
(a2 (second a))
(a3 (nth 2 a))
(a4 (nth 3 a))
(b (let-streams

((aa (in-tree (the :case-base)))
(aal (the-object aa :name-for-display))
(bbl (equal al aal))
(aa2 (the-object aa a3))
(bb2 (if bbl (and (> aa2 a4) (equal

a2 :maximise)) nil))
(bb3 (if bbl (and (< aa2 a4) (equal

a2 rminimise)) nil))
(aa4 (the-object aa rtype))
(cc (collect-if! (or bb2 bb3) (list aal

aa4))))
( (return-when empty? cc))))

(c (collect! b)))
( (return-when empty? (remove nil c))))

r reform-substitution (let-streams
((a (in (the rfind-substitution)))
(al (first a))
(b (collect! al)))

((return-when empty? b)))

rrs-performance (let-streams
((a (in (the rreform-substitution)))

(al (first a))
(b (let-streams

( (aa (in-tree (the rretrieved-case)))
(aal (the-object aa rname-for-display))
(aa2 (defaulting (the-object

aa rperformance)))
(bb (equal aal al))
(cc (collect-if! bb aa2)))

( (return-when empty? cc))))
(c (collect! (append (list a) b))))

( (return-when empty? c)))

rreform-rsp (let-streams
((a (in (the rrs-performance)))
(al (first a))
(a2 (second a))
(b (collect! (append al a2))))

((return-when empty? b)))

:list-cases (the :case-base :children)

:functions (the :retrieved-case :functions)
:function-relationship (the : retrieved-case :function-relationship)
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: function-model (append (the .-functions) (the .-function- 
relationship) )

rwidth (max (the :engine-compartment rwidth) (the rpassenger- 
cabin rwidth) (the rluggage-compartment rwidth))

rlength (+ (the rengine-compartment rlength) (the rpassenger- 
cabin rlength) (the rluggage-compartment rlength))

rheight (max (the rengine-compartment rheight) (the rpassenger- 
cabin rheight) (the rluggage-compartment rheight)) 

rear-type (the rretrieved-case rear-type) 
rwheelbase (the rretrieved-case rwheelbase) 
rfronttrack (the rretrieved-case rfronttrack) 
rreartrack (the rretrieved-case rreartrack) 
rweight (the rretrieved-case rweight)
rfuel-consumption (the : retrieved-case rfuel-consumption) 
rtop-speed (the rretrieved-case rtop-speed) 
racceleration (the rretrieved-case racceleration) 
rbehaviour-feature

(list (the rlength) (the rwidth) (the rheight)
(the rwheelbase) (the rfronttrack) (the rreartrack))

rfunction-feature (list (the rear-type) (the rfuel-consumption)
(the rtop-speed) (the racceleration))

rstructure-feature (list (the rweight))
rfeatures (append (the rbehaviour-feature) (the rfunction-feature) 

(the rstructure-feature)) 
rperformance 
(let-streams

( (aa (in (the rchildren)))
(bb (the-object aa rperformance))
(cc (collect! (defaulting bb () ))))

((return-when empty? cc)) ) 
rlocal-retrieved-case-sub-relations (the rretrieved-case rsub­

relations)
rcheck-ec (equal (first (the rlocal-retrieved-case-sub-relations)) 

r engine-compartment) 
rcheck-pc (equal (second (the rlocal-retrieved-case-sub-relations)) 

rpassenger-cabin) 
rcheck-lc (equal (defaulting (nth 2 (the rlocal-retrieved-case- 

sub-relations)))
rluggage-compartment)

r sub-relations 
(let-streams

( (aa (in (the rchildren)))
(bb (the-object aa rname-for-display))
(cc (collect! bb)))

( (return-when empty? cc)))

rparts
( (engine-compartment

rtype (if (the rcheck-ec) ’ecgoal 'null-part) 
rposition (rbottom 0.0))
(passenger-cabin 
rtype (if (the rcheck-pc) 'pegoal ’null-part)
rposition (rfront (rfrom (the rengine-compartment) (the rengine- 

compartment rlength))))
(luggage-compartment 
rtype (if (the rcheck-lc) 'legoal ’null-part)
rposition (rfront (rfrom (the rpassenger-cabin) (the rpassenger- 

cabin rlength)) rbottom 0.0 ))
)
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:pseudo-parts
((case-base :type case-base))

(defpart ecgoal (box)
: attributes
(:width (the :local-retrieved-case :engine-compartment rwidth) 
rlength (the rlocal-retrieved-case rengine-compartment rlength) 
rheight (the rlocal-retrieved-case rengine-compartment rheight) 
rperformance (list rprovide_space_for_the_engine) 
rgoals (list (the :G1-G1) (the rG3-Gl)) 
rGl-Gl (list rminimise rvolume rc rGl) 
rG3-Gl (list rminimise rlength ri rG3)
:local-retrieved-case (the-object (make-part 'cbr) rretrieved-case) 
rlocal-reform-rsp (the-object (make-part 'cbr) rreform-rsp) 
rcheck-bonnet (let-streams

((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_top_cover_for_the_engine_compartment))
(d (collect-if! c (list c a2) nil )))

((return-when empty? (first d)))) 
rcheck-bonnet-2 (let-streams

((a (in-tree (the rlocal-retrieved-case)))
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_top_cover_for_the__engine_compartment)))
(c (collect-if! b al)))

((return-when empty? (first c)))) 
r check-rightfrontwing (let-streams

((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_right_side_cover_for_the_engine_compartment) )
(d (collect-if! c (list c a2) nil )))

((return-when empty? (first d)))) 
r check-rightfrontwing-2 (let-streams

((a (in-tree (the rlocal-retrieved-case)))
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide__right_side_cover_for_the_engine_compartment) ) )
(c (collect-if! b al)))
((return-when empty? (first c)))) 

r check-leftfrontwing (let-streams
((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_left_side_cover_for_the_engine_compartment) )
(d (collect-if! c (list c a2) nil )))

((return-when empty? (first d) ))) 
r check-leftfrontwing-2 (let-streams

((a (in-tree (the rlocal-retrieved-case)))
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
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(b (equal a2
(list rprovide_left_side_cover_for_the_engine_compartment) ) )

(c (collect-if! b al)))
((return-when empty? (first c))))

:check-frontpanel (let-streams
((a (in (the :local-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 :provide^front_cover__for_the_engine_compartment))
(d (collect-if! c (list c a2) nil ))) 

((return-when empty? (first d))))
: check-frontpanel-2 (let-streams

((a (in-tree (the :local-retrieved-case)))
(al (the-object a :type))
(a2 (defaulting (the-object a :performance)))
(b (equal a2

(list :provide_front_cover_for__the_engine_compartment)))
(c (collect-if! b al)))
((return-when empty? (first c))))

:check-collection (list (the :check-bonnet) (the :check- 
rightf rontwing) (the :check-leftfrontwing) (the : check-frontpanel)) 

:check-collection-2 (list (the :check-bonnet-2) (the rcheck- 
rightfrontwing-2) (the :check-leftfrontwing-2) (the rcheck- 
frontpanel-2))

:bonnet-type (if (and (the :goal-oriented?)
(equal (first (first (the : check-collection)))

’t) )
(second (first (the :check-collection)))

(first (the :check-collection-2)))
:goal-oriented? (equal 1 1)
:sub-relations 
(let-streams

( (aa (in (the :children)))
(bb (the-object aa :name-for-display))
(dd (list (the :name-for-display) bb))
(cc (collect! dd)))

( (return-when empty? cc))))

:report-attributes 
(:vrml-out
(write-vrml-file (list self)
"f:/engine-compartment.wrl"
:specified-planarity 0.1 
:specified-linearity 0.1 
:camera-on? t))

:parts
((bonnet rtype (the :bonnet-type))
(rightfrontwing rtype (if (and (the rgoal-oriented?)

(equal (first (second (the rcheck-
collection))) 1t))

(second (second (the rcheck-collection)))
(second (the rcheck-collection-2))))

(leftfrontwing rtype (if (and (the rgoal-oriented?)
(equal (first (the rcheck-leftfrontwing)) ’t))

(second (the rcheck-leftfrontwing))
(the rcheck-leftfrontwing-2)))

(frontpanel rtype (if (and (the rgoal-oriented?)
(equal (first (the rcheck-frontpanel)) 't))

(second (the rcheck-frontpanel) )
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(the :check-frontpanel-2)))))

(defpart pcgoal (box)
:attributes
(rwidth (the :local-retrieved-case rpassenger-cabin rwidth) 
rlength (the rlocal-retrieved-case rpassenger-cabin rlength) 
rheight (the rlocal-retrieved-case rpassenger-cabin rheight) 
rperformance (list rprovide_space_for_the_passengers) 
rgoals (list (the rGl-G2) (the rG2-Gl)) 
rGl-G2 (list rminimise rvolume rc rGl) 
rG2-Gl (list rmaximise rvolume rc rG2)
rlocal-retrieved-case (the-object (make-part 'cbr) r retrieved-case) 
rlocal-reform-rsp (the-object (make-part 'cbr) rreform-rsp) 
rcheck-roofpanel (let-streams

((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_top_cover_for_the_passenger_cabin))
(d (collect-if! c (list c a2) nil )))

((return-when empty? (first d)))) 
rcheck-roofpanel-2 (let-streams

((a (in-tree (the rlocal-retrieved-case)))
(al (the-object a rtype)(the-object (make-part

'lcgoal) rleftrearwing))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_top__cover_for_the_passenger_cabin )))
(c (collect-if! b al)))

((return-when empty? (first c)))) 
rcheck-rightside (let-streams

((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_right_side_cover_for_the_passenger_cabin))
(d (collect-if! c (list c a2) nil )))

((return-when empty? (first d) ) ) ) 
rcheck-rightside-2 (let-streams

((a (in-tree (the rlocal-retrieved-case)))
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide__right_side_cover_for_the_passenger_cabin)))
(c (collect-if! b al)))
((return-when empty? (first c)))) 

rcheck-leftside (let-streams
((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_left_side_cover_for_the_passenger_cabin))
(d (collect-if! c (list c a2) nil )))

((return-when empty? (first d)))) 
rcheck-leftside-2 (let-streams

((a (in-tree (the rlocal-retrieved-case)))
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_left_side_cover_for_the_passenger_cabin)))
(c (collect-if! b al)))
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((return-when empty? (first c)))) 
:goal-oriented? (equal 1 1)

: sub-relations 
(let-streams

( (aa (in (the :children)))
(bb (the-object aa :name-for-display) ) 
(dd (list (the :name-for-display) bb) ) 
(cc (collect! dd)))

((return-when empty? cc))))

:report-attributes 
(:vrml-out
(write-vrml-file (list self) 
"f:/paasenger-cabin.wrl"
:specified-planarity 0.1 
:specified-linearity 0.1 
:camera-on? t)

)

:parts
( (roofpanel rtype (if (and (the :goal-oriented?)

(equal (first (the :check-roofpanel)) 't)) 
(second (the :check-roofpanel))

(the :check-roofpanel-2)))
(rightside rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-rightside)) 't)) 
(second (the rcheck-rightside))

(the rcheck-rightside-2)))
(leftside rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-leftside)) !t))
(second (the rcheck-leftside))
(the rcheck-leftside-2)))))

(defpart lcgoal (box) 
r attributes
(rwidth (the rlocal-retrieved-case rluggage-compartment rwidth) 
rlength (the rlocal-retrieved-case rluggage-compartment rlength) 
rheight (the rlocal-retrieved-case rluggage-compartment rheight) 
rperformance (list rprovide_space_for__the_luggage) 
rgoals (list (the rGl-G3)) 
rGl-G3 (list rminimise rvolume rc rGl)
rlocal-retrieved-case (the-object (make-part 'cbr) rretrieved-case) 
rlocal-reform-rsp (the-object (make-part 'cbr) rreform-rsp) 
rcheck-lcdoor (let-streams

((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_top_cover_for_the_luggage_compartment))
(d (collect-if! c (list c a2) nil )))

((return-when empty? (first d)))) 
rcheck-lcdoor-2 (let-streams

((a (in-tree (the rlocal-retrieved-case)))
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_top_cover_for_the_luggage_compartment)))
(c (collect-if! b al)))

((return-when empty? (first c)))) 
r check-rightrearwing (let-streams

205



({a (in (the :local-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 :provide__right__side_cover_for_the__luggage_compartment) )
(d (collect-if! c (list c a2) nil ))) 

((return-when empty? (first d) ) ) )
:check-rightrearwing-2 (let-streams

((a (in-tree (the :local-retrieved-case) ) )
(al (the-object a :type))
(a2 (defaulting (the-object a rperformance) ) ) 
(b (equal a2

(list :provide_right_side__cover_for_the_luggage_compartment) ) )
(c (collect-if! b al)))
((return-when empty? (first c))))

:check-leftrearwing (let-streams
((a (in (the :local-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 :provide_left_side_cover_for_the_luggage_compartment))
(d (collect-if! c (list c a2) nil )))

((return-when empty? (first d))))
:check-leftrearwing-2 (let-streams

((a (in-tree (the :local-retrieved-case))) 
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance))) 
(b (equal a2

(list rprovide_left_side_cover_for_the_luggage_compartment)))
(c (collect-if! b al)))
((return-when empty? (first c)))) 

rcheck-rearpanel (let-streams
((a (in (the rlocal-reform-rsp)))
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_back_cover_for_the_luggage_compartment))
(d (collect-if! c (list c a2) nil )))

((return-when empty? (first d)))) 
rcheck-rearpanel-2 (let-streams

((a (in-tree (the rlocal-retrieved-case))) 
(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance))) 
(b (equal a2

(list rprovide_back_cover_for_the_luggage_compartment)))
(c (collect-if! b al)))

((return-when empty? (first c)))) 
rgoal-oriented? (equal 1 1)

r sub-relations 
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rname-for-display))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

( (return-when empty? cc))))

r report-attributes 
(r vrml-out
(write-vrml-file (list self)
"f r/luggage-compartment.wrl"
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:specified-planarity 0.1
:specified-linearity 0.1(the-object (make-part 

'lcgoal) :leftrearwing)
:camera-on? t)
)

:parts
( (lcdoor rtype (if (and (the :goal-oriented?)

(equal (first (the :check-lcdoor)) 't))
(second (the :check-lcdoor))

(the :check-lcdoor-2)))
(rightrearwing rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-rightrearwing) ) 't) )
(second (the rcheck-rightrearwing))

(the rcheck-rightrearwing-2)))
(leftrearwing rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-leftrearwing)) 't) )
(second (the rcheck-leftrearwing))

(the rcheck-leftrearwing-2)))
(rearpanel rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-rearpanel)) ’t))
(second (the rcheck-rearpanel))
(the rcheck-rearpanel-2)))))
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Appendix F

Code for fractal-based re-design

This appendix gives the ICAD code for fractal-based re-design described in Chapter 5. 

The fractal-based re-design is an integrated system which is made up of the 

subsystems described in Chapter 4 and Chapter 5, with their codes in Appendix D, E, 

and F. The code presented here is also used for the case study in Chapter 5, in 

conjunction with the code o f case base, which is partly presented in Appendix B.

(defpart cbr (box)
:choice-attributes 
(:retrieve-or-adapt 
(rprompt "Do you need to retrieve or retrieve and adapt a design?" 
:domain (:item-list (list :retrieve :retrieve-and-adapt)) 
rdefault rretrieve)

:adaptation-method
(:prompt "Performance-revision or goal-oriented adaptation?" 
:domain (:item-list (list :performance-revision :goal-oriented)) 
rdefault :performance-revision)

:input-performance
(:prompt "Enter the performance"
:domain (: selection-list 

(list :provide_space_for_the_engine :provide_space_for_the_passengers 
_and_luggage :provide_space_for_the_passengers :provide_space__for_the 
_luggage)

:minimum-selections 1 
imaximum-selections 3) 

rdefault (list :provide_space_for_the_engine))

)

rmodifiable-defaulted-inputs
(

rGoall (list rminimise rvolume rc)
rGoal2 (list rmaximise rcomfort rc)
rGoal3 (list rmaximise rvisualisation rc)
rinput-goals (list "Gl" "G2")
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:functions (list :support-chasis rprotect-passenger :stylise)
:function-relationship (list :support-chasis-and-protect- 

passenger :protect-passenger-and-stylise :stylise-and-support-chasis)
:length 5029 
:width 1902 
:height 1492 
:wheelbase 2990 
rfronttrack 1578 
ireartrack 1582 
: car-type :saloon 
:fuel-consumption 15.5 
:top-speed 237 
: acceleration 8.1 
:weight 1865
:input-structure (the :case-base :cab)
:weights (list 0.5 0.5 0.2 0.2 0.2 0.2 0.5 0.3 0.3 0.3 

0.3) ;/weights for feature
:tolerance-band (list 0.1 0.08 0.05 0.08 0.05 0.05 1 0.1 0.1 0.1 

0.3)
:wl 0.4 ;/weight for feature-based similarity measure
:w2 0.3 //weight for structure-based similarity measure on

function
:w3 0.3 //weight for structure-based similarity measure on 

structure
:optional-features (list (list rpassenger-cabin :length 

3000) (list rpassenger-cabin rwidth 1902) (list rpassenger- 
cabin rheight 1490) (list rluggage-compartment rlength 529) ) 

rweights-optional-features (list 0.5 0.5 0.3 0.3) 
rtolerance-band-optional-features (list 0.1 0.1 0.06 0.1)
)

r attributes 
(
raccording-optional-features //get the according features in the 

case base
(let-streams

((a (in (the rcase-contents)))
(case (the rcase-base a))
(b (let-streams

((c (in (the roptional-features)) )
(cl (first c))
(c2 (second c))
(a (let-streams

((e (in-tree case))
(el (the-object e rname-for-display))
(equal? (equal el cl))
(f (collect-if! equal? (defaulting (list a el c2 

(the-object e c2))))))
((return-when empty? f)) ))

(g (collect! d)))
((return-when empty? g))))

(data (collect! b)))
( (return-when empty? data)))

raccording-optional-features-1 // sort according-optional-features 
(let-streams

((a (in (the raccording-optional-features) ) )
(b (stream-append a)))

( (return-when empty? b)))
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:according-optional-features-2 ;; sort according-optional- 
features-1

(let-streams
((a (in (the :according-optional-features-1)) )

(b (stream-append a)))
((return-when empty? b) ) )

:fbsm-optional-start ;; similarity measure on optional features 
(let-streams

((a (in (the :optional-features)))
(w (in (the :weights-optional-features)))
(tl (in (the :tolerance-band-optional-features)))
(b (let-streams

((al (first a))
(a2 (second a))
(a3 (lastcar a))
(c (in (the :according-optional-features-2)) )
(cl (first c))
(c2 (second c))
(c3 (third c))
(c4 (fourth c))
(match? (and (equal c2 al) (equal c3 a2)))
(equal? (if match? (and (< c4 (+ (* tl a3) a3) )

(> c4 (- a3 (* tl a3))) )
nil) )

(result (if equal? (list w cl) nil))
(resultl (collect! result)))

((return-when empty? (remove nil resultl))) )) ; ; ( cl
a3 c4 match? equal? result)

(data (collect! b)))
((return-when empty? data)) )

:fbsm-optional-2 ;; sort fbsm-optional-start, obtain a list of 
(weight, name of case)

(let-streams
((a (in (the :fbsm-optional-start)))

(b (stream-append a)))
((return-when empty? b)))

:fbsm-optional 
(let-streams

((a (in (the :case-contents)))
(b (let-streams

((c (in (the :fbsm-optional-2)) )
(cl (first c))
(c2 (second c))
(match? (equal a c2))
(count (fby 0 (if match? (+ count cl) count))))

((return-when empty? (list count a))) (a cl c2 match?
count) ))

(data (collect! b)))
((return-when empty? (safe-sort data #'> : key #'first))))

: fbsm
(let-streams

((a (in (the :fbsm-optional))) 
(al (first a)'
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(a2 (second a))
(b (let-streams

((c (in (the :fbsm-feature)))
(cl (first c))
(c2 (second c))
(match? (equal a2 c2))
(count (fby al (if match? (+ count cl) count)))) 

((return-when empty? (list count a2))) (a cl c2 match?
count) ))

(data (collect! b) ) )
((return-when empty? (safe-sort data #'> :key #'first))))

:input-features
(list (the :length) (the :width) (the :height) (the :wheelbase) 

(the :fronttrack) (the :reartrack)
(the :car-type)(the :fuel-consumption) (the :top-speed)

(the :acceleration)
(the .’weight) )

:input-functions (append (the :functions) (the :function- 
relationship))

:case-contents 
(let-streams

((aa (in (the :case-base :children)))
(bb (the-object aa :name-for-display))
(cc (collect! bb)))

((return-when empty? cc)))

:fbsm-feature ;;feature-based-similarity-measure
(let-streams

((a (in (the :case-contents)))
(case (the :case-base a))
(matches (let-streams

( (tl (in (the :input-features)))
(t2 (in (the-object case :features)))

(t3 (in (the :tolerance-band)))
(t4 (in (the :weights)))

(feature-equal (if (numberp tl)
(and (< t2 (+ (* t3 tl) tl)) 

(> t2 (- tl (* t3 tl)))) 
(equal tl t2)))

(count (fby 0 (if feature-equal
count ))))

(+ t4 count) 

( (return-when empty? (list count a)))
) )

(data (collect! matches)))
((return-when empty? (safe-sort data #'> :key 

#’first))) ) ;;returns the list according to fbsm

:sbsm-f ;;structure-based-similarity-measure on function
model

(let-streams
((a (in (the :case-contents)))

(case (the :case-base a))
(matches (let-streams

((tl (in (the :input-functions)))
(in? (member tl t2 ))
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(t2 (fby (the-object case :function-model) (if in? 
(remove tl t2) 12)))

(equal-count (fby 0 (if in? (1+ equal-count)
equal-count)))

(nl (length (the :input-functions)))
(n2 (length t2))
(dissm (+ (- nl equal-count) n2)))

( (return-when empty? (list dissm a)))
) )

(data (collect! matches)))
((return-when empty? (safe-sort data #'< :key #'first)))

(case)) ;;returns the list according to sbsm-f

:input-relations ;;get the relations of the elements from
input structre 

(let-streams
((tl (in-tree (the :input-structure)))

(result (collect! (defaulting
(the-object tl :sub-relations) () ))))

((return-when empty? (remove nil result))) )

:compared-structure ;;make list of the relations
(let-streams

((tl (in (the :input-relations)))
(result (fby () (append result tl))))

((return-when empty? result)) )

: temp ;;get the relations of the elements from
cases and make a list of relations 

(let-streams
((a (in (the :case-contents)))

(relations
(let-streams

( (tl (in-tree (the :case-base a)))
(result (collect! (defaulting

(the-object tl : sub-relations) () ))))
((return-when empty? (remove nil result))) ) )

(case (let-streams
((tl (in (the-object relations)))
(result (fby () (append result tl))))

((return-when empty? result)) ))
(data (collect! (list case a))))

((return-when empty? data)))

:sbsm-s ;;structure-based-similarity-measure on structure
model, calculate the amount of actions 

(let-streams
((a (in (the :temp)))

(b (first a))
(c (second a))
(matches (let-streams

((tl (in (the-object b)))
(in? (member tl t2 :test #'equal))
(t2 (fby (the :compared-structure) (if in? (remove 

tl t2 :count 1) t2)))
(equal-count (fby 0 (if in? (1+ equal-count) equal-

count) ) )
(nl (length (the-object b)))
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(n2 (length t2))
(dissm (* 2 (+ (- nl equal-count) n2))))

( (return-when empty? (list dissm c) ))
) )

(data (collect! matches)))
((return-when empty? (safe-sort data #'< : key 

#'first))) ) ;;returns the list according to sbsm-f

:rank-fbsm 
(let-streams

((a (in (the :fbsm)))
(al (fby 1 (+ al 1)))
(a2 (append (list al) a))
(a3 (collect! a2)))

((return-when empty? a3)))

:rank-sbsm-f 
(let-streams

((a (in (the :sbsm-f)))
(al (fby 1 (+ al 1)))
(a2 (append (list al) a))
(a3 (collect! a2)))

((return-when empty? a3)))

:rank-sbsm-s 
(let-streams

((a (in (the :sbsm-s)))
(al (fby 1 (+ al 1)))
(a2 (append (list al) a))
(a3 (collect! a2)))

((return-when empty? a3)))

: sa
(let-streams

((a (in (the :rank-fbsm)))
(al (first a))
(a2 (third a))
(bl (let-streams

((b (in (the :rank-sbsm-f)))
(b2 (third b))
(equal? (equal a2 b2) )
(bll (if equal? (first b) 0)))

((return-when equal? bll)) (b b2 equal?) ))
(cl (let-streams

((c (in (the :rank-sbsm-s)))
(c2 (third c))
(equal? (equal a2 c2))
(ell (if equal? (first c) 0)))

((return-when equal? ell)) (c c2 equal?) ))
(sa (+ (+ (* (the :wl) al) (* (the :w2) bl)) (* (the :w3) cl))
(result (collect! (list sa a2))))

((return-when empty? (safe-sort result #'< : key #'first))) )

:retrieved-case-name (second (first (the :sa)))

:get-type 
(let-streams

((aa (in (the :case-base rchildren)))
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(bb (the-object aa :name-for-display) )
(dd (the-object aa :type))
(cc (collect! (list bb dd))))

((return-when empty? cc)))

:find-type 
(let-streams

((aa (in (the :get-type)))
(bb (first aa))
(equals? (equal bb (the :retrieved-case-name) ) ) ) 

((return-when equals? (second aa))))

;/ADAPTATION;;;;;;;;;;;; ; ;;;;;PERFORMANCE REVISION;;;;

: retrieved-case-performance ;;give the performance of the 
retrieved case 

(let-streams
((a (in (the :retrieved-case /performance)))

(b (stream-append a)))
((return-when empty? b)))

:retrieved-case-subcases ;;give the performance of the
retrieved cased alongside with the according case name 

(let-streams
((a (in (the :retrieved-case-performance)))

(b (in (the :retrieved-case :sub-cases)))
(c (collect! (list a b)) ) )

((return-when empty? c)))

:kept-subcases ;;subcases from the retrieved case that can be 
kept in the new situation 

(let-streams
((aa (in (the :retrieved-case-subcases)))

(aal (first aa))
(aa2 (second aa))
(bb (member aal (the :input-performance)))
(cc (collect-if! bb (defaulting aa2))))

((return-when empty? cc)) )

:kept-performance ;/performance from the retrieved case that can 
be kept in the new situation 

(let-streams
( (aa (in (the :retrieved-case-subcases)))

(aal (first aa))
(aa2 (second aa))
(bb (member aal (the /input-performance)))
(cc (collect-if! bb (defaulting aal))))

((return-when empty? cc)) )

/added-performance ;/performance that need to be added from the 
case base

(let-streams
((a (in (the /kept-performance)))

(b (fby (the /input-performance) (remove a b))))
( (return-when empty? b)))

/trial
(list zprovide_space_for_the_passengers zprovide__space_for__the__lugga 
ge)
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:search-performance ;;search the added-performanc provided by 
which subcases 

(let-streams
( (aa (in (the :added-performance)))

(bb (let-streams
((a (in-tree (the :case-base)))
(al (the-object a :type))
(b (defaulting (the-object a :performance)))
(equal? (equal (list aa) b))
(c (collect-if! equal? al)))

( (return-when empty? c)) ))
(cc (collect! (list aa bb))))

((return-when empty? cc)) )
((:PROVIDE_SPACE_FOR_THE_PASSENGERS (PC001
PC003)) (:PROVIDERSPACE_FOR_THE_LUGGAGE (LC001 LC003) ) )

:added-subcases ;;sort the subcases to be added to the
retrieved case 

(let-streams
((a (in (the :search-performance)))

(al (first a))
(a2 (second a))
(b (first a2))
(c (collect! (list al b))))

((return-when empty? c)))
( ( :PROVIDE_SPACE_FOR_THE_PASSENGERS PC001)
(:PROVIDE_SPACE__FOR_THE_LUGGAGE LC001))

:kept-performance-and-subcases 
(let-streams

((aa (in (the :retrieved-case-subcases)))
(aal (first aa))
(aa2 (second aa))
(bb (member aal (the :input-performance)))
(cc (collect-if! bb (list (defaulting aal) aa2))))

((return-when empty? cc)) )

:adapted-subcases-list (append (the :added-subcases) (the :kept- 
performance-and-subcases))

:sort-adapted-subcases-list 
(let-streams

((a (in (the :input-performance)))
(b (let-streams

( (bl (in (the :adapted-subcases-list)))
(bll (first bl))
(bl2 (second bl))
(match? (equal a bll))
(b3 (collect-if! match? bl2)))

( (return-when empty? b3)) ))
(c (collect! b)))

((return-when empty? c)) (a b c) )

:sort-adapted-subcases-list-2 
(let-streams

((a (in (the :sort-adapted-subcases-list)) )
(b (stream-append a)))

( (return-when empty? b)))

215



GOAL-ORIENTED-ADAPATION

:s-review-goals (the :retrieved-case rcorporate- 
goals) ;;((:MINIMISE :VOLUME :C) (:MAXIMISE :COMFORT :C)
(:MAXIMISE :VISUALISATION :C))

:review-goals (the :retrieved-case :corporate-goals)
:review-individual-goals 

goals)
:input-goals-propagation

( (a 
(b

goals)))

(the : retrieved-case :find-individual- 

(let-streams
(in (the :input-goals)))
(let-streams

((aa (in (the :review-individual-

(bb (lastcar aa))
(bbl (symbol-name bb))
(bb2 (char bbl 1))
(aal (char a 1))
(cc (equal aal bb2))
(dd (collect-if! cc aa nil)))

( (return-when empty? dd) )))
(c (collect! b)))

( (return-when empty? c)))
:reform-igp (let-streams

((a (in (the :input-goals-propagation)))
(b (stream-append a)))

( (return-when empty? b)))

:find-conflict (let-streams
((a (in (the :reform-igp)))
(al (first a))
(a2 (second a))
(a3 (nth 2 a))
(b (remove a (the :reform-igp)))
(c (let-streams

((aa (in b))
(aal (first aa))
(aa2 (second aa))
(aa3 (nth 2 aa))
(conflict? (and (and (equal aal al) (equal 

aa3 a3)) (not (equal aa2 a2))))
(bb (collect-if! conflict? (list aa a) nil)) 
( (return-when empty? (remove nil bb)))))

(d (collect! c)))
( (return-when empty? (remove nil d))))

:reform-find-conflict (let-streams
((a (in (the :find-conflict)))
(b (stream-append a)))

( (return-when empty? b)))
:reform-find-conflict-2 (let-streams

((a (in (the :reform-find-conflict)) )
(b (stream-append a)))

((return-when empty? b)))
:simplified-goals (let-streams

((a (in (the :reform-find-conflict-2)) )
(b (fby (the :reform-igp) (remove a b))))

((return-when empty? b))))

:value-in-sg (let-streams
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((a (in (the :simplified-goals) ) )
(al (first a))
(a2 (second a))
(a3 (nth 2 a))
(b (let-streams

((aa (in-tree (the :retrieved-case)))
(aal (the-object aa :name-for-display))
(bb (equal al aal))
(dd (collect-if! bb (the-object aa a3) nil))) 

( (return-when empty? (remove nil dd))) (a al
aal bb) ) )

(c (collect! (append (list al a2 a3) b))))

( (return-when empty? c)) )

:find-substitution (let-streams
((a (in (the :value-in-sg)))
(al (first a))
(a2 (second a))
(a3 (nth 2 a))
(a4 (nth 3 a))
(b (let-streams

((aa (in-tree (the :case-base)))
(aal (the-object aa :name-for-display)) 
(bbl (equal al aal))
(aa2 (the-object aa a3))
(bb2 (if bbl (and (> aa2 a4) (equal

a2 :maximise)) nil))
(bb3 (if bbl (and (< aa2 a4) (equal

a2 :minimise)) nil))
(aa4 (the-object aa :type))
(cc (collect-if! (or bb2 bb3) (list aal

aa4))) )
( (return-when empty? cc))))

(c (collect! b)))
((return-when empty? (remove nil c) ) ) )

:reform-substitution (let-streams
((a (in (the :find-substitution)))
(al (first a))
(b (collect! al)))

((return-when empty? b)))

:rs-performance (let-streams
((a (in (the :reform-substitution)))

(al (first a))
(b (let-streams

((aa (in-tree (the :retrieved-case)))
(aal (the-object aa :name-for-display) )
(aa2 (defaulting (the-object

aa .’performance) ) )
(bb (equal aal al))
(cc (collect-if! bb aa2)))

((return-when empty? cc))))
(c (collect! (append (list a) b))))

((return-when empty? c)))

:reform-rsp (let-streams
((a (in (the :rs-performance) ) )
(al (first a))
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)

(a2 (second a))
(b (collect! (append al a2)))) 

( (return-when empty? b)))

:parts
((case-for-display

:type (cond ((equal (the :retrieve-or-adapt) :retrieve
'case-for-goal-oriented-adaptation)
((and (equal (the :retrieve-or-adapt)

(equal (the :adaptation-method)
revision))

:retrieve-and-adapt) 
:performance-

1case-for-adaptation)
((and (equal (the :retrieve-or-adapt) 

(equal (the :adaptation-method) 
'case-for-goal-oriented-adaptation)) 

)

)

:retrieve-and-adapt) 
:goal-oriented))

:pseudo-parts 
(

(retrieved-case 
:type (the :find-type)) 
(case-base :type case-base) 

)

(defpart case-for-adaptation (box)
:attributes
(:functions (the-object (make-part Tcbr) :retrieved-case :functions) 
:function-relationship (the-object (make-part 'cbr) :retrieved- 

case :function-relationship)
:function-model (append (the :functions) (the :function- 

relationship) )
:width (max (the :engine-compartment :width) (the rpassenger- 

cabin :width) (the :luggage-compartment :width))
: length (+ (the :engine-compartment :length) (the rpassenger- 

cabin : length) (the :luggage-compartment :length))
rheight (max (the :engine-compartment rheight) (the rpassenger- 

cabin rheight) (the rluggage-compartment rheight))
rear-type (the-object (make-part 'cbr) rretrieved-case rear-type) 
rwheelbase (the-object (make-part 'cbr) rretrieved-case rwheelbase)
rfronttrack (the-object (make-part 'cbr) rretrieved- 

case r fronttrack)
:reartrack (the-object (make-part 'cbr) rretrieved-case rreartrack)
rweight (the-object (make-part 'cbr) rretrieved-case rweight) 
rfuel-consumption (the-object (make-part 'cbr) rretrieved- 

case rfuel-consumption)
rtop-speed (the-object (make-part 'cbr) rretrieved-case rtop-speed)
racceleration (the-object (make-part 'cbr) retrieved- 

case :acceleration)
:behaviour-feature

(list (the :length) (the :width) (the :height)
(the :wheelbase) (the rfronttrack) (the rreartrack))

rfunction-feature (list (the rear-type) (the rfuel-consumption)
(the rtop-speed) (the racceleration))

rstructure-feature (list (the rweight))
rfeatures (append (the rbehaviour-feature) (the rfunction-feature) 

(the rstructure-feature)) 
r performance
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(let-streams
((aa (in (the rchildren)))
(bb (the-object aa :performance))
(cc (collect! (defaulting bb () ))))

( (return-when empty? cc)))
:sub-relations 
(let-streams

( (aa (in (the :children)))
(bb (the-object aa :name-for-display))
(cc (collect! bb)))

((return-when empty? cc)))
)

:report-attributes 
(:vrml-out
(write-vrml-file (list self)
"f:/carbody.wrl"
:specified-planarity 0.1 
:specified-linearity 0.1 
:camera-on? t))

:parts
( (engine-compartment

:type (first (the-object (make-part ’cbr) :sort-adapted-subcases- 
list-2))

:position (:bottom 0.0))
(passenger-cabin 
:type (second (the-object (make-part 'cbr) :sort-adapted- 

subcases-list-2))
position (:front (:from (the :engine-compartment) (the rengine- 

compartment :length))))
(luggage-compartment 
:type (if (equal (third (the-object (make-part 'cbr) rsort- 

adapted-subcases-list-2)) nil) 'null-part
(third (the-object (make-part 'cbr) :sort-adapted-subcases-

list-2)))
:position (:front (:from (the :passenger-cabin) (the rpassenger- 

cabin :length)) :bottom 0.0 ))
)

)

(defpart case-for-goal-oriented-adaptation (box)
:attributes
(: functions (the-object (make-part 'cbr) :retrieved-case :functions) 
:function-relationship (the-object (make-part 'cbr) :retrieved- 

case :function-relationship)
:function-model (append (the :functions) (the :function- 

relationship) )
:width (max (the :engine-compartment :width) (the passenger- 

cabin :width) (the :luggage-compartment :width))
:length (+ (the :engine-compartment :length) (the rpassenger- 

cabin :length) (the :luggage-compartment :length))
rheight (max (the rengine-compartment rheight) (the rpassenger- 

cabin rheight) (the rluggage-compartment rheight))
rear-type (the-object (make-part 'cbr) rretrieved-case rear-type) 
rwheelbase (the-object (make-part 'cbr) rretrieved-case rwheelbase) 
rfronttrack (the-object (make-part 'cbr) rretrieved- 

case rfronttrack)
rreartrack (the-object (make-part 'cbr) rretrieved-case rreartrack) 
rweight (the-object (make-part 'cbr) rretrieved-case rweight)
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:fuel-consumption (the-object (make-part ’cbr) :retrieved- 
case :fuel-consumption)

:top-speed (the-object (make-part 'cbr) :retrieved-case :top-speed) 
:acceleration (the-object (make-part 'cbr) :retrieved- 

case :acceleration)
:behaviour-feature

(list (the : length) (the :width) (the :height)
(the rwheelbase) (the rfronttrack) (the rreartrack))

rfunction-feature (list (the rear-type) (the rfuel-consumption)
(the rtop-speed) (the :acceleration))

rstructure-feature (list (the rweight))
rfeatures (append (the rbehaviour-feature) (the rfunction-feature) 

(the rstructure-feature)) 
r performance 
(let-streams

( (aa (in (the rchildren)))
(bb (the-object aa rperformance))
(cc (collect! (defaulting bb () ))))

( (return-when empty? cc)))

rcheck-ec (equal (first (the-object (make-part 'cbr) rretrieved- 
case rsub-relations))

r engine-compartment) 
rcheck-pc (equal (second (the-object (make-part 'cbr) rretrieved- 

case rsub-relations))
rpassenger-cabin) 

rcheck-lc (equal (defaulting (nth 2 (the-object (make-part 
'cbr) rretrieved-case rsub-relations))) 

rluggage-compartment)
r sub-relations 
(let-streams

( (aa (in (the rchildren)))
(bb (the-object aa rname-for-display))
(cc (collect! bb)))

( (return-when empty? cc)))

)

r report-attributes 
(r vrml-out
(write-vrml-file (list self)
"f r/carbody.wr1" 
rspecified-planarity 0.1 
rspecified-linearity 0.1 
r camera-on? t))

r parts
( (engine-compartment

rtype (if (the rcheck-ec) 'ecgoal 'null-part) 
rposition (rbottom 0.0))
(passenger-cabin 
rtype (if (the rcheck-pc) 'pegoal 'null-part)
rposition ( rfront (:from (the rengine-compartment) (the rengine- 

compartment rlength))))
(luggage-compartment 
rtype (if (the rcheck-lc) 'legoal 'null-part)
rposition (rfront (rfrom (the rpassenger-cabin) (the rpassenger- 

cabin rlength)) rbottom 0.0 ))
)

)
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(defpart ecgoal (box)
:attributes
(:width (the-object (make-part 'cbr) :retrieved-case rengine- 

compartment :width)
: length (the-object (make-part ’cbr) :retrieved-case rengine- 

compartment :length)
:height (the-object (make-part 'cbr) :retrieved-case rengine- 

compartment rheight)
rperformance (list rprovide_space_for_the_engine)
:goals (list (the :G1-G1) (the :G3-G1))
:G1-G1 (list rminimise rvolume :c :G1)
:G3-G1 (list rminimise rlength ri rG3) 
rcheck-bonnet (let-streams

((a (in (the-object (make-part 'cbr) rreform-rsp)) ) 
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_top_cover_for_the_engine_compartment) )
(d (collect-if! c (list c a2) nil ))) 

((return-when empty? (first d)))) 
rcheck-bonnet-2 (let-streams

((a (in-tree (the-object (make-part 
'cbr) rretrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_top_cover_for_the_engine_compartment)))
(c (collect-if! b al)))

((return-when empty? (first c)))) 
r check-rightfrontwing (let-streams

((a (in (the-object (make-part 'cbr) rreform-rsp))) 
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_right_side_cover_for_the_engine__compartment) )
(d (collect-if! c (list c a2) nil )))

( (return-when empty? (first d)))) 
r check-rightfrontwing-2 (let-streams

((a (in-tree (the-object (make-part 
'cbr) r retrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_right_side_cover_for_the_engine_compartment) ) )
(c (collect-if! b al)))
((return-when empty? (first c)))) 

r check-leftfrontwing (let-streams
((a (in (the-object (make-part 'cbr) rreform-rsp))) 
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_left_side_cover_for_the__engine__compartment) )
(d (collect-if! c (list c a2) nil )))

((return-when empty? (first d)))) 
r check-leftfrontwing-2 (let-streams

( (a (in-tree (the-object (make-part 
'cbr) rretrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_left_side_cover_for_the_engine_compartment)))
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(c (collect-if! b al)))
((return-when empty? (first c)))) 

rcheck-frontpanel (let-streams
((a (in (the-object (make-part ’cbr) :reform-rsp))) 
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 :provide_front_cover_for_the_engine__compartment))
(d (collect-if! c (list c a2) nil ))) 

((return-when empty? (first d))))
:check-frontpanel-2 (let-streams

((a (in-tree (the-object (make-part 
'cbr) :retrieved-case)))

(al (the-object a :type))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_front__cover__for_the_engine_compartment) ) )
(c (collect-if! b al)))

((return-when empty? (first c))))
:goal-oriented? (equal (the-object (make-part 'cbr) radaptation- 

method) :goal-oriented)
:sub-relations 
(let-streams

( (aa (in (the rchildren)))
(bb (the-object aa rname-for-display))
(dd (list (the rname-for-display) bb))
(cc (collect! dd)))

((return-when empty? cc))))

r report-attributes 
(r vrml-out
(write-vrml-file (list self)
"fr/engine-compartment.wrl" 
rspecified-planarity 0.1 
rspecified-linearity 0.1 
r camera-on? t) )

rparts
((bonnet rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-bonnet)) ' t) )
(second (the rcheck-bonnet))

(the rcheck-bonnet-2) ) ) ; top_surface
(rightfrontwing rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-rightfrontwing)) 't)) 
(second (the rcheck-rightfrontwing))

(the rcheck-rightfrontwing-2)))
(leftfrontwing rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-leftfrontwing)) 't))
(second (the rcheck-leftfrontwing))

(the rcheck-leftfrontwing-2)))
(frontpanel rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-frontpanel)) 't))
(second (the rcheck-frontpanel))
(the rcheck-frontpanel-2)))))

(defpart pcgoal (box) 
r attributes
(rwidth (the-object (make-part 'cbr) rretrieved-case rpassenger- 

cabin rwidth)
rlength (the-object (make-part 'cbr) rretrieved-case rpassenger- 

cabin rlength)
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:height (the-object (make-part 'cbr) :retrieved-case rpassenger- 
cabin rheight)

rperformance (list rprovide_space_for_the_passengers) 
rgoals (list (the rGl-G2) (the rG2-Gl)) 
rGl-G2 (list rminimise rvolume rc rGl) 
rG2-Gl (list rmaximise rvolume rc rG2) 
rcheck-roofpanel (let-streams

((a (in (the-object (make-part 'cbr) rreform-rsp)) ) 
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_top_cover_for_the_passenger_cabin) )
(d (collect-if! c (list c a2) nil ))) 

((return-when empty? (first d)))) 
rcheck-roofpanel-2 (let-streams

((a (in-tree (the-object (make-part 
'cbr) r retrieved-case)) )

(al (the-object a rtype)(the-object (make-part 
’lcgoal) rleftrearwing))

(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_top_cover_for_the_passenger_cabin )))
(c (collect-if! b al)))

((return-when empty? (first c)))) 
rcheck-rightside (let-streams

((a (in (the-object (make-part 'cbr) rreform-rsp))) 
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_right_side_cover_for_the_passenger_cabin) )
(d (collect-if! c (list c a2) nil ))) 

((return-when empty? (first d)))) 
rcheck-rightside-2 (let-streams

((a (in-tree (the-object (make-part 
'cbr) rretrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_right_side_cover__for_the__passenger_cabin) ) )
(c (collect-if! b al)))
((return-when empty? (first c)))) 

rcheck-leftside (let-streams
((a (in (the-object (make-part 'cbr) rreform-rsp))) 
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_left_side_cover_for_the_passenger_cabin) )
(d (collect-if! c (list c a2) nil ))) 

((return-when empty? (first d)))) 
rcheck-leftside-2 (let-streams

( (a (in-tree (the-object (make-part 
'cbr) r retrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_left_side_cover_for_the_passenger_cabin)))
(c (collect-if! b al)))

((return-when empty? (first c)))) 
rgoal-oriented? (equal (the-object (make-part 'cbr) radaptation- 

method) rgoal-oriented)
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: sub-relations 
(let-streams

( (aa (in (the rchildren)))
(bb (the-object aa :name-for-display)) 
(dd (list (the :name-for-display) bb)) 
(cc (collect! dd)))

( (return-when empty? cc))))

:report-attributes 
(:vrml-out
(write-vrml-file (list self) 
"f:/paasenger-cabin.wri"
:specified-planarity 0.1 
: specified-linearity 0.1 
:camera-on? t)

)

rparts
( (roofpanel rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-roofpanel)) 't)) 
(second (the rcheck-roofpanel))

(the rcheck-roofpanel-2)))
(rightside rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-rightside)) 't)) 
(second (the rcheck-rightside))

(the rcheck-rightside-2)))
(leftside rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-leftside)) *t))
(second (the rcheck-leftside))
(the rcheck-leftside-2)))))

(defpart lcgoal (box) 
r attributes
(rwidth (the-object (make-part 'cbr) rretrieved-case rluggage- 

compartment rwidth)
rlength (the-object (make-part 'cbr) rretrieved-case rluggage- 

compartment rlength)
rheight (the-object (make-part 'cbr) rretrieved-case rluggage- 

compartment rheight)
rperformance (list rprovide_space_for_the__luggage) 
rgoals (list (the rGl-G3)) 
rGl-G3 (list rminimise rvolume rc rGl) 
rcheck-lcdoor (let-streams

((a (in (the-object (make-part 'cbr) rreform-rsp))) 
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide_top__cover_for_the_luggage_compartment))
(d (collect-if! c (list c a2) nil ))) 

((return-when empty? (first d)))) 
rcheck-lcdoor-2 (let-streams

((a (in-tree (the-object (make-part 
'cbr) rretrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_top_cover_for_the_luggage_compartment) ) )
(c (collect-if! b al)))

((return-when empty? (first c)))) 
r check-rightrearwing (let-streams
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((a (in (the-object (make-part ’cbr) :reform-rsp))) 
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 :provide_right_side__cover_for_the_luggage_compartment))
(d (collect-if! c (list c a2) nil )))

((return-when empty? (first d))))
:check-rightrearwing-2 (let-streams

((a (in-tree (the-object (make-part 
'cbr) :retrieved-case)) )

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_right_side_cover_for_the_luggage_compartment) ) )
(c (collect-if! b al)))
((return-when empty? (first c) ) ) ) 

rcheck-leftrearwing (let-streams
((a (in (the-object (make-part ’cbr) rreform-rsp))) 
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide__left_side_cover_for_the_luggage_compartment) )
(d (collect-if! c (list c a2) nil ))) 

((return-when empty? (first d)))) 
r check-leftrearwing-2 (let-streams

((a (in-tree (the-object (make-part 
’cbr) rretrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide__left_side_cover_for_the_luggage_compartment) ) )
(c (collect-if! b al)))
((return-when empty? (first c)))) 

rcheck-rearpanel (let-streams
((a (in (the-object (make-part ’cbr) rreform-rsp))) 
(a2 (second a))
(a3 (nth 2 a))
(c (equal

a3 rprovide__back_cover_for_the_luggage_compartment) )
(d (collect-if! c (list c a2) nil ))) 

((return-when empty? (first d)))) 
rcheck-rearpanel-2 (let-streams

((a (in-tree (the-object (make-part 
’cbr) rretrieved-case)))

(al (the-object a rtype))
(a2 (defaulting (the-object a rperformance)))
(b (equal a2

(list rprovide_back_cover_for_the_luggage_compartment)))
(c (collect-if! b al)))

((return-when empty? (first c)))) 
rgoal-oriented? (equal (the-object (make-part ’cbr) radaptation- 

method) rgoal-oriented)

r sub-relations 
(let-streams

((aa (in (the rchildren)))
(bb (the-object aa rname-for-display)) 
(dd (list (the rname-for-display) bb)) 
(cc (collect! dd)))

( (return-when empty? cc))))
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:report-attributes 
(:vrml-out
(write-vrml-file (list self)
"f:/luggage-compartment.wrl"
:specified-planarity 0.1
:specified-linearity 0.1(the-object (make-part 

'lcgoal) :leftrearwing)
:camera-on? t)
)

:parts
((lcdoor :type (if (and (the :goal-oriented?)

(equal (first (the :check-lcdoor)) 't))
(second (the :check-lcdoor))

(the :check-lcdoor-2)))
(rightrearwing rtype (if (and (the :goal-oriented?)

(equal (first (the :check-rightrearwing)) 't))
(second (the :check-rightrearwing))

(the :check-rightrearwing-2)))
(leftrearwing rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-leftrearwing)) 't))
(second (the rcheck-leftrearwing))

(the rcheck-leftrearwing-2)))
(rearpanel rtype (if (and (the rgoal-oriented?)

(equal (first (the rcheck-rearpanel)) !t))
(second (the rcheck-rearpanel))
(the rcheck-rearpanel-2)))))
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