71,162 research outputs found

    Designing an Adaptive Web Navigation Interface for Users with Variable Pointing Performance

    Get PDF
    Many online services and products require users to point and interact with user interface elements. For individuals who experience variable pointing ability due to physical impairments, environmental issues or age, using an input device (e.g., a computer mouse) to select elements on a website can be difficult. Adaptive user interfaces dynamically change their functionality in response to user behavior. They can support individuals with variable pointing abilities by 1) adapting dynamically to make element selection easier when a user is experiencing pointing difficulties, and 2) informing users about these pointing errors. While adaptive interfaces are increasingly prevalent on the Web, little is known about the preferences and expectations of users with variable pointing abilities and how to design systems that dynamically support them given these preferences. We conducted an investigation with 27 individuals who intermittently experience pointing problems to inform the design of an adaptive interface for web navigation. We used a functional high-fidelity prototype as a probe to gather information about user preferences and expectations. Our participants expected the system to recognize and integrate their preferences for how pointing tasks were carried out, preferred to receive information about system functionality and wanted to be in control of the interaction. We used findings from the study to inform the design of an adaptive Web navigation interface, PINATA that tracks user pointing performance over time and provides dynamic notifications and assistance tailored to their specifications. Our work contributes to a better understanding of users' preferences and expectations of the design of an adaptive pointing system

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Adapting robot task planning to user preferences: an assistive shoe dressing example

    Get PDF
    The final publication is available at link.springer.comHealthcare robots will be the next big advance in humans’ domestic welfare, with robots able to assist elderly people and users with disabilities. However, each user has his/her own preferences, needs and abilities. Therefore, robotic assistants will need to adapt to them, behaving accordingly. Towards this goal, we propose a method to perform behavior adaptation to the user preferences, using symbolic task planning. A user model is built from the user’s answers to simple questions with a fuzzy inference system, and it is then integrated into the planning domain. We describe an adaptation method based on both the user satisfaction and the execution outcome, depending on which penalizations are applied to the planner’s rules. We demonstrate the application of the adaptation method in a simple shoe-fitting scenario, with experiments performed in a simulated user environment. The results show quick behavior adaptation, even when the user behavior changes, as well as robustness to wrong inference of the initial user model. Finally, some insights in a non-simulated world shoe-fitting setup are also provided.Peer ReviewedPostprint (author's final draft

    Psychological elements explaining the consumer's adoption and use of a website recommendation system: A theoretical framework proposal

    Get PDF
    The purpose of this paper is to understand, with an emphasis on the psychological perspective of the research problem, the consumer's adoption and use of a certain web site recommendation system as well as the main psychological outcomes involved. The approach takes the form of theoretical modelling. Findings: A conceptual model is proposed and discussed. A total of 20 research propositions are theoretically analyzed and justified. Research limitations/implications: The theoretical discussion developed here is not empirically validated. This represents an opportunity for future research. Practical implications: The ideas extracted from the discussion of the conceptual model should be a help for recommendation systems designers and web site managers, so that they may be more aware, when working with such systems, of the psychological process consumers undergo when interacting with them. In this regard, numerous practical reflections and suggestions are presented

    Dance Teaching by a Robot: Combining Cognitive and Physical Human-Robot Interaction for Supporting the Skill Learning Process

    Full text link
    This letter presents a physical human-robot interaction scenario in which a robot guides and performs the role of a teacher within a defined dance training framework. A combined cognitive and physical feedback of performance is proposed for assisting the skill learning process. Direct contact cooperation has been designed through an adaptive impedance-based controller that adjusts according to the partner's performance in the task. In measuring performance, a scoring system has been designed using the concept of progressive teaching (PT). The system adjusts the difficulty based on the user's number of practices and performance history. Using the proposed method and a baseline constant controller, comparative experiments have shown that the PT presents better performance in the initial stage of skill learning. An analysis of the subjects' perception of comfort, peace of mind, and robot performance have shown a significant difference at the p < .01 level, favoring the PT algorithm.Comment: Presented at IEEE International Conference on Robotics and Automation ICRA-201
    corecore