267 research outputs found

    HIGH ACCURACY MULTISCALE MULTIGRID COMPUTATION FOR PARTIAL DIFFERENTIAL EQUATIONS

    Get PDF
    Scientific computing and computer simulation play an increasingly important role in scientific investigation and engineering designs, supplementing traditional experiments, such as in automotive crash studies, global climate change, ocean modeling, medical imaging, and nuclear weapons. The numerical simulation is much cheaper than experimentation for these application areas and it can be used as the third way of science discovery beyond the experimental and theoretical analysis. However, the increasing demand of high resolution solutions of the Partial Differential Equations (PDEs) with less computational time has increased the importance for researchers and engineers to come up with efficient and scalable computational techniques that can solve very large-scale problems. In this dissertation, we build an efficient and highly accurate computational framework to solve PDEs using high order discretization schemes and multiscale multigrid method. Since there is no existing explicit sixth order compact finite difference schemes on a single scale grids, we used Gupta and Zhang’s fourth order compact (FOC) schemes on different scale grids combined with Richardson extrapolation schemes to compute the sixth order solutions on coarse grid. Then we developed an operator based interpolation scheme to approximate the sixth order solutions for every find grid point. We tested our method for 1D/2D/3D Poisson and convection-diffusion equations. We developed a multiscale multigrid method to efficiently solve the linear systems arising from FOC discretizations. It is similar to the full multigrid method, but it does not start from the coarsest level. The major advantage of the multiscale multigrid method is that it has an optimal computational cost similar to that of a full multigrid method and can bring us the converged fourth order solutions on two grids with different scales. In order to keep grid independent convergence for the multiscale multigrid method, line relaxation and plane relaxation are used for 2D and 3D convection diffusion equations with high Reynolds number, respectively. In addition, the residual scaling technique is also applied for high Reynolds number problems. To further optimize the multiscale computation procedure, we developed two new methods. The first method is developed to solve the FOC solutions on two grids using standardW-cycle structure. The novelty of this strategy is that we use the coarse level grid that will be generated in the standard geometric multigrid to solve the discretized equations and achieve higher order accuracy solution. It is more efficient and costs less CPU and memory compared with the V-cycle based multiscale multigrid method. The second method is called the multiple coarse grid computation. It is first proposed in superconvergent multigrid method to speed up the convergence. The basic idea of multigrid superconvergent method is to use multiple coarse grids to generate better correction for the fine grid solution than that from the single coarse grid. However, as far as we know, it has never been used to increase the order of solution accuracy for the fine grid. In this dissertation, we use the idea of multiple coarse grid computation to approximate the fourth order solutions on every coarse grid and fine grid. Then we apply the Richardson extrapolation for every fine grid point to get the sixth order solutions. For parallel implementation, we studied the parallelization and vectorization potential of the Gauss-Seidel relaxation by partitioning the grid space with four colors for solving 3D convection-diffusion equations. We used OpenMP to parallelize the loops in relaxation and residual computation. The numerical results show that the parallelized and the sequential implementation have the same convergence rate and the accuracy of the computed solutions

    High Order Spectral Volume and Spectral Difference Methods on Unstructured Grids

    Get PDF
    The spectral volume (SV) and the spectral difference (SD) methods were developed by Wang and Liu and their collaborators for conservation laws on unstructured grids. They were introduced to achieve high-order accuracy in an efficient manner. Recently, these methods were extended to three-dimensional systems and to the Navier Stokes equations. The simplicity and robustness of these methods have made them competitive against other higher order methods such as the discontinuous Galerkin and residual distribution methods. Although explicit TVD Runge-Kutta schemes for the temporal advancement are easy to implement, they suffer from small time step limited by the Courant-Friedrichs-Lewy (CFL) condition. When the polynomial order is high or when the grid is stretched due to complex geometries or boundary layers, the convergence rate of explicit schemes slows down rapidly. Solution strategies to remedy this problem include implicit methods and multigrid methods. A novel implicit lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation method is employed as an iterative smoother. It is compared to the explicit TVD Runge-Kutta smoothers. For some p-multigrid calculations, combining implicit and explicit smoothers for different p-levels is also studied. The multigrid method considered is nonlinear and uses Full Approximation Scheme (FAS). An overall speed-up factor of up to 150 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Euler equations for the 3rd order SD method. A study of viscous flux formulations was carried out for the SV method. Three formulations were used to discretize the viscous fluxes: local discontinuous Galerkin (LDG), a penalty method and the 2nd method of Bassi and Rebay. Fourier analysis revealed some interesting advantages for the penalty method. These were implemented in the Navier Stokes solver. An implicit and p-multigrid method was also implemented for the above. An overall speed-up factor of up to 1500 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Navier-Stokes equations. The SV method was also extended to turbulent flows. The RANS based SA model was used to close the Reynolds stresses. The numerical results are very promising and indicate that the approaches have great potentials for 3D flow problems

    Non-oscillatory Spatial Solutions Criterion for Convection-Diffusion Problem

    Get PDF
    The fact that the convection-diffusion problems are essential in nature is supported by the presence of such problems in vast number of applications in both science as well as engineering. Some of these applications involve the computational domain’s grid structure issues in the numerical experiment of fluid dynamics. The paper highlights the important role of convection-diffusion flow parameters in the construction of the grid structure. We propose the a priori criterion formulation to avoid non-oscillatory solutions which is based on both Peclet and grid  numbers, and serves as a systematic approach in setting grid related parameters of interest. Aiming at a more efficient process in choosing grid structure for computational domain, the criterion functions as a standard which also eliminates heuristic process in the scalar concentration prediction. The test cases’ calculated results verify the consistency of the criterion

    The Sixth Copper Mountain Conference on Multigrid Methods, part 2

    Get PDF
    The Sixth Copper Mountain Conference on Multigrid Methods was held on April 4-9, 1993, at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth

    Seventh Copper Mountain Conference on Multigrid Methods

    Get PDF
    The Seventh Copper Mountain Conference on Multigrid Methods was held on 2-7 Apr. 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection shows its rapid trend to further diversity and depth

    Progress on unstructured-grid based high-order CFD method

    Get PDF
    Several new methods have been developed to meet the critical and diversified challenges in the state-of-art unstructured-grids based high-order methods for 3D real-world applications, including 1) parameter-free high-order generalized moment limiter for arbitrary mesh; 2) efficient line implicit method; 3) efficient quadrature-free SV method; 4) novel high-order mesh generation method for 3D hexahedral mesh. The parameter-free high-order generalized moment limiter does not need any user-specified free parameter to detect the discontinuities and exclude the smooth extrema. The present limiter has been designed to be naturally generic, compact, and efficient, which can be applied for arbitrary mesh and general unstructured-grids based high-order methods. The present low-storage line implicit BLU-SGS method significantly overcomes the anisotropy stiffness due to highly stretched wall grids in high Reynolds number flows. Improved robustness and up to 3 times of savings on CPU time have been demonstrated comparing with the cell BLU-SGS solver. This line implicit method preserves the favorable feature of high compactness from the cell BLU-SGS method, and can be programmed as a black box so as to be easily applied in general high-order methods. The quadrature-free SV method has improved the original SV method by replacing the large number of quadrature for face integrals in 3D case with many less nodal operations based on analytical shape functions. Finally for high-order unstructured mesh generation, the present novel and fully automatic algorithm guarantee to resolve the self-intersection problem for non-linear quadrilateral or hexahedral mesh with strong robustness. The algorithm also offers the advantage of correcting grid self-intersection without changing the basic aspect ratio of the original grids or degrading the original grid quality

    Computational fluid dynamics for aerospace propulsion systems: an approach based on discontinuous finite elements

    Get PDF
    The purpose of this work is the development of a numerical tool devoted to the study of the flow field in the components of aerospace propulsion systems. The goal is to obtain a code which can efficiently deal with both steady and unsteady problems, even in the presence of complex geometries. Several physical models have been implemented and tested, starting from Euler equations up to a three equations RANS model. Numerical results have been compared with experimental data for several real life applications in order to understand the range of applicability of the code. Performance optimization has been considered with particular care thanks to the participation to two international Workshops in which the results were compared with other groups from all over the world. As far as the numerical aspect is concerned, state-of-art algorithms have been implemented in order to make the tool competitive with respect to existing softwares. The features of the chosen discretization have been exploited to develop adaptive algorithms (p, h and hp adaptivity) which can automatically refine the discretization. Furthermore, two new algorithms have been developed during the research activity. In particular, a new technique (Feedback filtering [1]) for shock capturing in the framework of Discontinuous Galerkin methods has been introduced. It is based on an adaptive filter and can be efficiently used with explicit time integration schemes. Furthermore, a new method (Enhance Stability Recovery [2]) for the computation of diffusive fluxes in Discontinuous Galerkin discretizations has been developed. It derives from the original recovery approach proposed by van Leer and Nomura [3] in 2005 but it uses a different recovery basis and a different approach for the imposition of Dirichlet boundary conditions. The performed numerical comparisons showed that the ESR method has a larger stability limit in explicit time integration with respect to other existing methods (BR2 [4] and original recovery [3]). In conclusion, several well known test cases were studied in order to evaluate the behavior of the implemented physical models and the performance of the developed numerical schemes
    • …
    corecore