199 research outputs found

    Extracting proofs from documents

    Get PDF
    Often, theorem checkers like PVS are used to check an existing proof, which is part of some document. Since there is a large difference between the notations used in the documents and the notations used in the theorem checkers, it is usually a laborious task to convert an existing proof into a format which can be checked by a machine. In the system that we propose, the author is assisted in the process of converting an existing proof into the PVS language and having it checked by PVS. 1 Introduction The now-classic ALGOL 60 report [5] recognized three different levels of language: a reference language, a publication language and several hardware representations, whereby the publication language was intended to admit variations on the reference language and was to be used for stating and communicating processes. The importance of publication language ---often referred to nowadays as "pseudo-code"--- is difficult to exaggerate since a publication language is the most effective way..

    From LCF to Isabelle/HOL

    Get PDF
    Interactive theorem provers have developed dramatically over the past four decades, from primitive beginnings to today's powerful systems. Here, we focus on Isabelle/HOL and its distinctive strengths. They include automatic proof search, borrowing techniques from the world of first order theorem proving, but also the automatic search for counterexamples. They include a highly readable structured language of proofs and a unique interactive development environment for editing live proof documents. Everything rests on the foundation conceived by Robin Milner for Edinburgh LCF: a proof kernel, using abstract types to ensure soundness and eliminate the need to store proofs. Compared with the research prototypes of the 1970s, Isabelle is a practical and versatile tool. It is used by system designers, mathematicians and many others

    LFTOP: An LF based approach to domain specific reasoning

    Get PDF
    Specialized vocabulary, notations and inference rules tailored for the description, analysis and reasoning of a domain is very important for the domain. For domain-specific issues researchers focus mainly on the design and implementation of domain-specific languages (DSL) and pay little attention to the reasoning aspects. We believe that domain-specific reasoning is very important to help the proofs of some properties of the domains and should be more concise, more reusable and more believable. It deserves to be investigated in an engineering way. Type theory provides good support for generic reasoning and verification. Many type theorists want to extend uses of type theory to more domains, and believe that the methods, ideas, and technology of type theory can have a beneficial effect for computer assisted reasoning in many domains. Proof assistants based on type theory are well known as effective tools to support reasoning. But these proof assistants have focused primarily on generic notations for representation of problems and are oriented towards helping expert type theorists build proofs efficiently. They are successful in this goal, but they are less suitable for use by non-specialists. In other words, one of the big barriers to limit the use of type theory and proof assistant in domain-specific areas is that it requires significant expertise to use it effectively. We present LFTOP ― a new approach to domain-specific reasoning that is based on a type-theoretic logical framework (LP) but does not require the user to be an expert in type theory. In this approach, users work on a domain-specific interface that is familiar to them. The interface presents a reasoning system of the domain through a user-oriented syntax. A middle layer provides translation between the user syntax and LF, and allows additional support for reasoning (e.g. model checking). Thus, the complexity of the logical framework is hidden but we also retain the benefits of using type theory and its related tools, such as precision and machine-checkable proofs. The approach is being investigated through a number of case studies. In each case study, the relevant domain-specific specification languages and logic are formalized in Plastic. The relevant reasoning system is designed and customized for the users of the corresponding specific domain. The corresponding lemmas are proved in Plastic. We analyze the advantages and shortcomings of this approach, define some new concepts related to the approach, especially discuss issues arising from the translation between the different levels. A prototype implementation is developed. We illustrate the approach through many concrete examples in the prototype implementation. The study of this thesis shows that the approach is feasible and promising, the relevant methods and technologies are useful and effective

    A pattern-based foundation for language-driven software engineering

    Get PDF
    This work brings together two fundamental ideas for modelling, programming and analysing software systems. The first idea is of a methodological nature: engineering software by systematically creating and relating languages. The second idea is of a technical nature: using patterns as a practical foundation for computing. The goal is to show that the systematic creation and layering of languages can be reduced to the elementary operations of pattern matching and instantiation and that this pattern-based approach provides a formal and practical foundation for language-driven modelling, programming and analysis. The underpinning of the work is a novel formalism for recognising, deconstructing, creating, searching, transforming and generally manipulating data structures. The formalism is based on typed sequences, a generic structure for representing trees. It defines basic pattern expressions for matching and instantiating atomic values and variables. Horizontal, vertical, diagonal and hierarchical operators are different ways of combining patterns. Transformations combine matching and instantiating patterns and they are patterns themselves. A quasiquotation mechanism allows arbitrary levels of meta-pattern functionality and forms the basis of pattern abstraction. Path polymorphic operators are used to specify fine-grained search of structures. A range of core concepts such as layering, parsing and pattern-based computing can naturally be defined through pattern expressions. Three language-driven tools that utilise the pattern formalism showcase the applicability of the pattern-approach. Concat is a self-sustaining (meta-)programming system in which all computations are expressed by matching and instantiation. This includes parsing, executing and optimising programs. By applying its language engineering tools to its own meta-language, Concat can extend itself from within. XMF (XML Modeling Framework) is a browser-based modelling- and meta-modelling framework that provides flexible means to create and relate modelling languages and to query and validate models. The pattern functionality that makes this possible is partly exposed as a schema language and partly as a JavaScript library. CFR (Channel Filter Rule Language) implements a language-driven approach for layered analysis of communication in complex networked systems. The communication on each layer is visible in the language of an “abstract protocol” that is defined by communication patterns.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore