339,456 research outputs found

    Modeling Adaptation with Klaim

    Get PDF
    In recent years, it has been argued that systems and applications, in order to deal with their increasing complexity, should be able to adapt their behavior according to new requirements or environment conditions. In this paper, we present an investigation aiming at studying how coordination languages and formal methods can contribute to a better understanding, implementation and use of the mechanisms and techniques for adaptation currently proposed in the literature. Our study relies on the formal coordination language Klaim as a common framework for modeling some well-known adaptation techniques: the IBM MAPE-K loop, the Accord component-based framework for architectural adaptation, and the aspect- and context-oriented programming paradigms. We illustrate our approach through a simple example concerning a data repository equipped with an automated cache mechanism

    Toward a Formal Semantics for Autonomic Components

    Full text link
    Autonomic management can improve the QoS provided by parallel/ distributed applications. Within the CoreGRID Component Model, the autonomic management is tailored to the automatic - monitoring-driven - alteration of the component assembly and, therefore, is defined as the effect of (distributed) management code. This work yields a semantics based on hypergraph rewriting suitable to model the dynamic evolution and non-functional aspects of Service Oriented Architectures and component-based autonomic applications. In this regard, our main goal is to provide a formal description of adaptation operations that are typically only informally specified. We contend that our approach makes easier to raise the level of abstraction of management code in autonomic and adaptive applications.Comment: 11 pages + cover pag

    Formalizing Adaptation On-the-Fly

    Get PDF
    AbstractParadigm models specify coordination of collaborating components via constraint control. Component McPal allows for later addition of new constraints and new control in view of unforeseen adaptation. After addition McPal starts coordinating migration accordingly, adapting the system towards to-be collaboration. Once done, McPal removes obsolete control and constraints. All coordination remains ongoing while migrating on-the-fly, being deflected without any quiescence. Through translation into process algebra, supporting formal analysis is arranged carefully, showing that as-is and to-be processes are proper abstractions of the migrating process. A canonical critical section problem illustrates the approach

    A formal approach to adaptive software: continuous assurance of non-functional requirements

    No full text
    Abstract Modern software systems are increasingly requested to be adaptive to changes in the environment in which they are embedded. Moreover, adaptation often needs to be performed automatically, through self-managed reactions enacted by the application at run time. Off-line, human-driven changes should be requested only if self-adaptation cannot be achieved successfully. To support this kind of autonomic behavior, software systems must be empowered by a rich run-time support that can monitor the relevant phenomena of the surrounding environment to detect changes, analyze the data collected to understand the possible consequences of changes, reason about the ability of the application to continue to provide the required service, and finally react if an adaptation is needed. This paper focuses on non-functional requirements, which constitute an essential component of the quality that modern software systems need to exhibit. Although the proposed approach is quite general, it is mainly exemplified in the paper in the context of service-oriented systems, where the quality of service (QoS) is regulated by contractual obligations between the application provider and its clients. We analyze the case where an application, exported as a service, is built as a composition of other services. Non-functional requirements—such as reliability and performance—heavily depend on the environment in which the application is embedded. Thus changes in the environment may ultimately adversely affect QoS satisfaction. We illustrate an approach and support tools that enable a holistic view of the design and run-time management of adaptive software systems. The approach is based on formal (probabilistic) models that are used at design time to reason about dependability of the application in quantitative terms. Models continue to exist at run time to enable continuous verification and detection of changes that require adaptation.</jats:p

    Adaptive business rules framework for workflow management

    Get PDF
    Changing scattered and dynamic business rules in Business Workflow Systems has become a growing problem that hinders the use and configuration of workflow-based applications. There is a gap in the existing research studies which currently focus on solutions that are application specific, without accounting for the universal logical dependencies between the business rules and, as a result, do not support adaptation of the business rules in real time. Design/methodology/approach – To tackle the above problems, this paper adopts a bottom-up approach, which puts forward a component model of the business process workflows and business rules based on purely logical specification which allows incremental development of the workflows and indexing of the rules which govern them during the initial acquisition and real-time execution. Results – The paper introduces a component-based event-driven model for development of business workflows which is purely logic based and can be easily implemented using an object-oriented technology together with a formal model for accounting the business rules dependencies together with a new method for incremental indexing of the business rules controlling the workflows. It proposes a two-level inference mechanism as a vehicle for controlling the business process execution and adaptation of the business rules at real time based on propagating the dependencies between the rules. Originality/value –The major achievement of this research is the universal, strictly logic-based event-driven framework for business process modelling and control which allows automatic adaptation of the business rules governing the business workflows based on accounting for their structural dependencies. An additional advantage of the framework is its support for object-oriented technology which can be implemented with enterprise-level quality and efficiency. Although developed primarily for application in construction industry the framework is entirely domain-independent and can be used in other industries, too

    MORPH: A Reference Architecture for Configuration and Behaviour Self-Adaptation

    Full text link
    An architectural approach to self-adaptive systems involves runtime change of system configuration (i.e., the system's components, their bindings and operational parameters) and behaviour update (i.e., component orchestration). Thus, dynamic reconfiguration and discrete event control theory are at the heart of architectural adaptation. Although controlling configuration and behaviour at runtime has been discussed and applied to architectural adaptation, architectures for self-adaptive systems often compound these two aspects reducing the potential for adaptability. In this paper we propose a reference architecture that allows for coordinated yet transparent and independent adaptation of system configuration and behaviour
    • …
    corecore