7,869 research outputs found

    Formal verification of a software countermeasure against instruction skip attacks

    Get PDF
    Fault attacks against embedded circuits enabled to define many new attack paths against secure circuits. Every attack path relies on a specific fault model which defines the type of faults that the attacker can perform. On embedded processors, a fault model consisting in an assembly instruction skip can be very useful for an attacker and has been obtained by using several fault injection means. To avoid this threat, some countermeasure schemes which rely on temporal redundancy have been proposed. Nevertheless, double fault injection in a long enough time interval is practical and can bypass those countermeasure schemes. Some fine-grained countermeasure schemes have also been proposed for specific instructions. However, to the best of our knowledge, no approach that enables to secure a generic assembly program in order to make it fault-tolerant to instruction skip attacks has been formally proven yet. In this paper, we provide a fault-tolerant replacement sequence for almost all the instructions of the Thumb-2 instruction set and provide a formal verification for this fault tolerance. This simple transformation enables to add a reasonably good security level to an embedded program and makes practical fault injection attacks much harder to achieve

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    Runtime Enforcement for Component-Based Systems

    Get PDF
    Runtime enforcement is an increasingly popular and effective dynamic validation technique aiming to ensure the correct runtime behavior (w.r.t. a formal specification) of systems using a so-called enforcement monitor. In this paper we introduce runtime enforcement of specifications on component-based systems (CBS) modeled in the BIP (Behavior, Interaction and Priority) framework. BIP is a powerful and expressive component-based framework for formal construction of heterogeneous systems. However, because of BIP expressiveness, it remains difficult to enforce at design-time complex behavioral properties. First we propose a theoretical runtime enforcement framework for CBS where we delineate a hierarchy of sets of enforceable properties (i.e., properties that can be enforced) according to the number of observational steps a system is allowed to deviate from the property (i.e., the notion of k-step enforceability). To ensure the observational equivalence between the correct executions of the initial system and the monitored system, we show that i) only stutter-invariant properties should be enforced on CBS with our monitors, ii) safety properties are 1-step enforceable. Given an abstract enforcement monitor (as a finite-state machine) for some 1-step enforceable specification, we formally instrument (at relevant locations) a given BIP system to integrate the monitor. At runtime, the monitor observes and automatically avoids any error in the behavior of the system w.r.t. the specification. Our approach is fully implemented in an available tool that we used to i) avoid deadlock occurrences on a dining philosophers benchmark, and ii) ensure the correct placement of robots on a map.Comment: arXiv admin note: text overlap with arXiv:1109.5505 by other author

    Development and analysis of the Software Implemented Fault-Tolerance (SIFT) computer

    Get PDF
    SIFT (Software Implemented Fault Tolerance) is an experimental, fault-tolerant computer system designed to meet the extreme reliability requirements for safety-critical functions in advanced aircraft. Errors are masked by performing a majority voting operation over the results of identical computations, and faulty processors are removed from service by reassigning computations to the nonfaulty processors. This scheme has been implemented in a special architecture using a set of standard Bendix BDX930 processors, augmented by a special asynchronous-broadcast communication interface that provides direct, processor to processor communication among all processors. Fault isolation is accomplished in hardware; all other fault-tolerance functions, together with scheduling and synchronization are implemented exclusively by executive system software. The system reliability is predicted by a Markov model. Mathematical consistency of the system software with respect to the reliability model has been partially verified, using recently developed tools for machine-aided proof of program correctness

    Vulnerability anti-patterns:a timeless way to capture poor software practices (Vulnerabilities)

    Get PDF
    There is a distinct communication gap between the software engineering and cybersecurity communities when it comes to addressing reoccurring security problems, known as vulnerabilities. Many vulnerabilities are caused by software errors that are created by software developers. Insecure software development practices are common due to a variety of factors, which include inefficiencies within existing knowledge transfer mechanisms based on vulnerability databases (VDBs), software developers perceiving security as an afterthought, and lack of consideration of security as part of the software development lifecycle (SDLC). The resulting communication gap also prevents developers and security experts from successfully sharing essential security knowledge. The cybersecurity community makes their expert knowledge available in forms including vulnerability databases such as CAPEC and CWE, and pattern catalogues such as Security Patterns, Attack Patterns, and Software Fault Patterns. However, these sources are not effective at providing software developers with an understanding of how malicious hackers can exploit vulnerabilities in the software systems they create. As developers are familiar with pattern-based approaches, this paper proposes the use of Vulnerability Anti-Patterns (VAP) to transfer usable vulnerability knowledge to developers, bridging the communication gap between security experts and software developers. The primary contribution of this paper is twofold: (1) it proposes a new pattern template – Vulnerability Anti-Pattern – that uses anti-patterns rather than patterns to capture and communicate knowledge of existing vulnerabilities, and (2) it proposes a catalogue of Vulnerability Anti-Patterns (VAP) based on the most commonly occurring vulnerabilities that software developers can use to learn how malicious hackers can exploit errors in software
    • …
    corecore