971 research outputs found

    Algorithms and architectures for decimal transcendental function computation

    Get PDF
    Nowadays, there are many commercial demands for decimal floating-point (DFP) arithmetic operations such as financial analysis, tax calculation, currency conversion, Internet based applications, and e-commerce. This trend gives rise to further development on DFP arithmetic units which can perform accurate computations with exact decimal operands. Due to the significance of DFP arithmetic, the IEEE 754-2008 standard for floating-point arithmetic includes it in its specifications. The basic decimal arithmetic unit, such as decimal adder, subtracter, multiplier, divider or square-root unit, as a main part of a decimal microprocessor, is attracting more and more researchers' attentions. Recently, the decimal-encoded formats and DFP arithmetic units have been implemented in IBM's system z900, POWER6, and z10 microprocessors. Increasing chip densities and transistor count provide more room for designers to add more essential functions on application domains into upcoming microprocessors. Decimal transcendental functions, such as DFP logarithm, antilogarithm, exponential, reciprocal and trigonometric, etc, as useful arithmetic operations in many areas of science and engineering, has been specified as the recommended arithmetic in the IEEE 754-2008 standard. Thus, virtually all the computing systems that are compliant with the IEEE 754-2008 standard could include a DFP mathematical library providing transcendental function computation. Based on the development of basic decimal arithmetic units, more complex DFP transcendental arithmetic will be the next building blocks in microprocessors. In this dissertation, we researched and developed several new decimal algorithms and architectures for the DFP transcendental function computation. These designs are composed of several different methods: 1) the decimal transcendental function computation based on the table-based first-order polynomial approximation method; 2) DFP logarithmic and antilogarithmic converters based on the decimal digit-recurrence algorithm with selection by rounding; 3) a decimal reciprocal unit using the efficient table look-up based on Newton-Raphson iterations; and 4) a first radix-100 division unit based on the non-restoring algorithm with pre-scaling method. Most decimal algorithms and architectures for the DFP transcendental function computation developed in this dissertation have been the first attempt to analyze and implement the DFP transcendental arithmetic in order to achieve faithful results of DFP operands, specified in IEEE 754-2008. To help researchers evaluate the hardware performance of DFP transcendental arithmetic units, the proposed architectures based on the different methods are modeled, verified and synthesized using FPGAs or with CMOS standard cells libraries in ASIC. Some of implementation results are compared with those of the binary radix-16 logarithmic and exponential converters; recent developed high performance decimal CORDIC based architecture; and Intel's DFP transcendental function computation software library. The comparison results show that the proposed architectures have significant speed-up in contrast to the above designs in terms of the latency. The algorithms and architectures developed in this dissertation provide a useful starting point for future hardware-oriented DFP transcendental function computation researches

    A Digital Integrated Inertial Navigation System For Aerial Vehicles

    Get PDF

    Precision analysis for hardware acceleration of numerical algorithms

    No full text
    The precision used in an algorithm affects the error and performance of individual computations, the memory usage, and the potential parallelism for a fixed hardware budget. However, when migrating an algorithm onto hardware, the potential improvements that can be obtained by tuning the precision throughout an algorithm to meet a range or error specification are often overlooked; the major reason is that it is hard to choose a number system which can guarantee any such specification can be met. Instead, the problem is mitigated by opting to use IEEE standard double precision arithmetic so as to be ‘no worse’ than a software implementation. However, the flexibility in the number representation is one of the key factors that can be exploited on reconfigurable hardware such as FPGAs, and hence ignoring this potential significantly limits the performance achievable. In order to optimise the performance of hardware reliably, we require a method that can tractably calculate tight bounds for the error or range of any variable within an algorithm, but currently only a handful of methods to calculate such bounds exist, and these either sacrifice tightness or tractability, whilst simulation-based methods cannot guarantee the given error estimate. This thesis presents a new method to calculate these bounds, taking into account both input ranges and finite precision effects, which we show to be, in general, tighter in comparison to existing methods; this in turn can be used to tune the hardware to the algorithm specifications. We demonstrate the use of this software to optimise hardware for various algorithms to accelerate the solution of a system of linear equations, which forms the basis of many problems in engineering and science, and show that significant performance gains can be obtained by using this new approach in conjunction with more traditional hardware optimisations

    Comparison of logarithmic and floating-point number systems implemented on Xilinx Virtex-II field-programmable gate arrays

    Get PDF
    The aim of this thesis is to compare the implementation of parameterisable LNS (logarithmic number system) and floating-point high dynamic range number systems on FPGA. The Virtex/Virtex-II range of FPGAs from Xilinx, which are the most popular FPGA technology, are used to implement the designs. The study focuses on using the low level primitives of the technology in an efficient way and so initially the design issues in implementing fixed-point operators are considered. The four basic operations of addition, multiplication, division and square root are considered. Carry- free adders, ripple-carry adders, parallel multipliers and digit recurrence division and square root are discussed. The floating-point operators use the word format and exceptions as described by the IEEE std-754. A dual-path adder implementation is described in detail, as are floating-point multiplier, divider and square root components. Results and comparisons with other works are given. The efficient implementation of function evaluation methods is considered next. An overview of current FPGA methods is given and a new piecewise polynomial implementation using the Taylor series is presented and compared with other designs in the literature. In the next section the LNS word format, accuracy and exceptions are described and two new LNS addition/subtraction function approximations are described. The algorithms for performing multiplication, division and powering in the LNS domain are also described and are compared with other designs in the open literature. Parameterisable conversion algorithms to convert to/from the fixed-point domain from/to the LNS and floating-point domain are described and implementation results given. In the next chapter MATLAB bit-true software models are given that have the exact functionality as the hardware models. The interfaces of the models are given and a serial communication system to perform low speed system tests is described. A comparison of the LNS and floating-point number systems in terms of area and delay is given. Different functions implemented in LNS and floating-point arithmetic are also compared and conclusions are drawn. The results show that when the LNS is implemented with a 6-bit or less characteristic it is superior to floating-point. However, for larger characteristic lengths the floating-point system is more efficient due to the delay and exponential area increase of the LNS addition operator. The LNS is beneficial for larger characteristics than 6-bits only for specialist applications that require a high portion of division, multiplication, square root, powering operations and few additions

    THE DESIGN OF AN IC HALF PRECISION FLOATING POINT ARITHMETIC LOGIC UNIT

    Get PDF
    A 16 bit floating point (FP) Arithmetic Logic Unit (ALU) was designed and implemented in 0.35µm CMOS technology. Typical uses of the 16 bit FP ALU include graphics processors and embedded multimedia applications. The ALU of the modern microprocessors use a fused multiply add (FMA) design technique. An advantage of the FMA is to remove the need for a comparator which is required for a normal FP adder. The FMA consists of a multiplier, shifters, adders and rounding circuit. A fast multiplier based on the Wallace tree configuration was designed. The number of partial products was greatly reduced by the use of the modified booth encoder. The Wallace tree was chosen to reduce the number of reduction layers of partial products. The multiplier also involved the design of a pass transistor based 4:2 compressor. The average delay of the pass transistor based compressor was 55ps and was found to be 7 times faster than the full adder based 4:2 compressor. The shifters consist of separate left and right shifters using multiplexers. The shift amount is calculated using the exponents of the three operands. The addition operation is implemented using a carry skip adder (CSK). The average delay of the CSK was 1.05ns and was slower than the carry look ahead adder by about 400ps. The advantages of the CSK are reduced power, gate count and area when compared to the similar sized carry look ahead adder. The adder computes the addition of the multiplier result and the shifted value of the addend. In most modern computers, division is performed using software thereby eliminating the need for a separate hardware unit. FMA hardware unit was utilized to perform FP division. The FP divider uses the Newton Raphson algorithm to solve division by iteration. The initial approximated value with five bit accuracy was assumed to be pre-stored in cache memory and a separate clock cycle for cache read was assumed before the start of the FP division operation. In order to significantly reduce the area of the design, only one multiplier was used. Rounding to nearest technique was implemented using an 11 bit variable CSK adder. This is the best rounding technique when compared to other rounding techniques. In both the FMA and division, rounding was performed after the computation of the final result during the last clock cycle of operation. Testability analysis is performed for the multiplier which is the most complex and critical part of the FP ALU. The specific aim of testability was to ensure the correct operation of the multiplier and thus guarantee the correctness of the FMA circuit at the layout stage. The multiplier\u27s output was tested by identifying the minimal number of input vectors which toggle the inputs of the 4:2 compressors of the multiplier. The test vectors were identified in a semi automated manner using Perl scripting language. The multiplier was tested with a test set of thirty one vectors. The fault coverage of the multiplier was found to be 90.09%. The layout was implemented using IC station of Mentor Graphics CAD tool and resulted in a chip area of 1.96mm2. The specifications for basic arithmetic operations were met successfully. FP Division operation was completed within six clock cycles. The other arithmetic operations like FMA, FP addition, FP subtraction and FP multiplication were completed within three clock cycles

    Glosarium Matematika

    Get PDF
    273 p.; 24 cm
    corecore