48,449 research outputs found

    On large-sample estimation and testing via quadratic inference functions for correlated data

    Full text link
    Hansen (1982) proposed a class of "generalized method of moments" (GMMs) for estimating a vector of regression parameters from a set of score functions. Hansen established that, under certain regularity conditions, the estimator based on the GMMs is consistent, asymptotically normal and asymptotically efficient. In the generalized estimating equation framework, extending the principle of the GMMs to implicitly estimate the underlying correlation structure leads to a "quadratic inference function" (QIF) for the analysis of correlated data. The main objectives of this research are to (1) formulate an appropriate estimated covariance matrix for the set of extended score functions defining the inference functions; (2) develop a unified large-sample theoretical framework for the QIF; (3) derive a generalization of the QIF test statistic for a general linear hypothesis problem involving correlated data while establishing the asymptotic distribution of the test statistic under the null and local alternative hypotheses; (4) propose an iteratively reweighted generalized least squares algorithm for inference in the QIF framework; and (5) investigate the effect of basis matrices, defining the set of extended score functions, on the size and power of the QIF test through Monte Carlo simulated experiments.Comment: 32 pages, 2 figure

    Regression adjustments for estimating the global treatment effect in experiments with interference

    Full text link
    Standard estimators of the global average treatment effect can be biased in the presence of interference. This paper proposes regression adjustment estimators for removing bias due to interference in Bernoulli randomized experiments. We use a fitted model to predict the counterfactual outcomes of global control and global treatment. Our work differs from standard regression adjustments in that the adjustment variables are constructed from functions of the treatment assignment vector, and that we allow the researcher to use a collection of any functions correlated with the response, turning the problem of detecting interference into a feature engineering problem. We characterize the distribution of the proposed estimator in a linear model setting and connect the results to the standard theory of regression adjustments under SUTVA. We then propose an estimator that allows for flexible machine learning estimators to be used for fitting a nonlinear interference functional form. We propose conducting statistical inference via bootstrap and resampling methods, which allow us to sidestep the complicated dependences implied by interference and instead rely on empirical covariance structures. Such variance estimation relies on an exogeneity assumption akin to the standard unconfoundedness assumption invoked in observational studies. In simulation experiments, our methods are better at debiasing estimates than existing inverse propensity weighted estimators based on neighborhood exposure modeling. We use our method to reanalyze an experiment concerning weather insurance adoption conducted on a collection of villages in rural China.Comment: 38 pages, 7 figure

    Bayesian Semiparametric Multivariate Density Deconvolution

    Full text link
    We consider the problem of multivariate density deconvolution when the interest lies in estimating the distribution of a vector-valued random variable but precise measurements of the variable of interest are not available, observations being contaminated with additive measurement errors. The existing sparse literature on the problem assumes the density of the measurement errors to be completely known. We propose robust Bayesian semiparametric multivariate deconvolution approaches when the measurement error density is not known but replicated proxies are available for each unobserved value of the random vector. Additionally, we allow the variability of the measurement errors to depend on the associated unobserved value of the vector of interest through unknown relationships which also automatically includes the case of multivariate multiplicative measurement errors. Basic properties of finite mixture models, multivariate normal kernels and exchangeable priors are exploited in many novel ways to meet the modeling and computational challenges. Theoretical results that show the flexibility of the proposed methods are provided. We illustrate the efficiency of the proposed methods in recovering the true density of interest through simulation experiments. The methodology is applied to estimate the joint consumption pattern of different dietary components from contaminated 24 hour recalls
    • …
    corecore