9 research outputs found

    Mobile IPv4 based procedure for loose coupling architecture to optimize performance in heterogeneous wireless networks

    Get PDF
    One challenge of wireless networks integration is the ubiquitous wireless access abilities which provide the seamless handover for any moving communication device between the different types of technologies (3GPP and non-3GPP), such as GSM (Global System for Mobile Communication), Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunications System (UMTS) and Long Term Evolution (LTE). This challenge is important as mobile users (MUs) are becoming increasingly demanding for services regardless of the technological complexities associated with it. To fulfill these requirements for seamless Vertical Handover (VHO) two main interworking architectures have been proposed by European Telecommunication Standards Institute (ETSI) for integration between the different types of technologies; namely, loose and tight coupling. On the other hand, Media Independent Handover IEEE 802.21 (MIH) is a mechanism which has been proposed by IEEE group to provide seamless VHO between the aforementioned technologies by utilizing these interworking architectures to facilitate and complement its work. The paper presents the design and analysis of a Mobile IPv4 (MIPv4) based procedure for loose coupling architecture with MIH to optimize performance in heterogeneous wireless networks. Analytical results show that our procedure provides seamless VHO with minimal latency and low packet loss ratio

    Mapping of QoS between UMTS and WiMAX in Tight Coupling Heterogeneous Wireless Network

    Full text link

    Algorithmic Identification of the Best WLAN Protocol and Network Architecture for Internet-Based Applications

    Get PDF
    This research developed a novel algorithm to evaluate internet-based services such as VoIP, Video Conferencing, HTTP and FTP, of different IEEE 802.11 technologies in order to identify the optimum network architecture among Basic Service Set (BSS), Extended Service Set (ESS) and the Independent Basic Service Set (BSS). The proposed algorithm will yield the rank order of different IEEE 802.11 technologies. By selecting the optimum network architecture and technology, the best overall network performance that provides good voice, video and data quality is guaranteed. Furthermore, it meets the acceptance threshold values for the VoIP, Video Conferencing, HTTP and FTP quality metrics. This algorithm was applied to various room sizes ranging from 2 x 3 m to 10 x 14 m and the number of nodes ranged from 1 to 65. The spatial distributions considered were circular, uniform and random. The Quality of Service (QoS) metrics used were delay, jitter, throughput and packet loss

    A Seamless Vertical Handoff Protocol for Enhancing the Performance of Data Services in Integrated UMTS/WLAN Network

    Get PDF
    The Next Generation Wireless Network (NGWN) is speculated to be a unified network composed of several existing wireless access networks such as Wireless Local Area Network (WLAN), Global System for Mobile (GSM), Universal Mobile Telecommunications System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX), and satellite network etc

    Hybrid wireless broadband networks

    Get PDF
    A hybrid system is an integration of two or more different systems, particularly in this thesis referring to wireless broadband networks. However, to provide end-to-end quality of service (QoS) in a hybrid system is a challenging task due to different protocol in each system. In this thesis, we aim to improve the overall performance of hybrid networks in a disaster management by addressing the challenges as well as the problems in a homogeneous network. Such an approach allows more efficient multi-parameter optimization and significant improvements in the overall system performance. More specifically, we introduce two novel algorithms. The first is the novel end-to-end QoS algorithm for hybrid wireless broadband networks. We proposed the end-to-end QoS maps based on particular chosen parameters and analyse the simulation results. The QoS maps are applied to a few scenarios, and the performance evaluation of the constructed network is presented. Based on the results obtained by software simulation tools, the performance validation shows that the hybrid network has specific advantages and constraints in terms of number of users, preference, coverage and applications. The second algorithm presented is the novel in users’ application algorithm, the purpose of which is to optimize bandwidth for first responders applied in the PPDR project under grant agreement EU FP7 SEC PPDR-TC. This algorithm is responsible for incorporating more users and different levels of background load to a hybrid network. The proposed method analyses both positive and negative outcomes based on the results obtained. This algorithm has been presented in the PPDR project

    A Seamless Vertical Handoff Protocol for Enhancing the Performance of Data Services in Integrated UMTS/WLAN Network

    Get PDF
    The Next Generation Wireless Network (NGWN) is speculated to be a unified network composed of several existing wireless access networks such as Wireless Local Area Network (WLAN), Global System for Mobile (GSM), Universal Mobile Telecommunications System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX), and satellite network etc

    Improving initiation, decision and execution phases for vertical handover in heterogeneous wireless mobile networks

    Get PDF
    One of the challenging issues in Next Generation Wireless Systems (NGWS) is seamless Vertical Handover (VHO) during the mobility between different types of technologies (3GPP and non-3GPP) such as Global System for Mobile Communication (GSM), Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunications System (UMTS) and Long Term Evolution (LTE). Therefore, the telecommunication operators are required to develop aninteroperability strategy for these different types of existing networks to get the best connection anywhere, anytime without interruption of the ongoing sessions. In order to identify this problem accurately, the research study presented in this thesis provides four surveys about VHO approaches found in the literature. In these surveys, we classify the existing VHO approaches into categories based on the available VHO techniques for which we present their objectives and performances issues. After that, we propose an optimised VHO approach based on the VHO approaches that have been studied in the literature and take into consideration the research problems and conclusions which arearisen in our surveys. The proposed approach demonstrates better performance (packet loss, latency and signaling cost), less VHO connection failure (probability of minimising VHO reject sessions), less complexity and an enhanced VHO compared with that foundin the literature. It consists of a procedure which is implemented by an algorithm. The proposed procedure of loose coupling and Mobile Internet Protocol version 4 (MIPv4) provides early buffering for new data packets to minimise VHO packet loss and latency. Analysis and simulation of the proposed procedure show that the VHO packet loss and latency are significantly reduced compared with previous MIPv6 procedures found in the literature.The proposed algorithm is composed of two main parts: Handover Initiation and Optimum Radio Access Technologies (RATs) list of priority. The first part includes two main types of VHO and gives priority to imperative sessions over alternative sessions. IIIThis part is also responsible for deciding when and where to perform the handover by choosing the best RATs from the multiple ones available. Then, it passes them to the decision phase. This results in reducing the signaling cost and the inevitable degradation in Quality of Service (QoS) as a result of avoiding unnecessary handover processes. The second part defines RATs list of priority to minimise VHO connection failure. Analysis and simulation based performance evaluations then demonstrate that the proposed algorithm outperforms the traditional algorithms in terms of: (a) the probability of VHOconnection failure as a result of using the optimum RATs list of priority and (b) thesignaling cost and the inevitable degradation in QoS as a result of avoiding unnecessary handover processes
    corecore