317 research outputs found

    A first attempt on global evolutionary undersampling for imbalanced big data

    Get PDF
    The design of efficient big data learning models has become a common need in a great number of applications. The massive amounts of available data may hinder the use of traditional data mining techniques, especially when evolutionary algorithms are involved as a key step. Existing solutions typically follow a divide-and-conquer approach in which the data is split into several chunks that are addressed individually. Next, the partial knowledge acquired from every slice of data is aggregated in multiple ways to solve the entire problem. However, these approaches are missing a global view of the data as a whole, which may result in less accurate models. In this work we carry out a first attempt on the design of a global evolutionary undersampling model for imbalanced classification problems. These are characterised by having a highly skewed distribution of classes in which evolutionary models are being used to balance it by selecting only the most relevant data. Using Apache Spark as big data technology, we have introduced a number of variations to the well-known CHC algorithm to work very large chromosomes and reduce the costs associated to fitness evaluation. We discuss some preliminary results, showing the great potential of this new kind of evolutionary big data model

    On the class overlap problem in imbalanced data classification.

    Get PDF
    Class imbalance is an active research area in the machine learning community. However, existing and recent literature showed that class overlap had a higher negative impact on the performance of learning algorithms. This paper provides detailed critical discussion and objective evaluation of class overlap in the context of imbalanced data and its impact on classification accuracy. First, we present a thorough experimental comparison of class overlap and class imbalance. Unlike previous work, our experiment was carried out on the full scale of class overlap and an extreme range of class imbalance degrees. Second, we provide an in-depth critical technical review of existing approaches to handle imbalanced datasets. Existing solutions from selective literature are critically reviewed and categorised as class distribution-based and class overlap-based methods. Emerging techniques and the latest development in this area are also discussed in detail. Experimental results in this paper are consistent with existing literature and show clearly that the performance of the learning algorithm deteriorates across varying degrees of class overlap whereas class imbalance does not always have an effect. The review emphasises the need for further research towards handling class overlap in imbalanced datasets to effectively improve learning algorithms’ performance

    Learning from class-imbalanced data: overlap-driven resampling for imbalanced data classification.

    Get PDF
    Classification of imbalanced datasets has attracted substantial research interest over the past years. This is because imbalanced datasets are common in several domains such as health, finance and security, but learning algorithms are generally not designed to handle them. Many existing solutions focus mainly on the class distribution problem. However, a number of reports showed that class overlap had a higher negative impact on the learning process than class imbalance. This thesis thoroughly explores the impact of class overlap on the learning algorithm and demonstrates how elimination of class overlap can effectively improve the classification of imbalanced datasets. Novel undersampling approaches were developed with the main objective of enhancing the presence of minority class instances in the overlapping region. This is achieved by identifying and removing majority class instances potentially residing in such a region. Seven methods under the two different approaches were designed for the task. Extensive experiments were carried out to evaluate the methods on simulated and well-known real-world datasets. Results showed that substantial improvement in the classification accuracy of the minority class was obtained with favourable trade-offs with the majority class accuracy. Moreover, successful application of the methods in predictive diagnostics of diseases with imbalanced records is presented. These novel overlap-based approaches have several advantages over other common resampling methods. First, the undersampling amount is independent of class imbalance and proportional to the degree of overlap. This could effectively address the problem of class overlap while reducing the effect of class imbalance. Second, information loss is minimised as instance elimination is contained within the problematic region. Third, adaptive parameters enable the methods to be generalised across different problems. It is also worth pointing out that these methods provide different trade-offs, which offer more alternatives to real-world users in selecting the best fit solution to the problem

    Analysis of group evolution prediction in complex networks

    Full text link
    In the world, in which acceptance and the identification with social communities are highly desired, the ability to predict evolution of groups over time appears to be a vital but very complex research problem. Therefore, we propose a new, adaptable, generic and mutli-stage method for Group Evolution Prediction (GEP) in complex networks, that facilitates reasoning about the future states of the recently discovered groups. The precise GEP modularity enabled us to carry out extensive and versatile empirical studies on many real-world complex / social networks to analyze the impact of numerous setups and parameters like time window type and size, group detection method, evolution chain length, prediction models, etc. Additionally, many new predictive features reflecting the group state at a given time have been identified and tested. Some other research problems like enriching learning evolution chains with external data have been analyzed as well

    Handling Imbalanced Classification Problems With Support Vector Machines via Evolutionary Bilevel Optimization

    Get PDF
    Support vector machines (SVMs) are popular learning algorithms to deal with binary classification problems. They traditionally assume equal misclassification costs for each class; however, real-world problems may have an uneven class distribution. This article introduces EBCS-SVM: evolutionary bilevel cost-sensitive SVMs. EBCS-SVM handles imbalanced classification problems by simultaneously learning the support vectors and optimizing the SVM hyperparameters, which comprise the kernel parameter and misclassification costs. The resulting optimization problem is a bilevel problem, where the lower level determines the support vectors and the upper level the hyperparameters. This optimization problem is solved using an evolutionary algorithm (EA) at the upper level and sequential minimal optimization (SMO) at the lower level. These two methods work in a nested fashion, that is, the optimal support vectors help guide the search of the hyperparameters, and the lower level is initialized based on previous successful solutions. The proposed method is assessed using 70 datasets of imbalanced classification and compared with several state-of-the-art methods. The experimental results, supported by a Bayesian test, provided evidence of the effectiveness of EBCS-SVM when working with highly imbalanced datasets.Comment: Copyright 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Class imbalance ensemble learning based on the margin theory

    Get PDF
    The proportion of instances belonging to each class in a data-set plays an important role in machine learning. However, the real world data often suffer from class imbalance. Dealing with multi-class tasks with different misclassification costs of classes is harder than dealing with two-class ones. Undersampling and oversampling are two of the most popular data preprocessing techniques dealing with imbalanced data-sets. Ensemble classifiers have been shown to be more effective than data sampling techniques to enhance the classification performance of imbalanced data. Moreover, the combination of ensemble learning with sampling methods to tackle the class imbalance problem has led to several proposals in the literature, with positive results. The ensemble margin is a fundamental concept in ensemble learning. Several studies have shown that the generalization performance of an ensemble classifier is related to the distribution of its margins on the training examples. In this paper, we propose a novel ensemble margin based algorithm, which handles imbalanced classification by employing more low margin examples which are more informative than high margin samples. This algorithm combines ensemble learning with undersampling, but instead of balancing classes randomly such as UnderBagging, our method pays attention to constructing higher quality balanced sets for each base classifier. In order to demonstrate the effectiveness of the proposed method in handling class imbalanced data, UnderBagging and SMOTEBagging are used in a comparative analysis. In addition, we also compare the performances of different ensemble margin definitions, including both supervised and unsupervised margins, in class imbalance learning

    Learning from Multi-Class Imbalanced Big Data with Apache Spark

    Get PDF
    With data becoming a new form of currency, its analysis has become a top priority in both academia and industry, furthering advancements in high-performance computing and machine learning. However, these large, real-world datasets come with additional complications such as noise and class overlap. Problems are magnified when with multi-class data is presented, especially since many of the popular algorithms were originally designed for binary data. Another challenge arises when the number of examples are not evenly distributed across all classes in a dataset. This often causes classifiers to favor the majority class over the minority classes, leading to undesirable results as learning from the rare cases may be the primary goal. Many of the classic machine learning algorithms were not designed for multi-class, imbalanced data or parallelism, and so their effectiveness has been hindered. This dissertation addresses some of these challenges with in-depth experimentation using novel implementations of machine learning algorithms using Apache Spark, a distributed computing framework based on the MapReduce model designed to handle very large datasets. Experimentation showed that many of the traditional classifier algorithms do not translate well to a distributed computing environment, indicating the need for a new generation of algorithms targeting modern high-performance computing. A collection of popular oversampling methods, originally designed for small binary class datasets, have been implemented using Apache Spark for the first time to improve parallelism and add multi-class support. An extensive study on how instance level difficulty affects the learning from large datasets was also performed

    Class imbalance ensemble learning based on the margin theory.

    Get PDF
    The proportion of instances belonging to each class in a data-set plays an important role in machine learning. However, the real world data often suffer from class imbalance. Dealing with multi-class tasks with different misclassification costs of classes is harder than dealing with two-class ones. Undersampling and oversampling are two of the most popular data preprocessing techniques dealing with imbalanced data-sets. Ensemble classifiers have been shown to be more effective than data sampling techniques to enhance the classification performance of imbalanced data. Moreover, the combination of ensemble learning with sampling methods to tackle the class imbalance problem has led to several proposals in the literature, with positive results. The ensemble margin is a fundamental concept in ensemble learning. Several studies have shown that the generalization performance of an ensemble classifier is related to the distribution of its margins on the training examples. In this paper, we propose a novel ensemble margin based algorithm, which handles imbalanced classification by employing more low margin examples which are more informative than high margin samples. This algorithm combines ensemble learning with undersampling, but instead of balancing classes randomly such as UnderBagging, our method pays attention to constructing higher quality balanced sets for each base classifier. In order to demonstrate the effectiveness of the proposed method in handling class imbalanced data, UnderBagging and SMOTEBagging are used in a comparative analysis. In addition, we also compare the performances of different ensemble margin definitions, including both supervised and unsupervised margins, in class imbalance learning
    • …
    corecore