635,980 research outputs found

    Lattice methods and the nuclear few- and many-body problem

    Full text link
    We begin with a brief overview of lattice calculations using chiral effective field theory and some recent applications. We then describe several methods for computing scattering on the lattice. After that we focus on the main goal, explaining the theory and algorithms relevant to lattice simulations of nuclear few- and many-body systems. We discuss the exact equivalence of four different lattice formalisms, the Grassmann path integral, transfer matrix operator, Grassmann path integral with auxiliary fields, and transfer matrix operator with auxiliary fields. Along with our analysis we include several coding examples and a number of exercises for the calculations of few- and many-body systems at leading order in chiral effective field theory.Comment: 20 pages, 3 figures, Submitted to Lect. Notes Phys., "An advanced course in computational nuclear physics: Bridging the scales from quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editor

    Equivalence of Deterministic One-Counter Automata is NL-complete

    Full text link
    We prove that language equivalence of deterministic one-counter automata is NL-complete. This improves the superpolynomial time complexity upper bound shown by Valiant and Paterson in 1975. Our main contribution is to prove that two deterministic one-counter automata are inequivalent if and only if they can be distinguished by a word of length polynomial in the size of the two input automata

    On the Complex Network Structure of Musical Pieces: Analysis of Some Use Cases from Different Music Genres

    Full text link
    This paper focuses on the modeling of musical melodies as networks. Notes of a melody can be treated as nodes of a network. Connections are created whenever notes are played in sequence. We analyze some main tracks coming from different music genres, with melodies played using different musical instruments. We find out that the considered networks are, in general, scale free networks and exhibit the small world property. We measure the main metrics and assess whether these networks can be considered as formed by sub-communities. Outcomes confirm that peculiar features of the tracks can be extracted from this analysis methodology. This approach can have an impact in several multimedia applications such as music didactics, multimedia entertainment, and digital music generation.Comment: accepted to Multimedia Tools and Applications, Springe

    On the Modeling of Musical Solos as Complex Networks

    Full text link
    Notes in a musical piece are building blocks employed in non-random ways to create melodies. It is the "interaction" among a limited amount of notes that allows constructing the variety of musical compositions that have been written in centuries and within different cultures. Networks are a modeling tool that is commonly employed to represent a set of entities interacting in some way. Thus, notes composing a melody can be seen as nodes of a network that are connected whenever these are played in sequence. The outcome of such a process results in a directed graph. By using complex network theory, some main metrics of musical graphs can be measured, which characterize the related musical pieces. In this paper, we define a framework to represent melodies as networks. Then, we provide an analysis on a set of guitar solos performed by main musicians. Results of this study indicate that the presented model can have an impact on audio and multimedia applications such as music classification, identification, e-learning, automatic music generation, multimedia entertainment.Comment: to appear in Information Science, Elsevier. Please cite the paper including such information. arXiv admin note: text overlap with arXiv:1603.0497

    The role of angularity in route choice: an analysis of motorcycle courier GPS traces

    Get PDF
    The paths of 2425 individual motorcycle trips made in London were analyzed in order to uncover the route choice decisions made by drivers. The paths were derived from global positioning system (GPS) data collected by a courier company for each of their drivers, using algorithms developed for the purpose of this paper. Motorcycle couriers were chosen due to the fact that they both know streets very well and that they do not rely on the GPS to guide their navigation. Each trace was mapped to the underlying road network, and two competing hypotheses for route choice decisions were compared: (a) that riders attempt to minimize the Manhattan distance between locations and (b) that they attempt to minimize the angular distance. In each case, the distance actually traveled was compared to the minimum possible either block or angular distance through the road network. It is usually believed that drivers who know streets well will navigate trips that reduce Manhattan distance; however, here it is shown that angularity appears to play an important role in route choice. 63% of trips made took the minimum possible angular distance between origin and destination, while 51% of trips followed the minimum possible block distance. This implies that impact of turns on cognitive distance plays an important role in decision making, even when a driver has good knowledge of the spatial network

    OpenJML: Software verification for Java 7 using JML, OpenJDK, and Eclipse

    Full text link
    OpenJML is a tool for checking code and specifications of Java programs. We describe our experience building the tool on the foundation of JML, OpenJDK and Eclipse, as well as on many advances in specification-based software verification. The implementation demonstrates the value of integrating specification tools directly in the software development IDE and in automating as many tasks as possible. The tool, though still in progress, has now been used for several college-level courses on software specification and verification and for small-scale studies on existing Java programs.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    Teaching Theoretical Physics: the cases of Enrico Fermi and Ettore Majorana

    Full text link
    We report on theoretical courses by Fermi and Majorana, giving evidence of the first appearance and further development of Quantum Mechanics teaching in Italy. On the basis of original documents, we make a comparison between Fermi's and Majorana's approaches. A detailed analysis is carried out of Fermi's course on Theoretical Physics attended by Majorana in 1927-28. Three (previously unknown) programs on advanced Physics courses submitted by Majorana to the University of Rome between 1933 and 1936 and the course he held in Naples in 1938 complete our analysis: Fermi's phenomenological approach resounded in Majorana, who however combined it with a deeper theoretical approach, closer to the modern way of presenting Quantum Mechanics.Comment: latex, 21 pages; a contribution in the centenary of the birth of Ettore Majoran
    • …
    corecore