63 research outputs found

    Radial Basis Function Neural Networks : A Review

    Get PDF
    Radial Basis Function neural networks (RBFNNs) represent an attractive alternative to other neural network models. One reason is that they form a unifying link between function approximation, regularization, noisy interpolation, classification and density estimation. It is also the case that training RBF neural networks is faster than training multi-layer perceptron networks. RBFNN learning is usually split into an unsupervised part, where center and widths of the Gaussian basis functions are set, and a linear supervised part for weight computation. This paper reviews various learning methods for determining centers, widths, and synaptic weights of RBFNN. In addition, we will point to some applications of RBFNN in various fields. In the end, we name software that can be used for implementing RBFNNs

    Machine Learning Techniques to Evaluate the Approximation of Utilization Power in Circuits

    Get PDF
    The need for products that are more streamlined, more useful, and have longer battery lives is rising in today's culture. More components are being integrated onto smaller, more complex chips in order to do this. The outcome is higher total power consumption as a result of increased power dissipation brought on by dynamic and static currents in integrated circuits (ICs). For effective power planning and the precise application of power pads and strips by floor plan engineers, estimating power dissipation at an early stage is essential. With more information about the design attributes, power estimation accuracy increases. For a variety of applications, including function approximation, regularization, noisy interpolation, classification, and density estimation, they offer a coherent framework. RBFNN training is also quicker than training multi-layer perceptron networks. RBFNN learning typically comprises of a linear supervised phase for computing weights, followed by an unsupervised phase for determining the centers and widths of the Gaussian basis functions. This study investigates several learning techniques for estimating the synaptic weights, widths, and centers of RBFNNs. In this study, RBF networks—a traditional family of supervised learning algorithms—are examined.  Using centers found using k-means clustering and the square norm of the network coefficients, respectively, two popular regularization techniques are examined. It is demonstrated that each of these RBF techniques are capable of being rewritten as data-dependent kernels. Due to their adaptability and quicker training time when compared to multi-layer perceptron networks, RBFNNs present a compelling option to conventional neural network models. Along with experimental data, the research offers a theoretical analysis of these techniques, indicating competitive performance and a few advantages over traditional kernel techniques in terms of adaptability (ability to take into account unlabeled data) and computing complexity. The research also discusses current achievements in using soft k-means features for image identification and other tasks

    Forecasting US unemployment with radial basis neural networks, kalman filters and support vector regressions

    Get PDF
    This study investigates the efficiency of the radial basis function neural networks in forecasting the US unemployment and explores the utility of Kalman filter and support vector regression as forecast combination techniques. On one hand, an autoregressive moving average model, a smooth transition autoregressive model and three different neural networks architectures, namely a multi-layer perceptron, recurrent neural network and a psi sigma network are used as benchmarks for our radial basis function neural network. On the other hand, our forecast combination methods are benchmarked with a simple average and a least absolute shrinkage and selection operator. The statistical performance of our models is estimated throughout the period of 1972–2012, using the last 7 years for out-of-sample testing. The results show that the radial basis function neural network statistically outperforms all models’ individual performances. The forecast combinations are successful, since both Kalman filter and support vector regression techniques improve the statistical accuracy. Finally, support vector regression is found to be the superior model of the forecasting competition. The empirical evidence of this application are further validated by the use of the modified Diebold–Mariano test

    Neuro-Fuzzy Classifiers/Quantifiers for E-Nose Applications

    Get PDF

    A study on non-destructive method for detecting Toxin in pepper using Neural networks

    Full text link
    Mycotoxin contamination in certain agricultural systems have been a serious concern for human and animal health. Mycotoxins are toxic substances produced mostly as secondary metabolites by fungi that grow on seeds and feed in the field, or in storage. The food-borne Mycotoxins likely to be of greatest significance for human health in tropical developing countries are Aflatoxins and Fumonisins. Chili pepper is also prone to Aflatoxin contamination during harvesting, production and storage periods.Various methods used for detection of Mycotoxins give accurate results, but they are slow, expensive and destructive. Destructive method is testing a material that degrades the sample under investigation. Whereas, non-destructive testing will, after testing, allow the part to be used for its intended purpose. Ultrasonic methods, Multispectral image processing methods, Terahertz methods, X-ray and Thermography have been very popular in nondestructive testing and characterization of materials and health monitoring. Image processing methods are used to improve the visual quality of the pictures and to extract useful information from them. In this proposed work, the chili pepper samples will be collected, and the X-ray, multispectral images of the samples will be processed using image processing methods. The term "Computational Intelligence" referred as simulation of human intelligence on computers. It is also called as "Artificial Intelligence" (AI) approach. The techniques used in AI approach are Neural network, Fuzzy logic and evolutionary computation. Finally, the computational intelligence method will be used in addition to image processing to provide best, high performance and accurate results for detecting the Mycotoxin level in the samples collected.Comment: 11 pages,1 figure; International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 201

    Selective Memory Recursive Least Squares: Recast Forgetting into Memory in RBF Neural Network Based Real-Time Learning

    Full text link
    In radial basis function neural network (RBFNN) based real-time learning tasks, forgetting mechanisms are widely used such that the neural network can keep its sensitivity to new data. However, with forgetting mechanisms, some useful knowledge will get lost simply because they are learned a long time ago, which we refer to as the passive knowledge forgetting phenomenon. To address this problem, this paper proposes a real-time training method named selective memory recursive least squares (SMRLS) in which the classical forgetting mechanisms are recast into a memory mechanism. Different from the forgetting mechanism, which mainly evaluates the importance of samples according to the time when samples are collected, the memory mechanism evaluates the importance of samples through both temporal and spatial distribution of samples. With SMRLS, the input space of the RBFNN is evenly divided into a finite number of partitions and a synthesized objective function is developed using synthesized samples from each partition. In addition to the current approximation error, the neural network also updates its weights according to the recorded data from the partition being visited. Compared with classical training methods including the forgetting factor recursive least squares (FFRLS) and stochastic gradient descent (SGD) methods, SMRLS achieves improved learning speed and generalization capability, which are demonstrated by corresponding simulation results.Comment: 12 pages, 15 figure

    Identification and Classification of Player Types in Massive Multiplayer Online Games using Avatar Behavior

    Get PDF
    The purpose of our research is to develop an improved methodology for classifying players (identifying deviant players such as terrorists) through multivariate analysis of data from avatar characteristics and behaviors in massive multiplayer online games (MMOGs). To build our classification models, we developed three significant enhancements to the standard Generalized Regression Neural Networks (GRNN) modeling method. The first enhancement is a feature selection technique based on GRNNs, allowing us to tailor our feature set to be best modeled by GRNNs. The second enhancement is a hybrid GRNN which allows each feature to be modeled by a GRNN tailored to its data type. The third enhancement is a spread estimation technique for large data sets that is faster than exhaustive searches, yet more accurate than a standard heuristic. We applied our new techniques to a set of data from the MMOG, Everquest II, to identify deviant players (\u27gold farmers\u27). The identification of gold farmers is similar to labeling terrorists in that the ratio of gold farmer to standard player is extremely small, and the in-game behaviors for a gold farmer have detectable differences from a standard player. Our results were promising given the difficulty of the classification process, primarily the extremely unbalanced data set with a small number of observations from the class of interest. As a screening tool our method identifies a significantly reduced set of avatars and associated players with a much improved probability of containing a number of players displaying deviant behaviors. With further efforts at improving computing efficiencies to allow inclusion of additional features and observations with our framework, we expect even better results

    Convolution on neural networks for high-frequency trend prediction of cryptocurrency exchange rates using technical indicators

    Get PDF
    This study explores the suitability of neural networks with a convolutional component as an alternative to traditional multilayer perceptrons in the domain of trend classification of cryptocurrency exchange rates using technical analysis in high frequencies. The experimental work compares the performance of four different network architectures -convolutional neural network, hybrid CNN-LSTM network, multilayer perceptron and radial basis function neural network- to predict whether six popular cryptocurrencies -Bitcoin, Dash, Ether, Litecoin, Monero and Ripple- will increase their value vs. USD in the next minute. The results, based on 18 technical indicators derived from the exchange rates at a one-minute resolution over one year, suggest that all series were predictable to a certain extent using the technical indicators. Convolutional LSTM neural networks outperformed all the rest significantly, while CNN neural networks were also able to provide good results specially in the Bitcoin, Ether and Litecoin cryptocurrencies.We would also like to acknowledge the financial support of the Spanish Ministry of Science, Innovation and Universities under grant PGC2018-096849-B-I00 (MCFin

    An intelligent support system for automatic detection of cerebral vascular accidents from brain CT images

    Get PDF
    Objective: This paper presents a Radial Basis Functions Neural Network (RBFNN) based detection system, for automatic identification of Cerebral Vascular Accidents (CVA) through analysis of Computed Tomographic (CT) images. Methods: For the design of a neural network classifier, a Multi Objective Genetic Algorithm (MOGA) framework is used to determine the architecture of the classifier, its corresponding parameters and input features by maximizing the classification precision, while ensuring generalization. This approach considers a large number of input features, comprising first and second order pixel intensity statistics, as well as symmetry/asymmetry information with respect to the ideal mid-sagittal line. Results: Values of specificity of 98% and sensitivity of 98% were obtained, at pixel level, by an ensemble of non-dominated models generated by MOGA, in a set of 150 CT slices (1,867,602 pixels), marked by a NeuroRadiologist. This approach also compares favorably at a lesion level with three other published solutions, in terms of specificity (86% compared with 84%), degree of coincidence of marked lesions (89% compared with 77%) and classification accuracy rate (96% compared with 88%). (C) 2017 Published by Elsevier Ireland Ltd.FCTIDMECLAETA [UID/EMS/50022/2013
    • …
    corecore