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Abstract. This study investigates the efficiency of the Radial Basis Function Neural 

Networks in forecasting the US unemployment and explores the utility of Kalman Filter 

and Support Vector Regression as forecast combination techniques. On one hand, an 

Autoregressive Moving Average model, a Smooth Transition Autoregressive Model and 

three different Neural Networks architectures, namely a Multi-Layer Perceptron, 

Recurrent Neural Network and a Psi Sigma Network are used as benchmarks for our 

Radial Basis Function Neural Network. On the other hand, our forecast combination 

methods are benchmarked with a Simple Average and a Least Absolute Shrinkage and 

Selection Operator. The statistical performance of our models is estimated throughout the 

period of 1972-2012, using the last seven years for out-of-sample testing. The results 

show that the Radial Basis Function Neural Network statistically outperforms all models’ 

individual performances. The forecast combinations are successful, since both Kalman 

Filter and Support Vector Regression techniques improve the statistical accuracy. Finally, 

Support Vector Regression is found to be the superior model of the forecasting 

competition. The empirical evidence of this application is further validated by the use of 

the modified Diebold Mariano test.  
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1. Introduction 

 

The voluminous macroeconomic literature includes a variety of forecasting competitions 

of linear and non-linear architectures. Through these studies researchers attempt to shed 

light on time series, such as inflation or unemployment, that are relevant to monetary and 

policy decisions worldwide. Several techniques have been applied to such forecasting 

tasks with ambiguous results. Therefore, statisticians and econometricians turn to highly 

computational, time-varying and adaptive in nature techniques. Neural networks (NNs) 

are one such class of models that can assist their quest for improved forecast accuracy. 

Especially in periods of extreme structural instabilities, NNs’ data-adaptive learning and 

clustering ability can prove to be very useful in forecasting applications (Zhang et al. 

1998). It is, thus, not surprising that NNs continue to receive a great deal of attention in 

the literature (Huang et al. 2013; Özkan 2013; Fernandes et al. 2014; Olmedo 2014). 

Forecasting unemployment rates, especially, is a very well documented case study 

(Szpiro 1997; Montgomery et al. 1998; Rothman 1998; Koop and Potter 1999). Skalin 

and Teräsvirta (2002) use multivariate STAR models to forecast unemployment rates. 

Moshiri and Brown (2004) apply a back-propagation model and a generalized regression 

NN model to estimate post-war aggregate unemployment rates in the USA, Canada, UK, 

France and Japan. The out-of-sample results confirm the forecasting superiority of the 

NN approaches against traditional linear and non-linear autoregressive models. Bayesian 

NNs are applied in the case study of forecasting unemployment in West Germany by 

Liang (2005). The empirical evidence indicate that the NNs present significantly better 

forecasts than traditional autoregressive models. Milas and Rothman (2008) use smooth 

transition vector error-correction models to predict unemployment rates in the non-Euro 

G7 countries. The proposed model outperforms the linear autoregressive benchmark and 

improves significantly the forecasts of the US and UK unemployment rate during 

business cycle expansions. Olmedo (2014) performs a competition between non-linear 

models, including NNs and Nearest Neighbour algorithms, to forecast different European 

unemployment rate time series. The best results are provided by a vector autoregressive 



 
 

4 
 

and baricentric predictor. As the forecasting horizon lengthens the performance 

deteriorates and in some cases NNs.  

The idea of combining forecasts to improve forecast accuracy is not new (Bates and 

Granger 1969; Newbold and Granger 1974; Deutsch et al. 1994). Swanson and Zeng 

(2001) perform forecast combinations based on a model-selection approach and suggest 

that a SIC-based approach to combine forecasts can be a useful alternative to 

combination methods such as simple averaging or mean square error minimization. 

Teräsvirta et al. 2005 examine the forecast accuracy of linear autoregressive, smooth 

transition autoregressive and NN models for 47 monthly macroeconomic variables, 

including unemployment rates, of the G7 economies. The empirical results prove that 

their forecasting ability is much improved when they are combined with autoregressive 

models. Kapetanios et al. (2008) report that combinations of statistical forecasts from 

several models (random walks, STARs, ARs, VARs etc.) generate good forecasts of 

inflation and growth. They also note that such forecast combinations can serve as an 

unbiased benchmark, which could be compared with conditional and judgemental 

policymaker's expectations. Finally, Vasnev et al. (2013) combine forecasts of models 

incorporating monthly and quarterly macroeconomic time series to predict the monetary 

operations of the Reserve Bank of Australia. Their findings confirm the benefits of 

forecast combination models and present alternative methods of forecasting monetary 

decisions. 

Given the previous framework, the rational of this paper is twofold. Firstly, we 

investigate the efficiency of the Radial Basis Function Neural Networks (RBFNNs) in 

forecasting the US unemployment. Secondly, we explore the utility of Kalman Filter and 

Support Vector Regression (SVR) as forecast combination techniques. On one hand, an 

Autoregressive Moving Average model (ARMA), a Smooth Transition Autoregressive 

Model (STAR) and three different Neural Networks architectures, namely a Multi-Layer 

Perceptron (MLP), Recurrent Neural Network (RNN) and a Psi Sigma Network (PSN) 

are used as benchmarks for our RBFNN. On the other hand, our forecast combination 

methods are benchmarked with a Simple Average and a Least Absolute Shrinkage and 

Selection Operator (LASSO). The statistical performance of our models is estimated 

throughout the period of 1972-2012, using the last seven years for out-of-sample testing. 
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The empirical evidence of this application is further validated by the use of the modified 

Diebold Mariano test.  

With this study, we intend to extend the growing literature of using RBFNNs and NNs in 

general in financial and macroeconomic forecasting task. In addition, the evaluation of 

the Kalman Filter and SVR adds validity to the evidence of previous studies that report 

the benefits of combining forecasts. Finally, the performance of those non-linear and 

time-varying combination methods evaluate if there is a need to experiment beyond 

traditional linear equivalents.  

The rest of the paper is organized as follows. Section 2 presents the description of the 

dataset used in this application. Sections 3 and 4 give an overview of the forecasting 

models and the forecast combination methods implemented respectively. The statistical 

performance of our models is presented in Section 5. Finally, some concluding remarks 

are summarized in Section 6. 

 

2. US Unemployment Dataset 

 

In this study, we forecast the monthly change of the US unemployment rate (UNEMP). 

The data can be found on the online Federal Reserve Economic Data (FRED) database of 

the Federal Reserve Bank of St. Louis1. This forecasting exercise explores the 

performance of the models over the period of 1972 to 2012, using the last seven years for 

out-of-sample evaluation. The time series is seasonally adjusted. For training purposes of 

our NNs, we further divide our in-sample dataset in two sub-periods; the training and test 

sub-period (see section 3.3). The total dataset is summarized in Table 1 below. 

[Insert Table 1] 

The following graph presents the US unemployment rate for the period under study. 

[Insert Figure 1] 
                                                                 
1 The US unemployment rate or civilian unemployment rate represents the number of unemployed as a percentage of the 
labour force. Labour force data are restricted to people 16 years of age and older, who currently reside in 1 of the 50 
states or the District of Columbia, who do not reside in institutions (e.g., penal and mental facilities, homes for the aged) 
and who are not on active duty in the Armed Forces. This is the definition provided by FRED. 
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In the literature, there is no formal theory behind the selection of the inputs of a NN. 

Therefore, we conduct some NN experiments and a sensitivity analysis on a pool of 

potential inputs in the in-sample dataset in order to help our decision. The set of inputs 

that provide the best statistical performance for each network in the test sub-period are 

finally retained. In this case, those sets of inputs are autoregressive terms of UNEMP2 

and are presented in Table 2 below: 

[Insert Table 2] 

 

3. Forecasting Models 

 

3.1. Auto-Regressive Moving Average Model (ARMA) 

 

The ARMA model is used to benchmark the efficiency of the NNs’ statistical 

performance. Using as a guide the correlogram and the information criteria in the in-

sample subset, we have chosen a restricted ARMA (7, 7) model, where all the 

coefficients are significant at the 95% confidence interval. The selected ARMA model is 

presented in equation (1) below: 

1 2 4 7 1 2 4 7
ˆ 0.03 1.025 0.293 0.511 0.321 1.006 0.463 0.545 0.211t t t t t t t t tY Y Y Y Y ε ε ε ε− − − − − − − −= + − + − − + − −        (1) 

where t̂Y  is the forecasted monthly change of the US unemployment rate. 

 

3.2. Smooth Transition Autoregressive Model (STAR) 

 

STARs initially proposed by Chan and Tong (1986) are extensions of the traditional 

autoregressive models (ARs). The STAR combines two AR models with a function that 
                                                                 
2 We also explored autoregressive terms of other US macroeconomic indicators (e.g. the Consumer Price Index, the 
Industrial Production Index, M1 money stock) as potential inputs.  However, the set of inputs presented in Table 2 gave 
our NNs the best statistical performance in the test sub- period during our sensitivity analysis. 
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defines the degree of non-linearity (smooth transition function). The general two-regime 

STAR specification is the following: 

1 2
ˆ (1 ( , , )) ( , , )t t t t t tY F z F z uz λ z λ′ ′= F Χ − +F Χ +                          (2) 

Where: 

• t̂Y  the forecasted value at time t 

• ,0 ,1 ,( , ,... ), 1, 2i i i i p iϕ ϕ ϕF = =    and ,0 ,1 ,, ,...i i i pϕ ϕ ϕ   the regression coefficients of the 

two AR models  

• (1, )t tχ′ ′Χ =   with 1( ,..., )t t t pY Yχ − −′ =  

• 0 ( , , ) 1tF z z λ≤ ≤  the smooth transition function  

• , 0t t dz Y d−= >  the lagged endogenous transition variable 

• ζ the parameter that defines the smoothness of the transition between the two 

regimes 

• λ the threshold parameter 

• ut  the error term 

In this paper we follow the steps of Lin and Teräsvirta (1994) in order to determine when 

the series is best modeled as a Logistic STAR or an Exponential STAR process. In our 

case, the series is modeled as an Exponential one. 

 

3.3. Neural Networks (NNs) 

 

3.3.1. NN Benchmarks 

 

The use of NNs in financial and macroeconomic forecasting is not new, since researchers 

use them to identify patterns and exploit their adaptive nature in relevant time series 

(Hiemstra 1996; Moshiri et al. 1999; Zhang and Qi 2005). In this study, three NNs 
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architectures, namely the MLP, RNN and the PSN are applied to the task of forecasting 

US unemployment rate and act as NN benchmarks to the RBFNN.   

These three architectures have at least three layers. The first layer is called the input layer 

(the number of its nodes corresponds to the number of explanatory variables). The last 

layer is called the output layer (the number of its nodes corresponds to the number of 

response variables). An intermediary layer of nodes, the hidden layer, separates the input 

from the output layer. Its number of nodes defines the amount of complexity the model is 

capable of fitting. In addition, the input and hidden layer contain an extra node called the 

bias node. This node has a fixed value of one and has the same function as the intercept 

in traditional regression models. Normally, each node of one layer has connections to all 

the other nodes of the next layer. The training of the network (which is the adjustment of 

its weights in the way that the network maps the input value of the training data to the 

corresponding output value) starts with randomly chosen weights and proceeds by 

applying a learning algorithm called backpropagation of errors (Shapiro 2000). The 

iteration length is optimised by maximising a fitness function in the test dataset.  

Unlike MLPs, RNNs have an activation feedback which embodies short-term memory. In 

other words, the RNN architecture can provide more accurate outputs because the inputs 

are (potentially) taken from all previous values. Tenti (1996) reports that they need more 

connections and memory than standard back-propagation networks, but they can yield 

better results in comparison with simple MLPs due to the additional memory inputs. The 

PSN model was firstly introduced by Shin and Ghosh (1991). They are a class of feed-

forward fully connected higher order NNs, which require less number of weights and 

processing units for their training. Their main advantage is that they combine the fast 

learning property of single layer networks with the powerful mapping capability of higher 

order NNs, while avoiding the combinatorial increase in the required number of weights. 

The order of the network in the context of PSNs is represented by the number of hidden 

nodes. In a PSN the weights from the hidden to the output layer are fixed to one and only 

the weights from the input to the hidden layer are adjusted, something that greatly 

reduces the training time. The activation function of the nodes in the hidden layer is the 

summing function, while the activation function of the output layer is a sigmoid one. For 

more information on MLP, RNN and PSN architectures see Zhang et al. (1998) and 
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Sermpinis et al. (2012). The summary of the structure and the training characteristics of 

those networks are presented in the Appendix A. 

 

3.3.2. Radial Basis Function Neural Networks (RBFNN) 

 

Initially proposed by Broomhead and Lowe (1988), the RBFNNs are feed-forward NNs. 

Unlike MLP, RNN and PSN, the hidden layer of the RBFNN uses a radial basis function. 

RBFNNs require less training time, but they can achieve higher levels of accuracy than 

traditional feed-forward NNs. This is achieved through the superposition of non-

orthogonal, radially symmetric functions. The following figure shows the general 

structure of a RBFNN. 

[Insert Figure 2] 

 

Where: 

• tx  ( )1,,2,1 += Nn 
 are the inputs  

• ty~  is the output 

• ][ j
tw (j=1,2)  are the adjustable weights  

•          is the Gaussian function: 
2

2

2][ )( i

it Cx

t
i ex σφ

−
−

=                                 (3) 

•          is the linear output function:    ( ) ∑=
i

iF ][φφ                                       (4) 

In order to define the Gaussian function, we need the two parameters Ci and σi. The first 

one corresponds to the vector indicating the center of the function, while the second one 

its width. These two parameters along with the adjustable weights are optimized through 

the learning phase of the training of the RBFNN. Given the target value ty  and the 

number of iterations T, the error function to be minimized is: 

                      ( ) ( )( )∑
=

−=
T

t
tttt Cwyy

T
wCE

1

2,,~1,, σσ                                        (5) 
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The training characteristics of RBFNN are also presented in Appendix A. 

 

4. Forecast Combination Techniques 

 

All the forecast combination techniques implemented in this paper are presented in this 

section. The traditional models of ARMA and STAR present a considerably worse 

statistical performance than their NNs’ counterparts both in-sample and out-of-sample. 

Therefore, we decided to exclude them from our forecast combination procedures. 

 

4.1. Simple Average 

 

As a benchmark for the other three, more sophisticated, forecast combination methods, 

we use a simple average of the four individual forecasts of MLP, RNN, PSN and 

RBFNN. Thus, given the forecasts , , ,t t t t
MLP RNN PSN RBFNNf f f f  the combination forecast at 

time t is calculated as follows: 

    ( ) / 4MLP RNN PSN RBFNNNNs

t t t t t
cf f f f f= + + +          (6) 

 

 4.2 Least Absolute Shrinkage and Selection Operator (LASSO) 

 

The LASSO method is a class of Shrinkage Regressions, which minimizes the residual 

squared error by adding a coefficient constraint (Sundberg, 2006). This is a similar 

approach to Ridge Regression (Chan et al., 1999). According to Hastie et al. 2009, 

though, LASSO should be selected when the used sample consists off few variables with 

medium/large effect, as in our exercise.  



 
 

11 
 

 Given the following vectors of independent and dependent variables:  

         

1 11 1

1

1, ( ,..., )

T

T
N

N

N NN

T
N

X

X

x x

x x
Y y y

   
   
   

     

==


   



               (7)                                  

          

and the training data {(X1,y1),…,(XN,yN)}, the LASSO coefficients are estimated based on 

the following argument: 

                         
1

2

0
1 1

, 0ˆ arg min
d

j
j

N d

i i ij
i j

lasso subject to k ky xb bb b b
== =

≤ >
   = − −  

   
∑∑ ∑       (8) 

The parameter k is called ‘tuning parameter’ and controls the amount of shrinkage 

applied to the coefficients (Tibshirani, 2011). For more details on the mathematical 

specifications of LASSO see Wang et al. 2007. 

In this study, a sensitivity analysis is carried out for selecting the optimal value of k based 

on the in-sample period. Therefore our final constraint is: 

 17.2MLP RNN PSN RBFNNb b b b+ + + ≤                      (9) 

Subject to the above coefficient constraint, the final LASSO forecast combinations are 

given by the equation:  

                     0.86 2.68 4.44 7.67
NNs

t t t t t
c MLP RNN PSN RBFNN tf f f f f ε= + + + +                 (10) 

The use of the constraint creates a penalization balance on each estimate and leads some 

coefficients to zero or close to zero. In that way, the result is more adaptive than a simple 

regression.   

4.3. Kalman Filter 
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Kalman Filter is an efficient recursive filter that estimates the state of a dynamic system 

from a series of incomplete and noisy measurements (Wells 1996). In this application, we 

suggest the use of Kalman Filter as a time-varying coefficient combination forecast. In 

order to define the recursive algorithm, we need a measurement equation to combine the 

forecasts and a state equation to update the weights of the combination at each step. 

Those equations are given below. 

 

Measurement Equation: ( )
4

2

1
, ~ 0,t t t

i i t t
i

cNNs
f a f NID εε ε σ

=

= +∑                                      (11) 

State Equation:   1 2, ~ (0, )t t
i i t t na a n n NID σ−= +                                          (12) 

 

Where: 

• t
cNNs

f  is the dependent variable (combination forecast) at time t 

• ( 1, 2, 3, 4)t
i if =  are the independent variables (individual forecasts) at time t 

• ( 1, 2, 3, 4)t
i ia =  are the time-varying coefficients at time t for each NN 

• εt,nt are the uncorrelated error terms (noise) 

 

The alphas are calculated by a simple random walk and we initialized 1 0ε = . Following 

Hatemi-J and Roca (2006), our Kalman Filter model has as a final state the following: 

 

                              10.32 12.18 31.34 52.21
NNs

t t t t t
c MLP RNN PSN RBFNN tf f f f f ε= + + + +        (13) 

From the above equation, it is obvious that the Kalman filtering process favors the 

RBFNN model, which is the model that performs best individually. 

 

 

4.4. Support Vector Regression (SVR) 

 

 

Vapnik (1995) established Support Vector Regression (SVR) as a robust technique for 

constructing data-driven and non-linear empirical regression models. SVRs are 

commonly used in financial and macroeconomic applications (Ince and Trafalis 2008; 

Reboredo et al. 2012; Xu et al. 2013). Their advantages, such as providing global and 
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unique solutions, not suffering from local minima and balancing model accuracy and 

model complexity are well documented in literature (Suykens et al. 2002; Lu et al. 2009).  

A simple SVR function can be specified as: 

( ) ( )Tf x w x bϕ= +                                                         (14) 

where w and b are the regression parameter vectors of the function and φ(x) is the non-

linear function that maps the input data vector x into a feature space where the training 

data exhibit linearity (see figure 3c). 

[Insert Figure 3] 

The ε-sensitive loss Lε function finds the predicted points that lie within the tube created 

by two slack variables *,i iξ ξ (see figure 3a and 3b): 

0 | ( ) |
( ) ,

| ( ) |
i i

i
i i

if y f x
L x

y f x if otherε ε
ε

− ≤ ε
= ≥ 0 − −

                         (15) 

Lε finds the predicted values that have at most ε deviations from the actual obtained 

values yi. Therefore, ε quantifies the degree of model noise insensitivity. The goal is to 

solve the following argument: 

Minimize 2*

1

1( )
2

n

i i
i

C wξ ξ
=

+ +∑ subject to *

0

0
0

i

i

C

ξ

ξ

≥ 
 

≥ 
 > 

and 
*

( )

( )

T
i i i
T

i i i

y w x b
w x b y

ϕ ε ξ

ϕ ε ξ

 − − ≤ + + 
 

+ − ≤ + +  
              (16) 

Equation (16) attempts to minimize the sum of the norm term 2w  and the 

term *

1
( )

n

i i
i

ξ ξ
=

 
+ 


∑ . The first term characterizes the complexity of the model, while the 

second is the training error, as specified by the slack variables. The parameter C satisfies 

the need to trade model complexity for training error and vice versa (Cherkassky and Ma 

2004).  The above solution is based on the introduction of two Lagrange multipliers 
*,i ia a and mapping with a kernel function ( , )iK x x  : 

*

1
( ) ( ) ( , )

n

i i if x a a K x x b
i=

= − +∑  where *0 ,i ia a C≤ ≤                         (17) 
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The application of the kernel function transforms the original input space into one with 

more dimensions, where a linear decision border can be identified. The original input 

space consists of four vectors. These vectors correspond to the individual forecasts of 

MLP, RNN, PSN and RBFNN derived from the empirical simulation of section 3.3. The 

extended mathematical explanation of this solution can be found in Vapnik (1995).   

Choosing the ε parameter is indeed a challenging task, because it depends on the noise of 

the training datasets. In practice, there are no optimal solutions to this problem. The 

majority of the researchers adopt the cross-validation approach (Cao et al. 2003; Duan et 

al. 2003). Hence, we apply the same procedure to our study. Another challenge is the 

selection of the kernel function. RBF kernels are popular in similar SVR applications, 

because they efficiently overcome overfitting and seem to excel in directional accuracy 

(Kim and Sohn 2010; Yu and Yao 2013). The four NN forecasts are used as inputs for a 

RBF ε-SVR simulation. The RBF kernel is specified as:   

2( , ) exp( ), 0i iK x x x xγ γ= − − >                                    (18) 

From equations (16) and (18) it is obvious that we need to determine two kernel-

independent parameters (ε and C) and the RBF parameter (γ). This is achieved by a 5-fold 

cross validation in our in-sample dataset, following Duan et al. 2003. The final single 

SVR forecast combination is calculated with the following optimized set of parameters 

ε=0.15, γ= 4.18 and C=94.8. The out-of-sample observations of UNEMP time series are 

not used at all for tuning our SVR model. 

 

5. Empirical Results 

As it is standard in literature, in order to evaluate statistically our forecasts, the RMSE, 

the MAE, the MAPE and the Theil-U statistics are computed. For all four of the error 

statistics retained the lower the output, the better the forecasting accuracy of the model 

concerned. The mathematical formulas of these statistics are given in Appendix B. In 

Table 3 we present the statistical performance of all our models in the in-sample period. 

[Insert Table 3] 
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From the above table it is obvious that from our individual forecasts, the RBFNN 

statistically outperforms all other models. All forecast combination techniques improve 

the forecasting accuracy. SVR is the superior model regarding all four statistical criteria. 

It would be interesting to see if the in-sample performance coincides with the out-of-

sample one. Table 4 below summarizes the statistical performance of our models in the 

out-of-sample period. 

[Insert Table 4] 

 

The results of table 4 suggest that the statistical performance of the models in the out-of-

sample period is consistent with the in-sample one and their ranking remains the same. 

All NN models outperform the traditional ARMA and STAR models. In addition, the 

RBFNN outperforms significantly the MLP and RNN in terms of statistical accuracy. 

The second best individual performance is presented by PSN, which remains less 

accurate than RBFNN. This means that the RBFNN manages to overcome the statistical 

performance of the traditional MLP and RNN, but also of PSN which in general has fast 

learning and powerful mapping abilities. The forecast combination techniques are all 

improving the accuracy of the individual performances. Even the least sophisticated 

Simple Average presents lower values in all four statistics in comparison with the best 

individual model, the RBFNN. The LASSO achieves higher forecast accuracy than 

Simple Average, but it does not perform better from the Kalman Filter and SVR. In this 

forecasting competition, SVR remains the superior model ‘beating’ Kalman Filter in 

every statistic in the out-of-sample period.  

The statistical superiority of our best proposed architecture, namely the SVR, is 

confirmed by the Modified Diebold-Mariano (MDM) statistic as proposed by Harvey et 

al. (1997). The null hypothesis of the test is the equivalence in forecasting accuracy 

between couples of forecasting models. The MDM test3 is an extension of the Diebold-

Mariano (1995) test and its statistic (DM) is presented below: 

       ( ) 1/21/2 11 2 1MDM T T k T k k DM− − = + − + −                                (19) 

                                                                 
3 The MDM test follows the student distribution with T-1 degrees of freedom. 
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where T the number of the out-of-sample observations and k the number of the step-ahead 

forecasts. In our case we apply the MDM test to couples of forecasts (SVR vs. another 

forecasting model). A negative realization of the MDM test statistic indicates that the first 

forecast (SVR) is more accurate than the second forecast. The lower the negative value, 

the more accurate are the SVR forecasts. The use of MDM test is common practice, 

because it assesses the significance of observed differences between the performances of 

two forecasts (Barhoumi et al., 2010). The statistic is measured in the out-of-sample 

period for the MSE and MAE loss functions. Table 5 below presents the values of the 

DM and MDM statistics for all the cases, comparing the SVR with its benchmarks. 

[Insert Table 5] 

The table shows that the MDM null hypothesis of equal forecasting accuracy is rejected 

for all comparisons and for both loss functions at the 1% confidence interval. The 

statistical superiority of the SVR forecasts is confirmed as the realizations of the MDM 

statistic are negative for both loss functions. 

The results of this section support the idea of combining NN unemployment forecasts, 

since the Simple Average, LASSO, Kalman Filter and SVR present improve the 

statistical accuracy both in the in-sample and out-of-sample period. The fact that the in-

sample statistical ranking of our NNs is consistent with the out-of-sample one proves that 

the training of our models is done effectively. The coefficient adaptivity of LASSO does 

not provide with such forecasting power to outperform the time-varying Kalman Filter 

process. Nonetheless, it is superior from all NNs and the less sophisticated Simple 

Average. SVR also confirms its forecasting superiority over all individual architectures 

and combining techniques.  Finally, the fact that SVR is found always more accurate than 

Kalman Filters suggests that the adaptive trade-off between model complexity and 

training error of this  technique seems more effective than the recursive ability of Kalman 

Filter to estimate the state of our process.  

In general, the growing literature of NNs and more specifically of the utility of RBFNNs 

in similar forecasting exercises is extended. The improved statistical results of the 

Kalman Filter and SVR are supporting the evidence of previous studies that report the 

benefits of combining forecasts. In summary, the success of the non-linear and time-
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varying combination methods of this study indicates a need to experiment with more 

complex combination techniques and beyond traditional linear equivalents.  

 

6. Concluding Remarks 

This motivation of this study is to investigate the efficiency of the RBFNN in forecasting 

the US unemployment and explores the utility of Kalman Filter and SVR as forecast 

combination techniques. In terms of our RBFNN, an ARMA, a STAR and three different 

NNs, namely a MLP, RNN and PSN are used as benchmarks. Our forecast combination 

methods are benchmarked with a Simple Average and a LASSO. The statistical 

performance of our models is estimated throughout the period of 1972-2012, using the 

last seven years for out-of-sample testing.  

The results show that the RBFNN statistically outperforms all models’ individual 

performances. Even PSN which embodies fast learning abilities and powerful mapping 

capabilities cannot reach the RBFNN’s levels of accuracy. The forecast combinations are 

successful, since both Kalman Filter and SVR techniques improve the statistical accuracy 

in comparison to the Simple Average and LASSO benchmarks. The Simple Average 

presents better results than all individual models, but it cannot outperform any of the 

more sophisticated combination methods. Finally, SVR is found to be the superior model 

of the forecasting competition, which is further confirmed by the modified Diebold 

Mariano test.  

The idea of combining NN unemployment forecasts is promising, since the Simple 

Average, LASSO, Kalman Filter and SVR present improved statistical accuracy both in 

the in-sample and out-of-sample period. SVR is found always more accurate than 

Kalman Filter. This indicates that the adaptive trade-off between model complexity and 

training error of SVR is more effective from the recursive ability of Kalman Filter to 

estimate the state of our process. The general statistical performance of SVR allows us to 

conclude that it can be considered as an optimal forecast combination for the models and 

time series under study. The results are in line with the relevant literature which suggests 

that adaptive, time-varying, nonlinear models can be used to model macroeconomic 

series. Finally, The SVR and Kalman Filter forecast combinations could be further 
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extended. A potential extension could be the use of individual forecasts from a larger 

pool of relevant models or the use of several macroeconomic indicators and different 

forecast horizons.   

 

Appendix 

 

A. NNs’ structure and training characteristics 

This appendix section briefly describes the structure of the three traditional NNs used to 

benchmark the RBFNN. It also includes a summary of the training characteristics of all 

four NNs.  

Firstly, a typical MLP model is shown in the following figure. 

[Insert figure A.1] 

Where: 

• ( )[ ] 1, 2, , 1n
tx n k= +   are the inputs (including the input bias node) at time t  

• ( )[ ] 1, 2,..., 1m
th m j= +   are the hidden nodes outputs  

• t̂Y   is the MLP output (target value)  

• ujk, wj  are the network weights 

•        is the transfer sigmoid function ( ) xe
xS −+
=

1
1

               
(A.1)  

•        is a linear function ( ) ∑=
i

ixxF                                      (A.2) 

The Error Function to be minimized is: 

                    
( ) ( )( )2

1

1 ˆ, ,
T

jk j t t jk j
t

E u w Y Y u w
T =

= −∑                                           (A.3)  

Secondly, the simple architecture of an RNN is presented below. 

  

[Insert figure A.2] 



 
 

19 
 

 

Where: 

• [ ] [1] [2]( 1, 2,..., 1), ,n
t t tx n k u u= +  are the RNN inputs at time t (including bias node) 

• ty is the output of the RNN  

• [ ] ( 1, 2)f
td f = and [ ] ( 1, 2,..., 1)n

tw n k= + are the weights of the network 

• [ ] , (1, 2)f
tU f = is the output of the hidden nodes at time t 

•         is the transfer sigmoid function : ( ) xe
xS −+
=

1
1

                                       
(A.4) 

•         is a linear function: ( ) ∑=
i

ixxF
                                                              

(A.5) 

The Error Function to be minimized is: 

                                                  ( ) ( )( )∑
=

−=
T

t
tttttt wdyy

T
wdE

1

2,~1,  (A.6)  

 

Thirdly, figure A.3 describes the PSN architecture. 

[Insert figure A.3] 

Where:  

• xt (n=1,2,…,k+1) are the model inputs  

• ,t ty y  are the PSN input and output respectively 

• wj (j=1,2..,k) are the adjustable weights (k is the desired order of the network) 

• The hidden layer activation function: ( ) ∑=
i

ixxh                                           (A.7) 

• The output sigmoid activation function (c the adjustable term):    

   
1( )

1 xcx
e

σ −=
+

                                              (A.8) 

The Error Function minimized in this case: 

                                                ( ) ( )( )∑
=

−=
T

t
kttj cwyy

T
wcE

1

2,~1,                     (A.9) 
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Finally, the following table summarizes the training characteristics of the four NN 

architectures used in this forecasting competition. 

[Insert Table A.1] 

 

B. Statistical Performance Measures 

The statistical performance measures are calculated as shown in table B.1 below. 

[Insert Table B.1] 
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Figure 1: The US Unemployment Rate 

 

Figure 2: A RBF Neural Network with N inputs and 2 hidden nodes 
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Figure 3: a) The f(x) curve of SVR and the ε-tube, b) plot of the ε-sensitive loss function and c) mapping 

procedure by φ(x) 

 

 

 

 

 

 

 

 

 

Figure A.1: A single output, fully connected MLP model (bias nodes are not shown for simplicity) 
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Figure A.2: RNN with two nodes in the hidden layer 

  
 

Figure A.3: A PSN with one output layer 
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Table 1: The US Unemployment Dataset - Neural Networks’ Training Dataset 

 

 

  

  

  

  

* UNEMP (1) is the first autoregressive term of the UNEMP series 

Table 2: Neural Networks’ Inputs 

 

Table 3: Summary of the In-Sample Statistical Performance 

 
Table 4: Summary of the Out-of-sample Statistical Performance 

 

PERIODS MONTHS START DATE END DATE 
Total Dataset 492 01//01/1972 01/12/2012 

Training Dataset 
(In-sample) 324 01//01/1972 01/12/1998 

Test Dataset 
(In-sample) 84 01/01/1999 01/12/2005 

Validation Dataset 
(Out-of-sample) 84 01/01/2006 01/12/2012 

MLP RNN PSN RBFNN 
UNEMP (1)* UNEMP (1) UNEMP (1) UNEMP (2) 
UNEMP (2) UNEMP (3) UNEMP (2) UNEMP (3) 
UNEMP (4) UNEMP (4) UNEMP (3) UNEMP (4) 
UNEMP (5) UNEMP (6) UNEMP (6) UNEMP (7) 
UNEMP (7) UNEMP (7) UNEMP (8) UNEMP (8) 
UNEMP (10) UNEMP (9) UNEMP (10) UNEMP (9) 
UNEMP (11) UNEMP (11) - UNEMP (11) 
UNEMP (12) - - UNEMP (12) 

 ARMA STAR MLP RNN PSN RBFNN Simple Average LASSO Kalman Filter SVR 

MAE 1.9941 0.0094 0.0078 0.0077 0.0073 0.0068 0.0066 0.0065 0.0062 0.0058 

MAPE 65.25% 60.27% 52.78% 50.17% 47.73% 44.38% 43.02% 41.58% 40.78% 38.52% 

RMSE 2.5903 1.2105 1.0671 0.9572 0.9045 0.8714 0.8625 0.8556 0.8434 0.8216 

Theil-U 0.6717 0.6447 0.6142 0.5827 0.5325 0.5114 0.5021 0.4903 0.4717 0.4479 

 ARMA STAR MLP RNN PSN RBFNN Simple Average LASSO Kalman Filter SVR 

MAE 0.0332 0.0099 0.0082 0.0081 0.0079 0.0075 0.0072 0.0071 0.0068 0.0061 

MAPE 67.45% 64.27% 53.17% 51.97% 49.38% 47.41% 47.02% 45.14% 44.32% 40.12% 

RMSE 2.4043 1.2412 1.1657 0.9954 0.9527 0.9114 0.8915 0.8706 0.8519 0.8327 

Theil-U 0.5922 0.6773 0.5954 0.5891 0.5618 0.5331 0.5241 0.5196 0.5023 0.4713 
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Note: MD1, MDM1, and MD2, MDM2 are the statistics computed for the MSE and MAE loss function respectively. 

Table 5: Summary results of Modified Diebold-Mariano statistics for MSE and MAE loss functions 

 

 

 

  

  
Table A.1: The NNs training characteristics 

 

Table B.1: Statistical Performance Measures and Calculation 

 ARMA STAR MLP RNN PSN RBFNN Simple Average LASSO Kalman Filter 

MD1 -10.18 -9.91 -9.31 -9.17 -8.13 -7.83 -6.23 -5.78 -5.53 

MD2 -14.06 -12.42 -10.58 -9.96 -9.81 -8.63 -7.11 -6.92 -6.83 

MDM1 -10.24 -9.97 -9.37 -9.23 -8.18 -7.88 -6.27 -5.81 -5.56 

MDM2 -14.14 -12.49 -10.64 -10.02 -9.87 -8.68 -7.15 -6.96 -6.87 

Parameters MLP RNN PSN RBFNN 
Learning 
algorithm 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Gradient 
descent 

Learning rate 0.005 0.003 0.002 0.003 
Momentum 0.007 0.005 0.006 0.005 

Iteration steps 60000 50000 75000 45000 
Initialisation 
of weights N(0,1) N(0,1) N(0,1) N(0,1) 

Input nodes 8 7 6 8 
Hidden nodes 6 6 5 4 
Output node 1 1 1 1 

STATISTICAL PERFOMANCE MEASURES DESCRIPTION 
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