2,523 research outputs found

    A Fault Tolerant Parallel Computing Scheme of Scalar Multiplication for Wireless Sensor Networks

    No full text
    International audienceIn event-driven sensor networks, when a critical event occurs, sensors should transmit messages back to base station in a secure and reliable manner. We choose Elliptic Curve Cryptography to secure the network since it offers faster computation and good security with shorter keys. In order to minimize the running time, we propose to split and distribute the computation of scalar multiplications by involving neighboring nodes in this operation. In order to improve the reliability, we have also proposed a fault tolerance mechanism. It uses half of the available cluster members as backup nodes which take over the work of faulty nodes in case of system failure. Parallel computing does consume more resources, but the results of simulation show that the computation can be significantly accelerated. This method is designed specially for applications where running time is the most important factor

    Monitoring of Wireless Sensor Networks

    Get PDF

    Fault Detection In Wireless Sensor Network Using Distributed Approach

    Get PDF
    In recent days, Wireless Sensor Networks are emerging as a promising and interesting area. Wireless Sensor Network consists of a large number of heterogeneous/homogeneous sensor nodes which communicates through wireless medium and works cooperatively to sense or monitor the environment. The number of sensor nodes in a network can vary from hundreds to thousands. The node senses data from Environment and sends these data to the gateway node. Mostly WSNs are used for applications such as military surveillance and disaster monitoring. We propose a distributed localized faulty sensor detection algorithm where each sensor identifies its own status to be either ”good” or ”faulty” which is then supported by its neighbors as they also check the node behavior. Finally, the algorithm is tested under different number of faulty sensors in the same area. Our Simulation results demonstrate that the time consumed to find out the faulty nodes in our proposed algorithm is relatively less with a large number of faulty sensors existing in the network

    Time constrained fault tolerance and management framework for k-connected distributed wireless sensor networks based on composite event detection

    Get PDF
    Wireless sensor nodes themselves are exceptionally complex systems where a variety of components interact in a complex way. In enterprise scenarios it becomes highly important to hide the details of the underlying sensor networks from the applications and to guarantee a minimum level of reliability of the system. One of the challenges faced to achieve this level of reliability is to overcome the failures frequently faced by sensor networks due to their tight integration with the environment. Failures can generate false information, which may trigger incorrect business processes, resulting in additional costs. Sensor networks are inherently fault prone due to the shared wireless communication medium. Thus, sensor nodes can lose synchrony and their programs can reach arbitrary states. Since on-site maintenance is not feasible, sensor network applications should be local and communication-efficient self-healing. Also, as per my knowledge, no such general framework exist that addresses all the fault issues one may encounter in a WSN, based on the extensive, exhaustive and comprehensive literature survey in the related areas of research. As one of the main goals of enterprise applications is to reduce the costs of business processes, a complete and more general Fault Tolerance and management framework for a general WSN, irrespective of the node types and deployment conditions is proposed which would help to mitigate the propagation of failures in a business environment, reduce the installation and maintenance costs and to gain deployment flexibility to allow for unobtrusive installation

    Comparison of CSMA based MAC protocols of wireless sensor networks

    Full text link
    Energy conservation has been an important area of interest in Wireless Sensor networks (WSNs). Medium Access Control (MAC) protocols play an important role in energy conservation. In this paper, we describe CSMA based MAC protocols for WSN and analyze the simulation results of these protocols. We implemented S-MAC, T-MAC, B-MAC, B-MAC+, X-MAC, DMAC and Wise-MAC in TOSSIM, a simulator which unlike other simulators simulates the same code running on real hardware. Previous surveys mainly focused on the classification of MAC protocols according to the techniques being used or problem dealt with and presented a theoretical evaluation of protocols. This paper presents the comparative study of CSMA based protocols for WSNs, showing which MAC protocol is suitable in a particular environment and supports the arguments with the simulation results. The comparative study can be used to find the best suited MAC protocol for wireless sensor networks in different environments.Comment: International Journal of AdHoc Network Systems, Volume 2, Number 2, April 201
    corecore