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Heartbeat design for energy-aware IoT:

are your sensors alive?
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Abstract

A number of algorithms now exist for using model-based prediction at the
sensor node of a wireless sensor network (WSN) to enable a dramatic reduc-
tion in transmission rates, and thus save energy at the sensor node. These
approaches, however, sometimes reduce the rate so substantially as to make
the health state of the network opaque. One solution is to include a regular
heartbeat transmission whose receipt or otherwise informs the sink about
the health state of the node. However, given that a large period increases
the probability that dead nodes go unnoticed at the sink, while a small pe-
riod likely increases the energy cost of communication, what should be the
period of the heartbeat transmission? In this paper, we examine the use of
heartbeats in WSN design. We derive a general protocol for optimal and
dynamic heartbeat transmission by minimising the Bayes risk, which is the
expected cost of missing data from dead nodes plus the energy cost of heart-
beat transmissions. Our proposed algorithm is dynamic in the sense that
the heartbeat period is updated as time goes on and node failures become
more probable. We validate our design experimentally using three real-world
datasets, and show a 36% reduction in the total heartbeat operational cost
over a heartbeat transmission with a fixed period; the results also highlight
the superiority of our algorithm over arbitrarily chosen heartbeat periods
in different WSN settings, thus promising significant cost savings in WSN
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applications.

Keywords: Internet of things, wireless sensor networks, failure detection,
heartbeat transmission, edge mining

1. Introduction

The Internet of Things (IoT) is enabled to a large extent by wireless sensor
networks (WSNs) deployed to monitor and potentially improve understand-
ing of environments and phenomena (Jin et al., 2014; Bellavista et al., 2013).
Domain scientists need robust and reliable data to allow them to find pat-
terns and confirm hypotheses about how monitored phenomena evolve over
time; moreover, industrial technicians need timely and reliable data to ensure
process or system parameters remain within certain bounds.

The critical factor in the design of wireless sensor network systems is the
energy cost of communicating the data (Rosset et al., 2017). Although other
components such as sensing and processing play a part in the energy budget,
these are typically much lower than the energy cost of communication. For
example, a comparison of power requirements for a range of WSN motes
and components by Polastre et al. (2005) shows that, for the commonly used
Telos platform, the power required to operate the radio is approximately ten
times greater than that required to operate the CPU. Therefore, reducing
the energy cost associated with communication will substantially reduce the
overall energy usage. Reducing the energy usage will in turn lengthen the
time that a system can be left unattended (without battery changes), and
thus enable many WSN applications that would otherwise be infeasible.

Many WSN applications now employ functional modes involving data
compression at the node in order to reduce the energy cost of transmission
(Barr & Asanović, 2006; Gaura et al., 2013; Tulone & Madden, 2006). Such
compression can be done on a packet-by-packet basis. However, this is not
worthwhile since, by and large, packets tend to be quite small, and thus
compressing individual packets will yield only a small (if any) saving (Barr
& Asanović, 2006). Alternatively, while data compression may be achieved
by aggregation (over time) of several packets into one, this comes at the cost
of reducing the timeliness of the data. Again, the energy saving may still
be minor, especially if data has already been compressed at the application
layer (Barr & Asanović, 2006).
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One promising way of reducing the frequency of data transmission, and
hence the energy cost of communication, is through predictive data reduc-
tion. This approach aims to transmit only unexpected (and thus informative)
messages and to suppress the transmission of expected, predictable and thus
uninformative ones. For a example, in the simple case of a WSN deployed
to monitor the status of a normally-closed window, the node may transmit
messages only when the window is opened, rather than transmit the status
of the window at every sampling period; on the non-receipt of a message,
the sink assumes that the window remains closed. This leads to an irregular
and somewhat unpredictable frequency of transmission. In some cases, in
particular with Bare Necessities (Gaura et al., 2011, 2013), there might be
only a few transmissions per year.

While such an approach significantly reduces the energy cost of commu-
nication and increases the longevity of the network, it poses a significant
risk for successful deployment of WSNs. Since sensor network deployments
are subject to failure—batteries can be exhausted, hardware can be tam-
pered with or stolen, electronics may fail —how does the end-user know that
sensor nodes are no longer operational or that messages are merely being
suppressed?

A common approach is to ensure each node transmits a regular heart-
beat message, whose purpose is to inform the sink about the health state
of the node. However, the context of wireless sensing poses some particu-
lar problems and opportunities for the design of heartbeat transmission. In
particular, what information should a heartbeat contain? What happens if
a heartbeat message is lost? How frequently should heartbeats be sent?

This paper primarily concerns itself with the latter issue, i.e., the fre-
quency of heartbeat transmissions. This is important because a small heart-
beat period likely increases the energy cost of heartbeat transmissions, while
a large heartbeat period increases the probability that dead nodes will go
unnoticed at the sink. In this regard, our main contributions in this paper
are as follows:

1. We derive the optimal heartbeat period for monitoring IoTs with ir-
regular transmission based on a Bayes risk minimisation in terms of
two key parameters: the probability of node failure over time and the
probability of environment change over time.

2. We propose a heartbeat transmission protocol based on the optimal
heartbeat period.
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The above contributions are detailed in Section 3. We experimentally validate
our theoretical results in Section 4 using three real-world datasets obtained
from temperature and humidity monitoring applications (Wilkins, 2015).
The datasets are overlaid by Weibull failure processes (Azharuddin et al.,
2015; Lee et al., 2008) under different failure rates and environmental change
probabilities. The discussions of the experimental results are given in Sec-
tion 5, and we conclude the paper and outline directions for future work in
Section 6.

2. Related work

A number of algorithms employing predictive data reduction have been
proposed, including Ken (Chu et al., 2006), Probabilistic Adaptable Query
system (PAQ) (Tulone & Madden, 2006), Similarity-based Adaptive Frame-
work (SAF) (Bakhtiar et al., 2012), Dual Kalman Filter (DKF) (Santini &
Romer, 2006), Derivative-based Prediction (DBP) (Raza et al., 2012), Bare
Necessities (BN) (Gaura et al., 2011, 2013), and Linear Spanish Inquisition
Protocol (L-SIP) (Goldsmith & Brusey, 2010; Gaura et al., 2013).

These algorithms follow a general form similar to that shown in Algorithm
1. They begin each sensing cycle in Line 1 by obtaining a state vector xnode,
which is a vector of sensor readings of the phenomena being monitored, such
as temperature or humidity. Some algorithms optionally include a filter to
smoothen the sensed signal xnode prior to transmission: Line 2. Typically
the filter is recursive, in that it uses the last state estimate as the summary
of all past sensor measurements, and could be implemented as, for example,
an exponentially weighted moving average (Gaura et al., 2011) or a discrete
Kalman filter (Santini & Romer, 2006).

The node then makes an estimate of the state vector as known at the
sink in Line 3; this estimate is denoted as xsink and is referred to as the
“sink state”. The estimation procedure is carried out simultaneously at the
sink, and it involves making a prediction on the evolution of the state vector
xnode via methods such as naive prediction, linear extrapolation, least mean
squares or ARIMA (Aderohunmu et al., 2013; Santini & Romer, 2006; Tulone
& Madden, 2006; Gaura et al., 2013). For example, a constant (or naive) state
model might be appropriate for monitoring whether a window is opened or
closed, whereas a linear model might be more appropriate for representing a
low-frequency signal such as the consumption of electricity over time. Often,
either a constant state or a linear model is appropriate when the phenomenon
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Algorithm 1 Generic algorithm for predictive data reduction

At each sensing cycle:

1: Obtain vector of sensor readings.
2: Filter the vector of sensor readings.
3: Update or predict sink’s estimate of the vector of sensor readings.
4: if New state is significantly different from the sink estimate then
5: Transmit new state.
6: On acknowledgement, update local copy of sink state.
7: else
8: Do not transmit. Sink assumes that new state vector is not signifi-

cantly different from its own estimate.
9: end if

is not well understood, as these models make few assumptions. On the whole,
the choice of the prediction model, as well as the filter option, tends to
be application-specific. The models are chosen to obtain an optimal trade-
off between the computational burden on the node and the data accuracy
required in the application.

In Step 4, the node compares the state vector xnode with the sink state
xsink, and determines if they are significantly different or not. Whether
xnode and xsink are significantly different depends on the accuracy required
by the application. Suppose that a maximum error tolerance of ε is pre-
specified for a given application, then Step 4 essentially evaluates whether
‖xnode − xsink‖2 ≥ ε2. For example, ε can be 0.5 degrees Celsius for a tem-
perature monitoring application or 2% for humidity monitoring. For event
detection WSNs (Akyildiz et al., 2002; Yu et al., 2005; Sarigiannidis et al.,
2015; Bahrepour et al., 2010), the data can be suppressed for most of the
time until the process being monitored goes outside some predefined normal
or acceptable range. Therefore, the condition in Line 4 evaluates whether or
not xnode‖ ≥ xu or xnode‖ ≤ xl, where xl and xu are lower and upper bounds
respectively on ‖xnode‖.

If ‖xnode − xsink‖2 ≥ ε2 (for predictive data reduction) or xnode‖ ≥ xu or
xnode‖ ≤ xl (for event detection), then xnode is transmitted, as indicated in
Line 5. Once transmission has been acknowledged in Line 7, the local node’s
record of xsink is updated.

It is important to note that updating the sink state should only occur
after the transmission has been acknowledged, i.e., after the data has been
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stored in a permanent datastore at the sink. This ensures that the signal
can be reconstructed with minimal error by the sink. Key advantages of
Algorithm 1 are genericity and simplicity. It is general in the sense that it is
largely agnostic regarding the low-level wireless communication transmission
protocol, avoids neighbour interaction, and can be applied to a wide variety
of sensed phenomena types. It is also simple in the sense that the algorithm
does not increase risk of failure by relying on neighbouring nodes.

Transmission suppression, such as that described in Algorithm 1 and par-
ticularly with Bare Necessities (Gaura et al., 2011), introduces the problem
that the health of the network is less immediately apparent. This is because,
when no message is received from a particular node, it is unclear whether a
transmission was attempted (and lost), no transmission was attempted (i.e.,
it was suppressed), or some other failure has occurred. L-SIP (Goldsmith &
Brusey, 2010) relies on end-to-end acknowledgement to ensure that data loss
is minimised in the case of a dropped packet. This goes some way to resolving
part of the ambiguity because, unless there is a significant problem with the
network, dropped packets will cause retries and the packet will soon arrive.
Nonetheless, without a heartbeat mechanism, there is no way to distinguish
between suppressed transmissions and failures.

Failures are common and documented. Sensor networks fail for a variety
of reasons such as: software defects, Byzantine failures, theft or tampering,
server failure, hardware failure and battery depletion. Nevertheless, for mod-
ern sensor networks, battery depletion is becoming a less important problem
(Akyildiz et al., 2002). This is due to the fact that battery life can be ex-
tended, e.g., by transmission suppression, better protocols, more efficient
hardware, energy harvesting, etc. Moreover, battery exhaustion is generally
predictable and easily monitored (e.g., along with other sensor parameters),
and hence, battery replacement can be scheduled. How then are we to deal
with unpredictable node failures other than battery depletion?

Lau et al. (2014) propose a failure detection method based on the Naive
Bayes classifier by monitoring the end-to-end transmission time of the net-
work. This approach involves neighbourhood interaction, and relieves the
node of the computational burden, as the failure detection processing is car-
ried out at the sink. However, the method is not developed in the framework
of transmission suppression, and there is no distinction made of node failures
and suppressed data, when no data is received at the sink.

Vigilance (Schoellhammer, 2010) is an example of an approach to deal
with failure that imputes missing data and provides an estimate of uncer-
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tainty for each measurement. This estimate provides a basis for reducing
the amount of maintenance required and increasing the overall yield. Sil-
berstein et al. (2007) provide one of the few approaches to handling failures
alongside transmission suppression. This approach called BaySail (Silber-
stein et al., 2007), like Vigilance, provides estimates of the missing data at
the sink (whether they are failures or suppressions), but does so using knowl-
edge of the suppression scheme in Bayesian inference. While minimising
maintenance interventions is often a worthwhile aim because it can be costly
or destructive, Vigilance and BaySail do not focus on the detection of when
node failures occur. Hence they are unable to identify when a maintenance
intervention is necessary in a timely manner, especially in the monitoring of
complex phenomena.

To detect whether a node failure has occurred, a heartbeat message can
be incorporated in the transmission suppression protocol. For example, in
Memento (Rost & Balakrishnan, 2006), the nodes send heartbeat beacons
at a given frequency. Rost & Balakrishnan (2006) give the example of 16
heartbeats per network ‘sweep’ to achieve a false positive rate of 1% with
the Direct-Heartbeat approach for a given WSN environment). The sink
therefore has to wait for some threshold number of missed receipts, which is
the heartbeat period, before considering the node dead, if the heartbeat is
not received.

The concept of using heartbeat (HB) messages for fault detection and
reliability assurance has been around for some time. For example, Foster
(1995) developed the Globus Heartbeat Monitor in the context of network
connected distributed processes. This mechanism uses heartbeat periods of
around 2− 9s. Adapting the heartbeat period depending on conditions such
as network and processing delay (Noor et al., 2012) helps reduce the time it
takes to identify a fault while keeping network congestion low. For mobile
systems, heartbeats can be used to keep track of which servers are in range
of a mobile device, such as a tablet moving about a busy hospital (Johnsson
et al., 2017). These HB periods are relatively small (about 2s, by default).

Some IoT devices contain complete GNU/Linux servers and thus can
consider fault tolerant approaches that might be more appropriate for larger
servers (Celesti et al., 2017). For smaller devices, it is still possible to use a
form of lightweight container, such as the strips approach used by Su et al.
(2014). The strips approach allows failure recovery, say, on a neighboring
node. However, lightweight devices tend to need specialist protocols, such
as Zero Message Queue (ZMQ) (Meng et al., 2017), which is a lightweight
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message queue protocol. In ZMQ, heartbeat transmissions are peer-to-peer
and are used to identify when to restart a connection, on the assumption
that any connection loss is only temporary. Despite being lightweight, ZMQ
does not consider the energy cost of heartbeat transmissions.

Heartbeat transmissions have also been employed as a security mea-
sure (Pongle & Chavan, 2015; Mangelkar et al., 2018) to counter a selective-
forwarding attack.

While heartbeats have become a common inclusion in the implementa-
tion of WSNs (Abbasi et al., 2007; Yu et al., 2007; Demirbas et al., 2004;
Gupta & Younis, 2003; Fasolo et al., 2007; Wilkins, 2015), the design of an
optimal heartbeat period is little studied, especially in the context of trans-
mission suppression. Mainly, the existing approaches empirically determine
the heartbeat period beyond which the non-receipt of a message indicates a
node failure, for a given WSN environment. In terms of a principled proce-
dure for determining the heartbeat period, we identify the works by Rost &
Balakrishnan (2006) and Noor et al. (2012) as those closest to ours.

The method proposed by Rost & Balakrishnan (2006) is based on a one-
tailed version of Chebyshev’s inequality; this procedure, known as Variance
Bound (VB), requires the user to specify a required false positive rate FPreq.
Variance Bound involves the computation of the mean and standard devia-
tions of the interval between consecutive heartbeat receipts; thus, it is a dy-
namic heartbeat transmission protocol, in the sense that, as new estimates of
the mean and standard deviation are obtained, the optimal heartbeat period
is updated. However, this procedure relies only on the statistical distribution
of heartbeat intervals, rather than on the WSN characteristics including the
node failure distribution or the transmission suppression scheme. Moreover,
in order to guarantee the require false positive rate, Chebyshev’s inequality
does not give a tight bound, therefore increasing the length of time dead
nodes go unnoticed.

The method proposed by (Noor et al., 2012) is another adaptive heart-
beat transmission procedure, known as affirmative adaptive failure detector
(AAFD). AAFD similarly considers the inter-arrival times between heart-
beats. The methods keeps a list S of inter-arrival times to compute a metric
to estimate the expected arrival time for the next heartbeat transmission.
Similar to the Variance Bound detector, the AAFD heartbeat transmission
is sub-optimal because no consideration is made of the characteristics of the
WSN itself.

Nevertheless, the design of an optimal heartbeat period is important in
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order to minimise the length of time dead nodes go unnoticed as well as
minimise the frequency of heartbeat transmissions, since a high heartbeat
transmission rate tends to offset the energy gains made by transmission sup-
pression. Thus, our aim is to utilise the WSN characteristics to find a gen-
eral heartbeat protocol applicable to any arbitrary WSN environment, that
achieves an optimal trade-off between minimising the false positive rate and
the missed detection probability.

3. Optimal heartbeat design

3.1. Sending heartbeat packets

A potential problem with reducing packet transmission is that a node may
be silent either because it is working normally and suppressing messages or
because it has failed (and is no longer capable of transmission). The end user
does not know which one. A solution is to periodically transmit a “heartbeat”
packet to let the sink know that the node is still operating. The sink is made
aware of the periodicity of the heartbeat message, so that when no such
message is received after the predefined period, the sink assumes a node
failure has occurred. This leaves open the question of how frequently the
heartbeat must be transmitted. If a heartbeat is transmitted too frequently,
then the energy cost of communication increases, so that the node’s energy
budget is quickly depleted. Consequently, interventions may need to be taken
at the node in order to replenish its energy budget. On the other hand, if a
heartbeat is sent too infrequently, then, in the event that a node fails before
the heartbeat period is up, the dead node may go unnoticed at the sink for a
long time. Such a scenario may lead to the loss of important data from the
phenomenon that is being monitored.

The optimal design of a heartbeat protocol should therefore minimise the
frequency at which the heartbeat messages are sent while, at the same time,
minimising the length of time that dead nodes go unnoticed. In this paper,
we formulate this problem as a Bayes risk minimisation, where the Bayes risk
is the expected cost of missing data from dead nodes and the energy cost of
heartbeat transmissions.

3.2. Bayes risk minimisation

For any given node in the WSN, let Rn represent the event that a message
is received at the sink at time step n, and R̄n represent the event that no
message is received at the sink at time step n. In the generic algorithm for
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predictive data reduction as given in Algorithm 1, the node transmits data
when the new state has changed significantly from the estimate of the sink
state, assuming there is no node failure. Thus, knowledge of the change of
state (or equivalently, the rate of transmission suppression) informs the sink
as to the probability of Rn or R̄n. To this end, let Cn be the event that a
significant change of system state (as given in Line 4 of Algorithm 1) has
occurred, and C̄n, the event that such a change has not occurred. Also, let
Fn be the event that a sensor node has failed by time step n, and F̄n, the
event that no node failure has occurred. Then, the behaviour of the sensor
network can be summarised by the following probability relationships:

1. If a node has failed, no message will be received at the sink. Therefore,

P (R̄n|Fn) = 1 (1)

2. If the state has changed and the node has not failed, then a message
will be received at the sink1. Thus,

P (R̄n|Cn, F̄n) = 0 (2)

3. Conversely, if the state has not changed, then no message should be
sent, and hence none received at the sink, whether or not the node has
failed. This implies that:

P (R̄n|C̄n, F̄n) = 1, and P (R̄n|C̄n, Fn) = 1 (3)

In order to determine the optimal heartbeat period, we first consider a
WSN functional mode that does not involve heartbeat transmissions. We
let n = l be the last time step at which a message is received at the sink.
Then, we seek to find the node silent time s, such that, following s periods
of no message receipts, the sink is confident that a node failure has occurred
by time step n = l + s. For the special case of s = 1, the sink decides that
a failure has occurred every time it does not receive data; such a value of
s would be impractical for a WSN employing transmission suppression, as
the sink tends to consider all suppressions as node failures. This suggests
that s has to be ideally greater than 1, but not so large that dead nodes go
unnoticed for too long.

1For simplicity, it is assumed there are no other sources of failure, such as transmission
loss.

10



The sink makes a decision denoted d1, if a failure has occurred, and it
makes the decision denoted d0, if no failure has occurred. Moreover, the
sink incurs a cost c01 when there is a failure, (i.e., when Fn is true) but it
makes the decision d0 that there is no node failure; this cost c01 is the cost
of missing important data from the monitored phenomenon as dead nodes
go unnoticed, and is likely to be incurred if s is too large. Similarly, the
sink incurs a cost c10 when it decides d1 that there is a node failure, when
there is no node failure (i.e., when F̄n is true); this cost c10 is associated with
the unavailing cost of transportation or other such interventions required to
verify the status of a perfectly operating node, and it is likely to be incurred
when s is too small.

Having these costs now permit us to express the Bayes risk B as:

B = c00P (d0, F̄n) + c10P (d1, F̄n) + c01P (d0, Fn) + c11P (d1, Fn) (4)

where the costs c11 and c00 are the costs of making correct decisions, i.e.,
deciding that there is a node failure after s periods of no receipts when Fn is
true, or deciding that there is no node failure after s periods of no receipts
when F̄n is true. These costs (c11 and c00) are often conveniently zero, so
that correct decisions are not penalised. In general, however, the four cost
variables should be such that c01−c11 > 0 and c10−c00 > 0, so that there is a
higher penalty associated with making incorrect decisions than with making
correct decisions.

It is worth noting that the operational costs (c00, c01, c10, c11) can only
be appropriately defined by the end-users (possibly in terms of its monetary
values), depending on the WSN application.

The general design procedure is then to find an optimal value of s, denoted
as s∗, for which the Bayes risk is minimum. Intuitively, the penalty c01

stops s∗ from being too large, while c10 stops s∗ from being too small, if the
Bayes risk is to be minimised. If we were now to consider a WSN functional
mode where heartbeat messages are sent, this optimal value s∗ should then
correspond to the optimal heartbeat period, so that the node does not send
heartbeat messages so frequently that it incurs a lot of energy cost due to
communication, or so infrequently that dead nodes go unnoticed for a long
time.
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Notice that (4) can be rewritten as:

B =

[
c00P (d0|F̄n) + c10P (d1|F̄n)

]
P (F̄n)

+

[
c01P (d0|Fn) + c11P (d1|Fn)

]
P (Fn), (5)

which can be further expanded as:

B =

[
c00

(
1− P (d1|F̄n)

)
+ c10P (d1|F̄n)

]
P (F̄n)

+

[
c01

(
1− P (d1|Fn)

)
+ c11P (d1|Fn)

]
P (Fn), (6)

i.e., in terms of d1 only, thus yielding the following expression for the Bayes
risk:

B = c00P (F̄n) + (c10 − c00)P (d1|F̄n)P (F̄n)

+ c01P (Fn) + (c11 − c01)P (d1|Fn)P (Fn). (7)

Let S be the observation space within which the random variable s occurs.
S is partitioned into two regions S1 and S0 such that, if s ∈ S1, we make the
decision d1 that there is a node failure at time n = l + s, and if s ∈ S0, we
decide d0 that there is no node failure at time n = l+s. Then, by expressing
(7) in terms of the node silent time s that we seek to optimise, we obtain the
following:

B = c00P (F̄l+s) + c01P (Fl+s)

+

∫
S1

[
(c10 − c00)P (s|F̄l+s)P (F̄l+s)− (c01 − c11)P (s|Fl+s)P (Fl+s)

]
ds, (8)

The Bayes risk, as given by (8), can only be minimised (Cohn & Melsa,
1980) when the decision region S1 is chosen such that,

(c10 − c00)P (s|F̄l+s)P (F̄l+s)− (c01 − c11)P (s|Fl+s)P (Fl+s) < 0, (9)

which can equivalently be rewritten as:

P (s|Fl+s)P (Fl+s)

P (s|F̄l+s)P (F̄l+s)
>

(c10 − c00)

(c01 − c11)
. (10)
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Using Bayes rule, the relation given in (10) for choosing the decision region
S1 can be expressed in terms of the posteriors thus:

P (Fl+s|s)P (s)

P (F̄l+s|s)P (s)
>

(c10 − c00)

(c01 − c11)
, (11)

since the node failure probability can be conveniently modelled after standard
failure processes such as the Weibull distribution (Azharuddin et al., 2015;
Lee et al., 2008).

Therefore, the decision rule for deciding whether or not a node failure has
occurred after s periods of no message receipts can be expressed as:

P (Fl+s|s)
P (F̄l+s|s)

Fl+s

≷
F̄l+s

(c10 − c00)

(c01 − c11)
, (12)

where P (Fl+s|s) is the probability that a node has failed given that, after the
last message is received at time n = l, no message is received for s time steps
starting from time n = l+1 to time n = l+s, and P (F̄l+s|s) is the probability
that the node has not failed under the aforementioned conditional, i.e.,

P (Fl+s|s) = P (Fl+s|R̄l+1, ..., R̄l+s, Rl) (13)

P (F̄l+s|s) = P (F̄l+s|R̄l+1, ..., R̄l+s, Rl) (14)

It then remains to model the conditional probabilities in (13) and (14),
taking into account the node failure probability and the rate of transmission
suppression in the transmission suppression scheme being employed. This
permits the computation of the optimal value of s, denoted as s∗.

3.3. Failure probability

From Bayes rule,

P (F̄l+s|R̄l+1, ..., R̄l+s, Rl) = αl+sP (R̄l+1, ..., R̄l+s|F̄l+s, Rl)P (F̄l+s|Rl), (15)

and

P (Fl+s|R̄l+1, ..., R̄l+s, Rl) = αl+sP (R̄l+1, ..., R̄l+s|Fl+s, Rl)P (Fl+s|Rl), (16)

where αl+s is a normalising factor given by:

αl+s =
1

P (R̄l+1, ..., R̄l+s|Rl)
. (17)
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For brevity sake, we shall denote the sequence of no message receipts
{R̄l+1, ..., R̄l+s} simply as R̄l+1:l+s. Moreover, since the receipt of a message
at time n = l implies that the node has not failed at time n = l, Rl is
equivalent to F̄l. Thus, (15) and (16) can be expressed succinctly as:

P (F̄l+s|R̄l+1:l+s, F̄l) = αl+sP (R̄l+1:l+s|F̄l+s, F̄l)P (F̄l+s|F̄l), (18)

and

P (Fl+s|R̄l+1:l+s, F̄l) = αl+sP (Rl+1:l+s|Fl+s, F̄l)P (Fl+s|F̄l), (19)

First, we consider the factor P (F̄l+s|F̄l) in (18), which is the probability
that the node does not fail at time n = l + s, given that it has not failed by
time n = l. Within each sensing cycle, there is an associated probability of
node non-failure (or the staying alive probability) βn given by:

βn = P (F̄n|F̄n−1), (20)

Therefore,
βl+1 = P (F̄l+1|F̄l) (21)

Furthermore, for all i > 1,

P (F̄l+i|F̄l) =

P (F̄l+i|F̄l, F̄l+i−1)P (F̄l+i−1|F̄l) + P (F̄l+i|F̄l, Fl+i−1)P (Fl+i−1|F̄l). (22)

Note that, since nodes never recover once they have failed,

P (F̄n|Fn−1) = 0. (23)

Thus, by substituting (20) and (23) into (22), we obtain:

P (F̄l+i|F̄l) = βl+iP (F̄l+i−1|F̄l). (24)

If we denote P (F̄l+i|F̄l) by bl+i, then we may express (24) as:

bl+i = βl+ibl+i−1. (25)

For i = 1, i.e., at time n = l+1 when there is the first instance of no message
receipt at the sink, bl = P (F̄l|F̄l) = 1, and bl+1 = βl+1. For i = 2, bl+2 =
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βl+2bl+1 = βl+1βl+2. Moreover, for i = 3, bl+3 = βl+3bl+2 = βl+1βl+2βl+3. It
follows that for i = s,

bl+s =
s∏
i=1

βl+i, (26)

i.e.,

P (F̄l+s|F̄l) =
s∏
i=1

βl+i and P (Fl+s|F̄l) = 1−
s∏
i=1

βl+i. (27)

Next, we consider the posterior probability P (R̄l+1:l+s|F̄l+s, F̄l) in (18);
this is the probability that no message is received for the s time steps from
n = l + 1 to n = l + s, given that the node has not failed by time n = l + s
as well as by time n = l. The fact that the node has not failed by n = l + s
implies that the non-receipt of messages for the s time steps could only be
due to the transmission suppression. Since the suppression of a message at
one time step does not depend on the suppression at any other time step, but
on the evolution of the state of the phenomenon being monitored, it follows
that:

P (R̄l+1:l+s|F̄l+s, F̄l) =
l+s∏
i=l+1

P (R̄i|F̄l+s, F̄l) = γs, (28)

where γ is the constant rate of transmission suppression.
Similarly, the posterior probability P (R̄l+1:l+s|Fl+s, F̄l) given in (19) is the

probability that no message is received for the s time steps from n = l+ 1 to
n = l+ s, given that the node has failed by time n = l+ s, but has not failed
by time n = l; since the node could have failed any time between n = l and
n = l + s, the non-receipt of messages for the s time steps could either be
due to node failure or transmission suppression. In this case, the probability
P (R̄l+1:l+s|Fl+s, F̄l) is given by:

P (R̄l+1:l+s|Fl+s, F̄l) =
1

1−
∏s

k=1 βl+k

s∑
i=1

γi−1(1− βl+i)
i−1∏
j=1

βl+j (29)

The proof of this result is given in Appendix A.
Now, by substituting (27), (28) and (29) into (18) and (19), we obtain:

P (F̄l+s|R̄l+1, ..., R̄l+s, Rl) = αl+sγ
s

s∏
i=1

βl+i, (30)

15



and

P (Fl+s|R̄l+1, ..., R̄l+s, Rl) =

αl+s

[
1

1−
∏s

k=1 βl+k

s∑
i=1

γi−1(1− βl+i)
i−1∏
j=1

βl+j

](
1−

s∏
i=1

βl+i

)
. (31)

The relation in (31) simplifies to:

P (Fl+s|R̄l+1, ..., R̄l+s, Rl) = αl+s

s∑
i=1

γi−1(1− βl+i)
i−1∏
j=1

βl+j, (32)

Finally, by substituting (30) and (32) into the decision rule of (12), we
obtain the following:

s∑
i=1

γi−1(1− βl+i)
i−1∏
j=1

βl+j
Fl+s

≷
F̄l+s

(c10 − c00)

(c01 − c11)
γs

s∏
i=1

βl+i, (33)

which represents the optimal rule for deciding whether or not a heartbeat
message should be transmitted from the node, for any s ≥ 1, in order to
minimise the Bayes risk.

3.4. Optimal heartbeat transmission protocol

Except for specific values of γ, βn and the operational costs, (33) generally
has no closed-form solution. Moreover, unless the staying-alive probability
βn is constant, the optimal heartbeat period s∗ varies for different l in the
same run of the WSN application, where l is the last instance of a message
receipt at the sink. Thus, the condition given in (33) has to be checked after
the last message is received at n = l for every value of s starting from s = 1
until the least value of s, denoted smin, for which it can be decided that a
failure has occurred. The value smin is s∗. In order not to burden the node
with the evaluation of the decision rule, s∗ can be determined at the sink,
so that the sink sends this value to the node as part of its acknowledgement
after a message is received; this procedure is described in Algorithm 2.

If the sink receives the next heartbeat message at the time n = l + s∗,
then it knows the node is operating fine. Else if no heartbeat message is
received at that time, the sink assumes that a node failure has occurred.
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Algorithm 2 Optimal heartbeat transmission

Initialise the optimal heartbeat period s = s∗ by evaluating the decision rule
of (33) starting from s = 1 to s = s∗, for l = 0.
At each sensing cycle:
Node functions:

1: Obtain vector of sensor readings xnode.
2: Filter the vector of sensor readings.
3: Update or predict sink’s estimate of the vector of sensor readings.
4: if New state is significantly different from the sink estimate or heartbeat

timer has expired then
5: Transmit new state.
6: On acknowledgement, update local copy of sink state and optimal

heartbeat period s∗.
7: Restart heartbeat timer.
8: else
9: Do not transmit. Sink assumes that new state vector is not signifi-

cantly different from its own estimate.
10: Decrement the heartbeat (countdown) timer.
11: end if

Sink functions:

1: Update or predict sink state.
2: if Message is received then
3: Store received data in a permanent datastore.
4: Evaluate the decision rule of (33) starting from s = 1 to the least

value of s, smin, for which (33) indicates a failure.
5: Update the optimal heartbeat period s∗ as smin.
6: Send acknowledgement together with optimal heartbeat period s∗.
7: Restart heartbeat timer.
8: else
9: Store the predicted sink state in a permanent datastore.

10: Decrement heartbeat timer.
11: if Heartbeat timer has expired then
12: Decide a failure has occurred.
13: end if
14: end if
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3.5. Short notes on transmission suppression rate, operational costs, and
staying-alive probability

3.5.1. Transmission suppression rate

The transmission suppression rate γ depends on the transmission suppres-
sion protocol being employed as well as the phenomenon being monitored.
An estimate of γ can practically be obtained by running the transmission
suppression protocol in a WSN without any heartbeats for a short period of
time. Then, the relative frequency of messages suppressed over time within
the accepted error tolerance of the application is observed. A cumulative
moving average of these relative frequencies can be used as γ. It is worth
noting that, for use in the heartbeat transmission protocol, the estimate of γ
obtained as described may be poor, for the very reason that it is obtained for
only a short period of the WSN lifetime. Moreover, this estimation procedure
for γ does not incorporate the transmission of heartbeats, which alters the
suppression rate.

3.5.2. Operational costs

Once heartbeats are incorporated in the WSN functional mode, the op-
erational costs have slightly different meanings, and are hence referred to as
“heartbeat operational costs”:

1. c00 is the cost of not sending any heartbeat when no node failure has
occurred; this represents a correct decision as the node/sink correctly
estimates that a failure has not occurred.

2. c11 is the cost of the sink deciding that a heartbeat must have been
sent at time n = l + s on the non-receipt of a message, when a node
failure has actually occurred. This also represents a correct decision.

3. c10 is the cost of the node sending a heartbeat at n = l + s, which is
acknowledged at the sink, implying no node failure has occurred; this
is a false alarm cost associated with the cost of communicating the
heartbeat message.

4. c01 is the cost incurred when the node does not send a heartbeat at
n = l + s, when in fact a node failure has occurred; this is a missed
detection cost. In many applications, it is possible to express c01 in
terms of c01,n, which is the cost of missing data in one sampling interval.
Since the node may have failed any time after n = l and up to n = l+s,
the cost c01,n can be incurred up to s times. Thus, the expected cost
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c01 in terms of c01,n can be given as:

c01 =

∑s
i=1 P (F̄l+i−1, Fl+i|Fl+s, F̄l)(s− i+ 1)c01,n∑s

i=1 P (F̄l+i−1, Fl+i|Fl+s, F̄l)
. (34)

The probability P (F̄l+i−1, Fl+i|Fl+s, F̄l) is given in Appendix A as part
of the proof of (29); using this result, the expected cost of missed
detection c01 can be given as:

c01 =

∑s
i=1(1− βl+i)

∏i−1
j=1 βl+j(s− i+ 1)c01,n∑s

i=1(1− βl+i)
∏i−1

j=1 βl+j
(35)

3.5.3. Staying-alive probability

In order to obtain the staying alive probability, one would have to specify
a node failure distribution. A common failure distribution in the context of
wireless sensor networks is the Weibull distribution (Azharuddin et al., 2015;
Lee et al., 2008), which is a generalisation of the memoryless exponential
distribution.

Remark 1

Given a node whose failure rate is given by the Weibull distribution thus:

P (Fn) = 1− e−(ntsample/λ)κ , (36)

where

1. tsample is the sampling period,
2. λΓ(1 + 1/κ) = τ is the expected lifetime of the node,
3. κ is the Weibull slope (κ < 1 yields a decreasing failure rate, κ = 1

gives the exponential failure distribution which has a constant failure
rate, and κ > 1 yields an increasing failure rate),

the staying-alive probability βn can be derived as follows:

βn = P (F̄n|F̄n−1) =
P (F̄n, F̄n−1)

P (F̄n−1)
=

P (F̄n)

P (F̄n−1)
. (37)

Note that between time steps n−1 and n, the sampling period tsample elapses,
and thus,

P (Fn) = 1− e−((n−1)tsample/λ)κ , (38)

Therefore, the staying alive probability βn can be expressed as:

βn =
e−(ntsample/λ)κ

e−((n−1)tsample/λ)κ
= e(tsample/λ)κ[(n−1)κ−nκ] (39)
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4. Experimental validation

In this section, we experimentally validate the proposed optimal heart-
beat transmission protocol in Algorithm 2 in terms of its performance in
(a) reducing the energy cost of heartbeat transmission and, (b) reducing the
length of time dead nodes go unnoticed at the sink. These performance mea-
sures are concisely expressed in terms of the total heartbeat operational cost
given as:

C = c10 × Number of false alarms + c01,n × Number of missed detections.
(40)

where c10 (the cost of false alarm) is the energy cost of every heartbeat
transmission, and c01,n is the cost of missing important data in one sampling
interval as dead nodes go unnoticed. By (40), we have implicitly assigned
values of zero to the costs of making correct decisions c00 and c11, i.e., deciding
that a node failure has occurred when, in fact, it has, or deciding that no
node failure has occurred when indeed it has not.

For our experiments, we have employed experimental data obtained via
Sense-and-Send as part of the Cogent-House project (Wilkins, 2015) which
involved a deployment of 235 sensor nodes in 38 homes to monitor air tem-
perature and relative humidity. We consider three different datasets, each
of which is collected over a one-year period at a sampling period tsample of
5 minutes. Our first dataset represents the humidity in a living room, and
is denoted as “LivingHum”; the second dataset represents the temperature
in a kitchen, and is denoted as “KitchenTemp”; the third dataset represents
the temperature in a bedroom, and is denoted as “BedTemp”. The choice
of these datasets instead of the commonly used Intel Lab Data is due to the
larger quantity of available data, the nature of the deployments within a real
life (non-laboratory) application, and the availability of datasets with 100%
yield allowing for an accurate baseline (Wilkins, 2015).

Our experimental methodology is outlined below:

1. First, we simulate a system where the sequence data given by Liv-
ingHum is transmitted from a single sensor node (not the entire net-
work) using the L-SIP transmission protocol (Goldsmith & Brusey,
2010). The L-SIP implementation uses a predefined error of ε = 2%,
which is the required error tolerance for the humidity monitoring ap-
plication. Furthermore, the L-SIP implementation uses an exponen-
tial weighted moving average (EWMA) filter with a smoothing factor

20



α = 0.2 for data smoothing and linear extrapolation for predicting the
sink state. L-SIP on LivingHum results in a transmission suppression
rate of γ = 0.9705, with a reconstruction error of 0.93% RMSE. The
original and reconstructed signal at the sink are shown in Figure 1; a
zoomed-in version showing the performance for the first week of data
is given in Figure 2
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Figure 1: L-SIP transmission suppression on LivingHum dataset. The L-SIP implemen-
tation uses linear extrapolation for prediction and an EWMA filter with smoothing factor
α = 0.2, with an error tolerance ε = 2%.

2. Secondly, we simulate a system where the sequence data given by
KitchenTemp is transmitted from a single sensor node using an event
detection protocol. The event detection implementation uses upper
and lower thresholds of 25 and 16 degrees Celsius respectively, such
that the node transmits data only when the sensed temperature falls
below 16 degrees or exceeds 25 degrees Celsius. In this implementa-
tion, no smoothing filter is applied, and we have used a constant (naive)
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Figure 2: L-SIP transmission suppression on LivingHum dataset, zoomed in for the first
week. The L-SIP implementation uses linear extrapolation for prediction and an EWMA
filter with smoothing factor α = 0.2, with an error tolerance ε = 2%.
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(Aderohunmu et al., 2013) model for the prediction of the sink state.
This event detection protocol results in a transmission suppression rate
of γ = 0.9969. The original and reconstructed signals are given in Fig-
ure 3.
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Figure 3: Event detection transmission protocol on KitchenTemp dataset. This event
detection uses no smoothing filter and uses a naive model for prediction, with lower and
upper thresholds of 16 and 25 degrees Celsius respectively.

3. Thirdly, we simulate a system where the sequence data given by BedTemp
is transmitted from a single sensor node using the L-SIP transmission
protocol. The L-SIP implementation uses a predefined error of ε = 0.5
degrees Celsius, which is the required error tolerance for the temper-
ature monitoring application. Again, the L-SIP implementation uses
an exponential weighted moving average filter with a smoothing factor
α = 0.2 for data smoothing and linear extrapolation for predicting the
sink state. L-SIP on BedTemp results in a transmission suppression
rate of γ = 0.9730, with a reconstruction RMSE of 0.2348 degree Cel-
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sius. The original and reconstructed signal at the sink are shown in
Figure 4.
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Figure 4: L-SIP transmission suppression on BedTemp dataset. The L-SIP implementation
uses linear extrapolation for prediction and an EWMA filter with smoothing factor α = 0.2,
with an error tolerance ε = 0.5 degrees Celsius.

4. Next, we overlay a Weibull failure distribution on the original data
LivingHum, KitchenTemp and BedTemp, so that the node fails at some
random time according to the Weibull failure rate, and thus no message
is transmitted after this time. We run 1000 random trials.

5. We then employ the optimal heartbeat transmission protocol as given
by Algorithm 2 on LivingHum, KitchenTemp and BedTemp (which are
overlaid by the Weibull failure process). On LivingHum and BedTemp,
we run L-SIP predictive data reduction, while we perform event detec-
tion on KitchenTemp, using the following baseline parameters:

(a) Suppression rate of:

i. γ = 0.9705 for L-SIP transmission suppression on LivingHum;
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ii. γ = 0.9969 for event detection protocol on KitchenTemp;
iii. γ = 0.9730 for L-SIP transmission suppression on BedTemp.

Note that the above suppression rates are as given in steps 1-3 of
this experimental methodology.

(b) sampling period of tsample = 5 minutes —this is the sampling
period of the Cogent-House monitoring application.

(c) Expected node lifetime of τ = 6 months. While the actual lifetime
of the nodes were about 2 years, we have empirically chosen 6
months for our simulation. This is because choosing a much higher
lifetime reduces the Weibull probability of failure, so that it is
impossible to reasonably simulate the occurrence of node failure
on the one-year worth of data.

(d) Ratio of 1 between the cost of missed detection in one sampling
period and the cost of false alarm, where the cost of false alarm
c10 is kept at 1. This way, the energy cost of heartbeat transmis-
sions and the cost of missing data due to dead nodes are equally
important.

(e) Weibull shape parameter of κ = 3, in order to have an increasing
failure rate (Azharuddin et al., 2015).

It is worth emphasising that if the node failure rate is not constant
(i.e., if κ > 1 for the Weibull distribution), the proposed method does
not yield a constant heartbeat period throughout the whole run of
the WSN application. Instead, the heartbeat period is dynamically
updated based on the instance of the last message receipt at the sink.
This behaviour is illustrated in Figure 5, Figure 6 and Figure 7.

6. For comparison, we simulate the following heartbeat transmission pro-
tocols:

(a) A constant heartbeat transmission whose period is given as sinit
and is obtained thus: suppose that, rather than the principled
procedure given in Algorithm 2, one obtains a constant heartbeat
period sinit empirically in order to minimise the Bayes risk, using
WSN information available at the start of deployment. Then sinit
can be set to the initial heartbeat period in the proposed algo-
rithm. Note that in Figure 5 and Figure 7, sinit = 522, while in
Figure 6, sinit = 2372.

(b) A constant heartbeat transmission whose period is given as ssteady
and is obtained thus: suppose that, rather than the principled
procedure given in Algorithm 2, one obtains a constant heartbeat
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Figure 5: Update of optimal heartbeat period: L-SIP transmission suppression on Liv-
ingHum dataset, with the following parameter settings: tsample = 5 minutes, γ = 0.9705,
τ = 6 months, κ = 3, c10 = 1, c01,n = 1. Initial and final heartbeat periods are 522 and 96
respectively.
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Figure 6: Update of optimal heartbeat period: event detection transmission on Kitchen-
Temp dataset, with the following parameter settings: tsample = 5 minutes, γ = 0.9969,
τ = 6 months, κ = 3, c10 = 1, c01,n = 1. Initial and final heartbeat periods are 2372 and
149 respectively.
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Figure 7: Update of optimal heartbeat period: L-SIP transmission suppression on
BedTemp dataset, with the following parameter settings: tsample = 5 minutes, γ = 0.9730,
τ = 6 months, κ = 3, c10 = 1, c01,n = 1. Initial and final heartbeat periods are 522 and
128 respectively.
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period ssteady empirically in order to minimise the Bayes risk using
knowledge of the steady-state characteristics of the WSN. Then
ssteady can be set to the steady-state heartbeat period of the pro-
posed algorithm. Note that in Figure 5, ssteady = 96; in Figure 6,
ssteady = 149; and in Figure 7, ssteady = 128.

(c) A constant heartbeat transmission whose period is given as savg =
0.5(sinit + ssteady), which is the midpoint between ssteady and sinit.

(d) Variance Bound (Rost & Balakrishnan, 2006) with a required false
positive rate FPreq = 0.5, since the energy cost of heartbeat trans-
missions and the cost of missing data due to dead nodes are equally
important.

(e) Affirmative Adaptive Failure Detection (AAFD) (Noor et al., 2012).

The results of the above experiments are given in Figure 8 to Figure
13.
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Figure 8: Total heartbeat operational cost: L-SIP transmission suppression on LivingHum
dataset. tsample = 5 minutes, γ = 0.9705, τ = 6 months, κ = 3, c10 = 1, c01,n = 1.
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Figure 9: Average cost of missing dead nodes and energy cost of heartbeat transmission:
L-SIP transmission suppression on KitchenTemp dataset. tsample = 5 minutes, γ = 0.9705,
τ = 6 months, κ = 3, c10 = 1, c01,n = 1.
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Figure 10: Total heartbeat operational cost: event detection on KitchenTemp dataset.
tsample = 5 minutes, γ = 0.9969, τ = 6 months, κ = 3, c10 = 1, c01,n = 1.

31



Proposed sinit ssteady savg VB AAFD
0

200

400

600

800

1000

1200

1400
Cost of false alarm
Cost of missed detection
Total heartbeat operational cost

Figure 11: Average cost of missing dead nodes and energy cost of heartbeat transmission:
event detection on KitchenTemp dataset. tsample = 5 minutes, γ = 0.9969, τ = 6 months,
κ = 3, c10 = 1, c01,n = 1.
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Figure 12: Total heartbeat operational cost: L-SIP transmission suppression on BedTemp
dataset. tsample = 5 minutes, γ = 0.9730, τ = 6 months, κ = 3, c10 = 1, c01,n = 1.

33



Proposed sinit ssteady savg VB AAFD
0

100

200

300

400

500

600

700

800

900

1000

Cost of false alarm
Cost of missed detection
Total heartbeat operational cost

Figure 13: Average cost of missing dead nodes and energy cost of heartbeat transmission:
L-SIP transmission suppression on BedTemp dataset. tsample = 5 minutes, γ = 0.9730,
τ = 6 months, κ = 3, c10 = 1, c01,n = 1.

34



7. To evaluate the robustness of our approach under different WSN set-
tings, we also simulate the L-SIP transmission suppression protocol on
the dataset LivingHum for different values of:

(a) Sampling time: 0.1, 1, 2, 5, 60, 120, 360, 720, 1440 minutes.
(b) Expected node lifetime: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 months.
(c) Weibull shape parameter: 0.5, 1, 1.5, 2, 2.5, 3, 3.2, 3.25.
(d) The ratio of the cost of missed detection in one sampling period

c01,n to the cost of false alarm c10: 0.1, 0.2, 0.5, 1, 2, 5, where the
cost of false alarm c10 is kept at 1. The required false positive rate
FPreq for VB is computed from the ratios.

(e) Transmission suppression rate:
0.16, 0.23, 0.47, 0.64, 0.77, 0.89, 0.94, 0.97, 0.99.
Note that these rates are obtained by running the transmission
suppression protocol at different error tolerance levels, without
any heartbeat transmissions, and for only a small amount of the
WSN lifetime. For this reason, the estimate of γ is imperfect and
has an effect on the performance of the proposed heartbeat trans-
mission protocol. Thus, we also simulate our proposed algorithm
by incorporating perfect knowledge of the suppression rate, i.e.,
where data transmissions are suppressed with a probability ex-
actly given by the estimate of γ; we refer to this modification of
the proposed algorithm as “Proposed*”.

The above values are chosen empirically based on the baseline param-
eters in step 4. The results for the experiments are given in Figure 14,
Figure 15, Figure 16, Figure 17 and Figure 18.

5. Discussion of results

The results in Figure 8 show that the proposed algorithm significantly
reduces the total heartbeat operational cost as compared to the existing
adaptive heartbeat transmission protocols, VB and AAFD. Figure 9 shows
that while VB and AAFD achieve lower costs of false alarm, they take a
long time to detect failures, thus increasing the cost of missed detection, and
consequently the total heartbeat operational cost. Our algorithm, on the
other hand, achieves a better trade-off and results in a reduction of at least
84.44% in the average total heartbeat operational cost over VB and AAFD
as shown in Figure 9. The performance gain of our proposed algorithm is
as a result of the fact that the proposed algorithm is based on knowledge of
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Figure 14: Expected lifetime: L-SIP transmission suppression on LivingHum dataset.
tsample = 5 minutes, γ = 0.9730, κ = 3, c10 = 1, c01,n = 1.
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Figure 15: sampling period: L-SIP transmission suppression on LivingHum dataset. τ = 6
months, γ = 0.9730, κ = 3, c10 = 1, c01,n = 1.
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Figure 16: Ratio of missed detection cost to false alarm cost: L-SIP transmission sup-
pression on LivingHum dataset. tsample = 5 minutes, γ = 0.9705, τ = 6 months, κ = 3,
c10 = 1.
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Figure 17: Suppression rate: L-SIP transmission suppression on LivingHum dataset.
tsample = 5 minutes, τ = 6 months, κ = 3, c10 = 1, c01,n = 1.
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Figure 18: Weibull shape parameter: L-SIP transmission suppression on LivingHum
dataset. tsample = 5 minutes, γ = 0.9705, λ = 6.7191 months, c10 = 1, c01,n = 1. κ > 3.5
was not simulated due to numerical instability.
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the heartbeat operation costs, the node failure distribution, as well as the
transmission suppression scheme employed. The existing adaptive heartbeat
transmission methods do not incorporate the aforementioned information,
and only estimate the heartbeat period using the inter-arrival times of the
heartbeats.

Moreover, the proposed algorithm outperforms the constant heartbeat
transmissions with heartbeat periods sinit, ssteady and savg as shown in Fig-
ure 8. In terms of the average total heartbeat operational cost in Figure 9,
our algorithm results in at least 36.68% reduction over all the constant heart-
beat transmissions. The cost reduction of our algorithm over the constant
heartbeat transmission is due to the fact that, as time increases, the nodes
become increasingly likely to fail, and thus, the optimal heartbeat protocol
adaptively reduces the heartbeat period to match the increased failure rate.

Among the constant heartbeat transmissions, ssteady gives the best per-
formance in terms of the average total heartbeat operational cost. Since the
periods sinit and savg are larger than ssteady, they result in less false alarm
costs but at the expense of higher costs of missed detection. The period
ssteady, however, yields a better trade-off. This is because ssteady is set as the
steady-state heartbeat period of the proposed optimal heartbeat protocol
which minimises the Bayes risk. However, without the proposed algorithm,
ssteady will have to be determined empirically, and will therefore require ex-
haustive trial and error.

In Figure 10 to Figure 13, the proposed algorithm exhibits performance
gains over the existing heartbeat transmission approaches similar to that
shown in Figure 8.

Figure 14 to Figure 18 illustrate the robustness of the proposed algorithm
to different WSN environments. The results indicate that the proposed algo-
rithm performs well not only on specific datasets with specific WSN settings,
but also over a wide range of parameter settings.

5.1. Expected node lifetime (Figure 14)

As the expected node lifetime increases, the staying-alive probability βn
increases, and therefore the probability that a node failure will occur de-
creases. Thus, the total heartbeat operational cost becomes dominated by
the cost of false alarms, since it becomes unlikely that a node failure may
have been missed. Therefore, increasing the expected lifetime increases the
total heartbeat operational cost. However, as the expected lifetime increases
further (beyond τ = 3 months in the figure), the staying-alive probability
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increases slowly, as it approaches one, and there is not much increase in the
cost of false alarms. Consequently, the total heartbeat operational cost tends
to reduce, since the cost of missed detection decreases with increase in the
expected lifetime.

As shown in Figure 14, the proposed optimal heartbeat period transmis-
sion protocol achieves the minimum total heartbeat operational cost under
both small and large expected node lifetimes. Similarly, in the next sec-
tions, the proposed algorithm is shown to automatically adapt the optimal
heartbeat period to variations in the sampling period, heartbeat operational
costs, Weibull shape parameter and the suppression rate to minimise the
total heartbeat operational cost.

5.2. sampling period (Figure 15)

As sampling period increases, the staying-alive probability βn decreases,
and hence, the probability that a node failure will occur increases. There-
fore, the total heartbeat operational cost becomes dominated by the cost of
missed detection, rather than the cost of false alarms, since it becomes more
and more likely that a failure has occurred at the time a heartbeat is trans-
mitted. Thus, increasing the sampling period increases the total heartbeat
operational cost. However, the staying alive probability decreases exponen-
tially with increase in the sampling period. Therefore, as the sampling period
increases further (beyond tsample = 5 minutes in the figure), the staying-alive
probability decreases slowly, as it approaches zero. As a result, there is not
much increase in the cost of missed detection beyond this point. Conse-
quently, there is an eventual decrease in the total heartbeat operational cost,
as the sampling period increases, since the cost of false alarm decreases.

5.3. Cost of missed detection (Figure 16)

For a given probability of node failure, increasing the cost of missed de-
tection over the cost of false alarms implies that it becomes increasingly more
costly to miss any node failures than to send out a false alarm heartbeat.
Thus, if the cost of false alarm is kept constant, then increasing the cost of
missed detection directly increases the total heartbeat operational cost.

5.4. Weibull shape parameter (Figure 18)

As the Weibull shape parameter increases, the staying-alive probability
βn decreases, and hence, the probability of failure increases. Therefore, the
total heartbeat operational cost becomes dominated by the cost of missed
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detection, rather than the cost of false alarms, since it becomes more and
more likely that a failure has occurred at the time a heartbeat is transmitted.
Thus, increasing the Weibull shape parameter increases the total heartbeat
operational cost. However, the staying alive probability decreases exponen-
tially with increase in the Weibull shape parameter. Therefore, as κ increases
further (beyond κ = 2.5 in the figure), the staying-alive probability decreases
slowly, as it approaches zero. As a result, there is not much increase in the
cost of missed detection beyond this point. Consequently, there is an eventual
decrease in the total heartbeat operational cost, as Weibull shape parameter
increases, since the cost of false alarm decreases.

5.5. Suppression rate (Figure 17)

For a given probability of node failure, increasing the suppression rate
implies that fewer messages are transmitted, and there is a longer period of
no message receipts. Therefore, it becomes increasingly likely that the non-
receipt of messages at the sink is due to transmission suppression instead
of node failure. Thus, the total heartbeat operational cost is dominated by
the cost of false alarms, rather than the cost of missed detection. There-
fore, with increase in the suppression rate, the total heartbeat operational
cost increases, as indicated by “Proposed*”. However, because of an im-
perfect estimate of the suppression rate, Proposed is not able to exhibit the
characteristics of “Proposed*”.

It will be noted that the constant heartbeat transmission methods do not
perform well in all WSN settings. For example, the constant heartbeat trans-
mission with period savg achieves a good performance when κ = 1, 1.5, but
performs poorly in other regions of κ (Figure 18). In the same manner, the
existing adaptive heartbeat transmission methods AAFD and VB perform
poorly, because they do not adapt the heartbeat periods to variations in the
WSN characteristics, but rather on the statistical distribution of heartbeat
inter-arrival times. Variance Bound (VB), on the other hand, introduces the
required false positive rate (FPreq) in the computation of the heartbeat pe-
riod. Thus, by appropriately selecting FPreq depending on the relative cost
of missed detection, VB outperforms AAFD in Figure 16.

In contrast, our proposed optimal heartbeat period shows robustness un-
der all scenarios and achieves superior performance in terms of the total
heartbeat operational cost for both transmission suppression and event de-
tection. Thus, the proposed approach eliminates the trial and error that may

43



be required to select an appropriate heartbeat period for any given WSN en-
vironment, while minimising the Bayes risk. Since the cost of missing impor-
tant data because dead nodes go unnoticed and the cost of transmitting false
alarm heartbeat messages can often both be given in terms of their monetary
values (e.g., in dollars), minimising the Bayes risk yields significant savings
in IoT applications.

Even with imperfect knowledge of the suppression rate in Figure 17, the
proposed approach “Proposed” outperforms existing heartbeat transmissions
in terms of the total heartbeat operational cost in the region of high sup-
pression rates (γ ≥ 0.9). However, for low suppression rates, ”Proposed”
is outperformed by “Proposed*” (which has perfect knowledge of the sup-
pression rate), as well as the constant heartbeat transmissions with periods
sinit and savg. This suggests that a good estimate of the suppression rate
is required for applications and transmission suppression protocols with low
suppression rates. This is, however, not much of an issue, since most event
detection and existing transmission suppression protocols are able to achieve
suppression rates well above 90% (Gaura et al., 2011, 2013). In the case
of applications with low suppression rates, the constant heartbeat transmis-
sion with period sinit (which is the initial heartbeat period of the proposed
algorithm) is recommended.

6. Conclusions

This paper has shown that the heartbeat period for transmission sup-
pression algorithms as well as event detection protocols can be chosen so
as to achieve an optimal trade-off between minimising the energy cost of
heartbeat transmission and reducing the incidence of missing out important
phenomenological data due to dead nodes going unnoticed. In this regard,
our contribution in the paper is two-fold: first, we derive the optimal heart-
beat period in terms of the environmental change probability, node failure
rate and heartbeat operational costs, by following a Bayes-risk minimisation;
secondly, we propose an optimal heartbeat transmission protocol from the
result of the Bayes-risk minimisation.

Extensive experimental validation of the proposed algorithm shows that
the Bayes risk, and thus, the cost of maintaining and running the WSN, can
be significantly reduced (as much as 84.4% in our simulations) by employing
the optimal heartbeat transmission protocol, as compared to using existing
heartbeat transmission protocols. Our proposed algorithm shows robustness
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and applicability to different WSN environments with different sampling fre-
quency, heartbeat operational costs, transmission suppression rate or node
failure distribution. It is straightforward to apply this approach in practice,
by initialising the optimal heartbeat period at installation time based on
available information, and to dynamically calculate the optimal heartbeat at
the sink and to distribute this information to the rest of the network.

A limitation of our proposed approach is that it is sub-optimal when a
good estimate of the suppression rate is not available for applications with
low suppression rates. Thus, our future work aims to investigate methods
of obtaining better estimates of the transmission suppression rate in order
to improve the performance of our algorithm. Moreover, while this work as-
sumed, for the sake of simplicity, that the non-receipt of a message at the sink
is due only to sensor node failure, future work will be dedicated to incorpo-
rating other sources of failures such as transmission loss in the optimal design
of heartbeat transmission. Finally, we aim to employ reinforcement learning
to the Markov decision process of whether or not to transmit a heartbeat at
any given time step in order to maximise some notion of expected long-term
rewards related to the Bayes risk.

Appendix A.

Proof of (29):

P (R̄l+1:l+s|Fl+s, F̄l) =
1

1−
∏s

k=1 βl+k

s∑
i=1

γi−1(1− βl+i)
i−1∏
j=1

βl+j

Proof. First, we prove by mathematical induction that:

P (R̄l+1:l+s|Fl+s, F̄l) =
s∑
i=1

γi−1P (F̄l+i−1, Fl+i|Fl+s, F̄l). (A.1)

1. Base case:
Suppose s = 1, then

P (R̄l+1:l+s|Fl+s, F̄l) = P (R̄l+1|Fl+1, F̄l) (A.2)

Given that the node has failed by time n = l+ 1, then no message will
be received at time n = l + 1. Thus, from (A.2),

P (R̄l+1|Fl+1, F̄l) = 1. (A.3)
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Also, the right-hand side of (A.1) evaluates to:

P (R̄l+1|Fl+1, F̄l) =
1∑
i=1

γi−1P (F̄l+i−1, Fl+i|Fl+1, F̄l) = P (F̄l, Fl+1|Fl+1, F̄l) = 1. (A.4)

2. Induction:
Suppose (A.1) holds true for s = q (where q ≥ 1 is a natural number)
as:

P (R̄l+1:l+q|Fl+q, F̄l) =

q∑
i=1

γi−1P (F̄l+i−1, Fl+i|Fl+q, F̄l), (A.5)

then for s = q + 1, we show that:

P (R̄l+1:l+q+1|Fl+q+1, F̄l) =

q+1∑
i=1

γi−1P (F̄l+i−1, Fl+i|Fl+q+1, F̄l). (A.6)

Given that the node has failed by time n = l + q + 1, then it is either
that the node has failed by n = l+ q or it fails after that. This implies
that:

P (R̄l+1:l+q+1|Fl+q+1, F̄l) =

P (R̄l+1:l+q+1|Fl+q+1, F̄l, Fl+q)P (Fl+q|Fl+q+1, F̄l)

+ P (R̄l+1:l+q+1|Fl+q+1, F̄l, F̄l+q)P (F̄l+q|Fl+q+1, F̄l). (A.7)

(a) Suppose the node has failed by time n = l + q, then it fails at
n = l+ q+ 1 also, since nodes never recover once they have failed;
thus,

P (R̄l+1:l+q+1|Fl+q+1, F̄l, Fl+q) = P (R̄l+1:l+q+1|F̄l, Fl+q). (A.8)

Moreover, if the node has failed by time n = l+q, then no message
should be received at time n = l + q + 1 with a probability of 1.
Therefore,

P (R̄l+1:l+q+1|F̄l, Fl+q) = P (R̄l+1:l+q|F̄l, Fl+q). (A.9)
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(b) Suppose the node has not failed by time n = l+q, then no message
will be received at every time step from n = l + 1 to n = l + q
each with a probability equal to the transmission suppression rate
γ, while no message should be received at time n = l+ q+ 1 with
a probability equal to 1 since the node fails by time n = l+ q+ 1.
Thus,

P (R̄l+1:l+q+1|Fl+q+1, F̄l, F̄l+q) = γq (A.10)

Substituting (A.8), (A.9) and (A.10) into (A.7), we obtain:

P (R̄l+1:l+q+1|Fl+q+1, F̄l) =

P (R̄l+1:l+q|Fl+q, F̄l)P (Fl+q|Fl+q+1, F̄l) + γqP (F̄l+q|Fl+q+1, F̄l). (A.11)

Furthermore, substituting (A.5) into (A.11) yields:

P (R̄l+1:l+q+1|Fl+q+1, F̄l) = γqP (F̄l+q|Fl+q+1, F̄l)

+

q∑
i=1

γi−1P (F̄l+i−1, Fl+i|Fl+q, F̄l)P (Fl+q|Fl+q+1, F̄l). (A.12)

Notice that, for random variables A,B, p(A|B) = p(A,B|B), therefore,

P (F̄l+q|Fl+q+1, F̄l) = P (F̄l+q, Fl+q+1|Fl+q+1, F̄l). (A.13)

Again, given that a node has failed at n = l + q, then it fails at n =
l + q + 1, since nodes never recover once they have failed; thus:

P (F̄l+i−1, Fl+i|Fl+q, F̄l) = P (F̄l+i−1, Fl+i|Fl+q, Fl+q+1, F̄l) (A.14)

Now, using the chain rule of probability, observe that:

P (F̄l+i−1, Fl+i|Fl+q, Fl+q+1, F̄l)P (Fl+q|Fl+q+1, F̄l) =

P (F̄l+i−1, Fl+i, Fl+q|Fl+q+1, F̄l) (A.15)

For all i ∈ {1, .., q},

P (F̄l+i−1, Fl+i, Fl+q|Fl+q+1, F̄l) = P (F̄l+i−1, Fl+i|Fl+q+1, F̄l) (A.16)

Substituting (A.13), (A.14), (A.15) and (A.16) into (A.12), we obtain:

P (R̄l+1:l+q+1|Fl+q+1, F̄l) = γqP (F̄l+q, Fl+q+1|Fl+q+1, F̄l)

+

q∑
i=1

γi−1P (F̄l+i−1, Fl+i|Fl+q+1, F̄l), (A.17)
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which can be simplified as:

P (R̄l+1:l+q+1|Fl+q+1, F̄l) =

q+1∑
i=1

γi−1P (F̄l+i−1, Fl+i|Fl+q+1, F̄l), (A.18)

which is exactly as given by (A.6).

3. Hence, (A.1) is true for all s ≥ 1.

The relation in (A.1) can now be expanded as:

P (R̄l+1:l+s|Fl+s, F̄l) =
s∑
i=1

γi−1P (F̄l+i−1|Fl+i, Fl+s, F̄l)P (Fl+i|Fl+s, F̄l)

(A.19)

Note that:

P (Fl+i|F̄l) = P (Fl+i|F̄l, Fl+s)P (Fl+s|F̄l) + P (Fl+i|F̄l, F̄l+s)P (F̄l+s|F̄l)
(A.20)

Given that a node has not failed at time n = l+ s, then the probability that
it has failed at time n = l + i is zero, for all i ∈ {1, ..., s}. Thus,

P (Fl+i|F̄l, Fl+s) =
P (Fl+i|F̄l)
P (Fl+s|F̄l)

(A.21)

Furthermore,

P (F̄l+i−1|Fl+i, F̄l) = P (F̄l+i−1|Fl+i, F̄l, Fl+s)P (Fl+s|Fl+i, F̄l)+
P (F̄l+i−1|Fl+i, F̄l, F̄l+s)P (F̄l+s|Fl+i, F̄l) (A.22)

Again, given that a node has failed at time n = l + i, then the probability
that it has not failed at time n = l + s is zero, for all i ∈ {1, ..., s}, since
nodes never recover once they have failed. Thus,

P (F̄l+i−1|Fl+i, F̄l, Fl+s) = P (F̄l+i−1|Fl+i, F̄l) (A.23)

Moreover, observe that:

P (F̄l+i−1|F̄l) = P (F̄l+i−1|F̄l, Fl+i)P (Fl+i|F̄l) + P (F̄l+i−1|F̄l, F̄l+i)P (F̄l+i|F̄l).
(A.24)
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Given that a node has not failed at n = l + i, then the probability that it
has not failed at time n = l + i− 1 is one. Therefore,

P (F̄l+i−1|F̄l, Fl+i) =
P (F̄l+i−1|F̄l)− P (F̄l+i|F̄l)

P (Fl+i|F̄l)
. (A.25)

By substituting (A.21), (A.23) and (A.25) into (A.19), it becomes:

P (R̄l+1:l+s|Fl+s, F̄l) =
s∑
i=1

γi−1P (F̄l+i−1|F̄l)− P (F̄l+i|F̄l)
P (Fl+i|F̄l)

P (Fl+i|F̄l)
P (Fl+s|F̄l)

(A.26)

which can be simplified to:

P (R̄l+1:l+s|Fl+s, F̄l) =
1

P (Fl+s|F̄l)

s∑
i=1

γi−1
[
P (F̄l+i−1|F̄l)− P (F̄l+i|F̄l)

]
(A.27)

Recall from (27) that:

P (F̄l+s|F̄l) =
s∏
i=1

βl+i,

Therefore,

P (R̄l+1:l+s|Fl+s, F̄l) =
1

1−
∏s

k=1 βl+k

s∑
i=1

γi−1

[ i−1∏
j=1

βl+j −
i∏

j=1

βl+j

]
(A.28)

which gives,

P (R̄l+1:l+s|Fl+s, F̄l) =
1

1−
∏s

k=1 βl+k

s∑
i=1

γi−1(1− βl+i)
i−1∏
j=1

βl+j (A.29)

References

Abbasi, A. A., Akkaya, K., & Younis, M. (2007). A distributed connectivity
restoration algorithm in wireless sensor and actor networks. In Local com-
puter networks, 2007. LCN 2007. 32nd IEEE conference on (pp. 496–503).
IEEE.

49



Aderohunmu, F. A., Paci, G., Brunelli, D., Deng, J. D., Benini, L., & Purvis,
M. (2013). An application-specific forecasting algorithm for extending wsn
lifetime. In Distributed Computing in Sensor Systems (DCOSS), 2013
IEEE International Conference on (pp. 374–381). IEEE.

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wire-
less sensor networks: a survey. Computer networks , 38 , 393–422.

Azharuddin, M., Kuila, P., & Jana, P. K. (2015). Energy efficient fault
tolerant clustering and routing algorithms for wireless sensor networks.
Computers & Electrical Engineering , 41 , 177–190.

Bahrepour, M., Meratnia, N., Poel, M., Taghikhaki, Z., & Havinga, P. J.
(2010). Distributed event detection in wireless sensor networks for dis-
aster management. In Intelligent Networking and Collaborative Systems
(INCOS), 2010 2nd International Conference on (pp. 507–512). IEEE.

Bakhtiar, Q. A., Makki, K., & Pissinou, N. (2012). Data reduction in low
powered wireless sensor networks. In Wireless Sensor Networks-Technology
and Applications . InTech.
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