601 research outputs found

    Performance Evaluation of FMOSSIM, a Concurrent Switch-Level Fault Simulator

    Get PDF
    This paper presents measurements obtained while performing fault simulations of MOS circuits modeled at the switch level. In this model the transistor structure of the circuit is represented explicitly as a network of charge storage nodes connected by bidirectional transistor switches. Since the logic model of the simulator closely matches the actual structure of MOS circuits, such faults as stuck-open and closed transistors as well as short and open-circuited wires can be simulated. By using concurrent simulation techniques, we obtain a performance level comparable to fault simulators using logic gate models. Our measurements indicate that fault simulation times grow as the product of the circuit size and number of patterns, assuming the number of faults to be simulated is proportional to the circuit size. However, fault simulation times depend strongly on the rate at which the test patterns detect the faults

    Research in the effective implementation of guidance computers with large scale arrays Interim report

    Get PDF
    Functional logic character implementation in breadboard design of NASA modular compute

    Fault Coverage Requirement in Production Testing of LSI Circuits

    Get PDF
    A technique is described for evaluating the effectiveness of production tests for large scale integrated (LSI) circuit chips. It is based on a model for the distribution of faults on a chip. The model requires two parameters, the average number (n0) of faults on a faulty chip and the yield (y) of good chips. It is assumed that the yield either is known or can be calculated from the available formulas. The other parameter, n0, is determined from an experimental procedure. Once the model is fully characterized, it allows calculation of the field reject rate as a function of the fault coverage. The technique implicitly takes into account such variables as fault simulator characteristics, the feature size, and the manufacturing environment. An actual LSI circuit is used as an example

    Fault Coverage Requirement in Production Testing of LSI Circuits

    Get PDF
    A technique is described for evaluating the effectiveness of production tests for large scale integrated (LSI) circuit chips. It is based on a model for the distribution of faults on a chip. The model requires two parameters, the average number (n0) of faults on a faulty chip and the yield (y) of good chips. It is assumed that the yield either is known or can be calculated from the available formulas. The other parameter, n0, is determined from an experimental procedure. Once the model is fully characterized, it allows calculation of the field reject rate as a function of the fault coverage. The technique implicitly takes into account such variables as fault simulator characteristics, the feature size, and the manufacturing environment. An actual LSI circuit is used as an example

    Product assurance technology for custom LSI/VLSI electronics

    Get PDF
    The technology for obtaining custom integrated circuits from CMOS-bulk silicon foundries using a universal set of layout rules is presented. The technical efforts were guided by the requirement to develop a 3 micron CMOS test chip for the Combined Release and Radiation Effects Satellite (CRRES). This chip contains both analog and digital circuits. The development employed all the elements required to obtain custom circuits from silicon foundries, including circuit design, foundry interfacing, circuit test, and circuit qualification

    Microprocessor Seminar, phase 2

    Get PDF
    Workshop sessions and papers were devoted to various aspects of microprocessor and large scale integrated circuit technology. Presentations were made on advanced LSI developments for high reliability military and NASA applications. Microprocessor testing techniques were discussed, and test data were presented. High reliability procurement specifications were also discussed

    Banning design automation software implementation

    Get PDF
    The research is reported for developing a system of computer programs to aid engineering in the design, fabrication, and testing of large scale integrated circuits, hybrid circuits, and printed circuit boards. The automatic layout programs, analysis programs, and interface programs are discussed

    The large scale microelectronics Computer-Aided Design and Test (CADAT) system

    Get PDF
    The CADAT system consists of a number of computer programs written in FORTRAN that provide the capability to simulate, lay out, analyze, and create the artwork for large scale microelectronics. The function of each software component of the system is described with references to specific documentation for each software component

    An efficient graph representation for arithmetic circuit verification

    Full text link
    • …
    corecore