330 research outputs found

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    Source-synchronous I/O Links using Adaptive Interface Training for High Bandwidth Applications

    Get PDF
    Mobility is the key to the global business which requires people to be always connected to a central server. With the exponential increase in smart phones, tablets, laptops, mobile traffic will soon reach in the range of Exabytes per month by 2018. Applications like video streaming, on-demand-video, online gaming, social media applications will further increase the traffic load. Future application scenarios, such as Smart Cities, Industry 4.0, Machine-to-Machine (M2M) communications bring the concepts of Internet of Things (IoT) which requires high-speed low power communication infrastructures. Scientific applications, such as space exploration, oil exploration also require computing speed in the range of Exaflops/s by 2018 which means TB/s bandwidth at each memory node. To achieve such bandwidth, Input/Output (I/O) link speed between two devices needs to be increased to GB/s. The data at high speed between devices can be transferred serially using complex Clock-Data-Recovery (CDR) I/O links or parallely using simple source-synchronous I/O links. Even though CDR is more efficient than the source-synchronous method for single I/O link, but to achieve TB/s bandwidth from a single device, additional I/O links will be required and the source-synchronous method will be more advantageous in terms of area and power requirements as additional I/O links do not require extra hardware resources. At high speed, there are several non-idealities (Supply noise, crosstalk, Inter- Symbol-Interference (ISI), etc.) which create unwanted skew problem among parallel source-synchronous I/O links. To solve these problems, adaptive trainings are used in time domain to synchronize parallel source-synchronous I/O links irrespective of these non-idealities. In this thesis, two novel adaptive training architectures for source-synchronous I/O links are discussed which require significantly less silicon area and power in comparison to state-of-the-art architectures. First novel adaptive architecture is based on the unit delay concept to synchronize two parallel clocks by adjusting the phase of one clock in only one direction. Second novel adaptive architecture concept consists of Phase Interpolator (PI)-based Phase Locked Loop (PLL) which can adjust the phase in both direction and achieve faster synchronization at the expense of added complexity. With an increase in parallel I/O links, clock skew which is generated by the improper clock tree, also affects the timing margin. Incorrect duty cycle further reduces the timing margin mainly in Double Data Rate (DDR) systems which are generally used to increase the bandwidth of a high-speed communication system. To solve clock skew and duty cycle problems, a novel clock tree buffering algorithm and a novel duty cycle corrector are described which further reduce the power consumption of a source-synchronous system

    ํŽ„์Šค ๊ธฐ๋ฐ˜ ํ”ผ๋“œ ํฌ์›Œ๋“œ ์ดํ€„๋ผ์ด์ €๋ฅผ ๊ฐ–์ถ˜ ๊ณ ์šฉ๋Ÿ‰ DRAM์„ ์œ„ํ•œ ์ปจํŠธ๋กค๋Ÿฌ PHY ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ๊น€์ˆ˜ํ™˜.A controller PHY for managed DRAM solution, which is a new memory structure to maximize capacity while minimizing refresh power, is presented. Inter-symbol interference is critical in such a high-capacity DRAM interface in which many DRAM chips share a command/address (C/A) channel. A pulse-based feed-forward equalizer (PB-FFE) is introduced to reduce ISI on a C/A channel. The controller PHY supports all the training sequences specified in the DDR4 standard. A glitch-free DCDL is also adopted to perform link training efficiently and to reduce training time. The DQ transmitter adopts quarter-rate architecture to reduce output latency. For the quarter-rate transmitters in DQ, we propose a quadrature error corrector (QEC), in which clock signal phase errors are corrected using two replicas of the 4:1 serializer of the output stage. Pulse shrinking is used to compare and equalize the outputs of these two replica serializers. A controller PHY was fabricated in 55nm CMOS. The PB-FFE increases the timing margin from 0.23UI to 0.29UI at 1067Mbps. At 2133Mbps, the read timing and voltage margins are 0.53UI and 211mV after read training, and the write margins are 0.72UI and 230mV after write training. To validate the QEC effectiveness, a prototype quarter-rate transmitter, including the QEC, was fabricated to another chip in 65nm CMOS. Adopting our QEC, the experimental results show that the output phase errors of the transmitter are reduced to a residual error of 0.8ps, and the output eye width and height are improved by 84% and 61%, respectively, at a data-rate of 12.8Gbps.๋ณธ ์—ฐ๊ตฌ์—์„œ ์šฉ๋Ÿ‰์„ ์ตœ๋Œ€ํ™”ํ•˜๋ฉด์„œ๋„ ๋ฆฌํ”„๋ ˆ์‹œ ์ „๋ ฅ์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฉ”๋ชจ๋ฆฌ ๊ตฌ์กฐ์ธ ๊ด€๋ฆฌํ˜• DRAM ์†”๋ฃจ์…˜์„ ์œ„ํ•œ ์ปจํŠธ๋กค๋Ÿฌ PHY๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด์™€ ๊ฐ™์€ ๊ณ ์šฉ๋Ÿ‰ DRAM ์ธํ„ฐํŽ˜์ด์Šค์—์„œ๋Š” ๋งŽ์€ DRAM ์นฉ์ด ๋ช…๋ น / ์ฃผ์†Œ (C/A) ์ฑ„๋„์„ ๊ณต์œ ํ•˜๊ณ  ์žˆ์–ด์„œ ์‹ฌ๋ณผ ๊ฐ„ ๊ฐ„์„ญ์ด ๋ฐœ์ƒํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ C/A ์ฑ„๋„์—์„œ์˜ ์‹ฌ๋ณผ ๊ฐ„ ๊ฐ„์„ญ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ํŽ„์Šค ๊ธฐ๋ฐ˜ ํ”ผ๋“œ ํฌ์›Œ๋“œ ์ดํ€„๋ผ์ด์ € (PB-FFE)๋ฅผ ์ฑ„ํƒํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ์˜ ์ปจํŠธ๋กค๋Ÿฌ PHY๋Š” DDR4 ํ‘œ์ค€์— ์ง€์ •๋œ ๋ชจ๋“  ํŠธ๋ ˆ์ด๋‹ ์‹œํ€€์Šค๋ฅผ ์ง€์›ํ•œ๋‹ค. ๋งํฌ ํŠธ๋ ˆ์ด๋‹์„ ํšจ์œจ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๊ณ  ํŠธ๋ ˆ์ด๋‹ ์‹œ๊ฐ„์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ๊ธ€๋ฆฌ์น˜๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š” ๋””์ง€ํ„ธ ์ œ์–ด ์ง€์—ฐ ๋ผ์ธ (DCDL)์„ ์ฑ„ํƒํ•˜์˜€๋‹ค. ์ปจํŠธ๋กค๋Ÿฌ PHY์˜ DQ ์†ก์‹ ๊ธฐ๋Š” ์ถœ๋ ฅ ๋Œ€๊ธฐ ์‹œ๊ฐ„์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ์ฟผํ„ฐ ๋ ˆ์ดํŠธ ๊ตฌ์กฐ๋ฅผ ์ฑ„ํƒํ•˜์˜€๋‹ค. ์ฟผํ„ฐ ๋ ˆ์ดํŠธ ์†ก์‹ ๊ธฐ์˜ ๊ฒฝ์šฐ์—๋Š” ์ง๊ต ํด๋Ÿญ ๊ฐ„ ์œ„์ƒ ์˜ค๋ฅ˜๊ฐ€ ์ถœ๋ ฅ ์‹ ํ˜ธ์˜ ๋ฌด๊ฒฐ์„ฑ์— ์˜ํ–ฅ์„ ์ฃผ๊ฒŒ ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์˜ํ–ฅ์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ถœ๋ ฅ ๋‹จ์˜ 4 : 1 ์ง๋ ฌ ๋ณ€ํ™˜๊ธฐ์˜ ๋‘ ๋ณต์ œ๋ณธ์„ ์‚ฌ์šฉํ•˜์—ฌ ํด๋ก ์‹ ํ˜ธ ์œ„์ƒ ์˜ค๋ฅ˜๋ฅผ ์ˆ˜์ •ํ•˜๋Š” QEC (Quadrature Error Corrector)๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณต์ œ๋œ 2๊ฐœ์˜ ์ง๋ ฌ ๋ณ€ํ™˜๊ธฐ์˜ ์ถœ๋ ฅ์„ ๋น„๊ตํ•˜๊ณ  ๊ท ๋“ฑํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํŽ„์Šค ์ˆ˜์ถ• ์ง€์—ฐ ๋ผ์ธ์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์ปจํŠธ๋กค๋Ÿฌ PHY๋Š” 55nm CMOS ๊ณต์ •์œผ๋กœ ์ œ์กฐ๋˜์—ˆ๋‹ค. PB-FFE๋Š” 1067Mbps์—์„œ C/A ์ฑ„๋„ ํƒ€์ด๋ฐ ๋งˆ์ง„์„ 0.23UI์—์„œ 0.29UI๋กœ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ์ฝ๊ธฐ ํŠธ๋ ˆ์ด๋‹ ํ›„ ์ฝ๊ธฐ ํƒ€์ด๋ฐ ๋ฐ ์ „์•• ๋งˆ์ง„์€ 2133Mbps์—์„œ 0.53UI ๋ฐ 211mV์ด๊ณ , ์“ฐ๊ธฐ ํŠธ๋ ˆ์ด๋‹ ํ›„ ์“ฐ๊ธฐ ๋งˆ์ง„์€ 0.72UI ๋ฐ 230mV์ด๋‹ค. QEC์˜ ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด QEC๋ฅผ ํฌํ•จํ•œ ํ”„๋กœํ†  ํƒ€์ž… ์ฟผํ„ฐ ๋ ˆ์ดํŠธ ์†ก์‹ ๊ธฐ๋ฅผ 65nm CMOS์˜ ๋‹ค๋ฅธ ์นฉ์œผ๋กœ ์ œ์ž‘ํ•˜์˜€๋‹ค. QEC๋ฅผ ์ ์šฉํ•œ ์‹คํ—˜ ๊ฒฐ๊ณผ, ์†ก์‹ ๊ธฐ์˜ ์ถœ๋ ฅ ์œ„์ƒ ์˜ค๋ฅ˜๊ฐ€ 0.8ps์˜ ์ž”๋ฅ˜ ์˜ค๋ฅ˜๋กœ ๊ฐ์†Œํ•˜๊ณ , ์ถœ๋ ฅ ๋ฐ์ดํ„ฐ ๋ˆˆ์˜ ํญ๊ณผ ๋†’์ด๊ฐ€ 12.8Gbps์˜ ๋ฐ์ดํ„ฐ ์†๋„์—์„œ ๊ฐ๊ฐ 84 %์™€ 61 % ๊ฐœ์„ ๋˜์—ˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.1.1 HEAVY LOAD C/A CHANNEL 5 1.1.2 QUARTER-RATE ARCHITECTURE IN DQ TRANSMITTER 7 1.1.3 SUMMARY 8 1.2 THESIS ORGANIZATION 10 CHAPTER 2 ARCHITECTURE 11 2.1 MDS DIMM STRUCTURE 11 2.2 MDS CONTROLLER 15 2.3 MDS CONTROLLER PHY 17 2.3.1 INITIALIZATION SEQUENCE 20 2.3.2 LINK TRAINING FINITE-STATE MACHINE 23 2.3.3 POWER DOWN MODE 28 CHAPTER 3 PULSE-BASED FEED-FORWARD EQUALIZER 29 3.1 COMMAND/ADDRESS CHANNEL 29 3.2 COMMAND/ADDRESS TRANSMITTER 33 3.3 PULSE-BASED FEED-FORWARD EQUALIZER 35 CHAPTER 4 CIRCUIT IMPLEMENTATION 39 4.1 BUILDING BLOCKS 39 4.1.1 ALL-DIGITAL PHASE-LOCKED LOOP (ADPLL) 39 4.1.2 ALL-DIGITAL DELAY-LOCKED LOOP (ADDLL) 44 4.1.3 GLITCH-FREE DCDL CONTROL 47 4.1.4 DUTY-CYCLE CORRECTOR (DCC) 50 4.1.5 DQ/DQS TRANSMITTER 52 4.1.6 DQ/DQS RECEIVER 54 4.1.7 ZQ CALIBRATION 56 4.2 MODELING AND VERIFICATION OF LINK TRAINING 59 4.3 BUILT-IN SELF-TEST CIRCUITS 66 CHAPTER 5 QUADRATURE ERROR CORRECTOR USING REPLICA SERIALIZERS AND PULSE-SHRINKING DELAY LINES 69 5.1 PHASE CORRECTION USING REPLICA SERIALIZERS AND PULSE-SHRINKING UNITS 69 5.2 OVERALL QEC ARCHITECTURE AND ITS OPERATION 71 5.3 FINE DELAY UNIT IN THE PSDL 76 CHAPTER 6 EXPERIMENTAL RESULTS 78 6.1 CONTROLLER PHY 78 6.2 PROTOTYPE QEC 88 CHAPTER 7 CONCLUSION 94 BIBLIOGRAPHY 96Docto

    An asynchronous low-power 80C51 microcontroller

    Get PDF

    Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges

    Get PDF
    Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%

    Radioactive Source Calibration Technique for the CMS Hadron Calorimeter

    Get PDF
    Abstract Relative calibration of the scintillator tiles used in the hadronic calorimeter for the Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider (LHC) is established and maintained using a radioactive source technique. A movable source can be positioned remotely to illuminate each scintillator tile individually, and the resulting photo-detector current is measured to provide the relative calibration. The unique measurement technique described here makes use of the normal high-speed data acquisition system required for signal digitization at the 40 MHz collider frequency. The data paths for collider measurements and source measurements are then identical, and systematic uncertainties associated with having different signal paths are avoided. In this high-speed mode, the source signal is observed as a Poisson photo-electron distribution with a mean that is smaller than the width of the electronics noise (pedestal) distribution. We report demonstration of the technique using prototype electronics for the complete readout chain and show the typical response observed with a 144 channel test beam system. The electronics noise has a root-mean-square (r.m.s.) of 1.6 least counts, and a 1-mCi source produces a shift of the mean value of 0.1 least counts. Because of the speed of the data acquisition system, this shift can be measured to a statistical precision better than a fraction of a percent on a millisecond time scale. The result is reproducible to better than 2% over a time scale of one month

    Development and application of a universal distributed data acquisition system for orbit feedback applications on electron and hadron synchrotrons

    Get PDF
    To improve beam quality, the DELTA storage ring (TU Dortmund) conducted a number of orbit-feedback developments in the past, including a successful fast local orbit feedback project. To enable hadron accelerators to benefit from this knowledge, a collaboration was formed between DELTA, the storage ring COSY (Forschungszentrum Jรผlich) and the SIS18 accelerator (GSI Helmholtzzentrum fรผr Schwerionenforschung GmbH, Darmstadt). The goals were the development of a global fast orbit feedback system for the DELTA storage ring, the development of a local feedback for the COSY electron beam cooler section and a global feedback for the SIS18 accelerator. This thesis describes the development and application of a universal position measurement system, usable for electron and hadron accelerators and targeted to fast orbit feedback applications, in the framework of this collaboration. The developed distributed system has input capabilities for electron or hadron beam position monitors and output options for feedback tasks and different control system connections. It is connected by a versatile communication structure. The developed common hardware platform is re-programmable and therefore usable as an input device as well as for feedback- or other measurement tasks. It delivers data at a constant data rate of 10 kHz, resulting in a target feedback-rate of up to 1 kHz. It was used to evaluate beam position data globally at DELTA, locally at SIS18 and locally at the COSY beam cooler section. At DELTA, the system forms the basis for a future fast orbit feedback system, which is expected to significantly increase the beam quality for synchrotron radiation based research as well as ongoing electron-beam/laser interaction experiments. The system can also be used as a high precision data source for the slow orbit feedback system in operation. The COSY measurements show the possibility of a local fast orbit feedback system at the storage ring's electron cooler. The data analysis of the SIS18 accelerator suggests the utilization of a feedback system to improve beam quality during ramping. The system's structure is expected to be utilized in a future SIS100 accelerator feedback

    Digital Controlled Multi-phase Buck Converter with Accurate Voltage and Current Control

    Get PDF
    abstract: A 4-phase, quasi-current-mode hysteretic buck converter with digital frequency synchronization, online comparator offset-calibration and digital current sharing control is presented. The switching frequency of the hysteretic converter is digitally synchronized to the input clock reference with less than ยฑ1.5% error in the switching frequency range of 3-9.5MHz. The online offset calibration cancels the input-referred offset of the hysteretic comparator and enables ยฑ1.1% voltage regulation accuracy. Maximum current-sharing error of ยฑ3.6% is achieved by a duty-cycle-calibrated delay line based PWM generator, without affecting the phase synchronization timing sequence. In light load conditions, individual converter phases can be disabled, and the final stage power converter output stage is segmented for high efficiency. The DC-DC converter achieves 93% peak efficiency for Vi = 2V and Vo = 1.6V.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • โ€ฆ
    corecore