EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

An asynchronous low-power 80C51 microcontroller

Citation for published version (APA):

Gageldonk, van, J. S. H. (1998). An asynchronous low-power 80C51 microcontroller. [Phd Thesis 1 (Research
TU/e / Graduation TU/e), Frits Philips Inst. Quality Management]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR515168

DOI:
10.6100/IR515168

Document status and date:
Published: 01/01/1998

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.6100/IR515168
https://doi.org/10.6100/IR515168
https://research.tue.nl/en/publications/59f42fa0-6236-46fc-ad44-17ef91965ebb

An Asynchronous Low-Power
80C51 Microcontroller

Hans van Gageldonk

An Asynchronous Low-Power
80CS51 Microcontroller

Hans van Gageldonk

»-

Copyright © 1998 by Hans van Gageldonk, Eindhoven, The Netherlands.

All rights reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior permission of the author.

Cover: Layout of an asynchronous low-power 80C51 microcontroller.

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG
van Gageldonk, Johan Sebastiaan Henri.
An Asynchronous Low-Power 80C51 Microcontroller / Hans van Gageldonk. -

Proefschrift Technische Universiteit Eindhoven. -
Met lit. opg. - Met samenvatting in het Nederlands.

ISBN 90-74445-42-X
Trefw.: asynchronous circuits, microcontrollers, low-power, IC-design, VLSI.

An Asynchronous Low-Power
80C51 Microcontroller

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR
AAN DE TECHNISCHE UNIVERSITEIT EINDHOVEN,
OP GEZAG VAN DE RECTOR MAGNIFICUS,
PROF. DR. M. REM,

VOOR EEN COMMISSIE AANGEWEZEN
DOOR HET COLLEGE VOOR PROMOTIES
IN HET OPENBAAR TE VERDEDIGEN
OP DINSDAG 1 SEPTEMBER 1998 oM 16.00 UUR

DOOR

JOHAN SEBASTIAAN HENRI VAN GAGELDONK

GEBOREN TE HEERLEN

Dit proefschrift is goedgekeurd door de promotoren:
prof. dr. M. Rem
en

prof. dr. ir. C. H. van Berkel

.
The work described in this thesis has been carried out at Philips Research Lab-
oratories Eindhoven under the auspices of the research school IPA (Institute for
Programming research and Algorithmics).

Contents

Acknowledgements

1 Introduction

11 Tangram v v oo e
1.2 VLSI-programming
1.3 LOW-POWELD . o v ¢ s 5w ¢ s smw s 5 56 5 s B9 5 ¢ mm s 8 55 s
1.4 Metrics o oo e e
1.5 Challenges. o e
1.6 Overview and contributions

2 VLSI-Programming

2.1 Handshake circuits L
22 TheMoveMachine
2.3 Aninitial VLSI-program
2.4 Implementationissues
25 Ar€a e
26 BNy . . o . 2n i v wom s mme v b e A § v m i ¢ e w s § s
2.7 Executiontime
2.8 Review

3 The 80C51 Microcontroller

10
11
13
14

17
18
23
25
28
29
33
35
36

37

ii

Contents

3.1 Characterization L.
3.2 Synchronous architecture . . . =« + o6 + s s 5 5 5 55 »
33 CISC-nature of 80C51
34 Poweranalysis
3.5 Low-power opportunities

An Asynchronous 80C51 Microcontroller Architecture

4.1 Partition of the 80C51 microcontroller
42 CommUNICation oo
4.3 Synchronization: compatibility
44 Modulardesign L

An Asynchronous 80C51 CPU

5.1 CPU and instructionset
52 Dotapath ; o 55 ¢ s w5 5 s i s s w5 vE a8 A s
53 Control
54 Local optimizations o « : o o5 ¢ som s s 56 v 5 w0 5 5 s
5.5 Exception-handling
585 BoVIOW , suvsve:isnmssmecnsnssms s ns

Asynchronous 80C51 Peripherals

6.1 Characterization
6.2 Implementation
6.3 Casestudy: the UART
Gl BEVIEW oo v s n o s amas s 645 amas a6 §5 58

Low-Power Implementation

7.1 Low-power contributions

7.2 Demonstratorchip

Contents 1ii

73 Evaluation 134
74 Review e 139
8 Concluding Remarks 141
8.1 Other processor architectures . » « + o o« v+ v w5 s 28 ¢ 5 v 5 « o 142
8.2 Typically asynchronous? 147
8.3 Remainingissues 149
A Testability 151
Al Backoround o . v s s s vaws rur s i meisusr w58 151
Al APPIOECH « 5 w5 s s mm s s % 65 s wE Iy RS ¥ B E L F BE G § W 153
A.3 Example: atest forthe UART 155
A4 Review L 156
B 80CS51 Instruction Set 159
Bibliography : 163
Index 168
Summary 171
Samenvatting 175
Curriculum Vitae 179

IPA 181

v

Contents

Acknowledgements

Opver the last four years I had the opportunity to work in an excellent and inspiring
environment, which eventually resulted in this thesis. I experienced this environ-
ment at Philips Research in the first place, as I spent most of my time as a member
of the Tangram team. I would like to thank Kees van Berkel, the leader of this team,
for teaching me that I should always try to improve the quality and presentation of
my work. Together with Joep Kessels, Ad Peeters, Marly Roncken, Frits Schalij,
and Rik van de Wiel, the Tangram team has been a very exciting team to work in.
Eric van Utteren and Cees Niessen are gratefully acknowledged for giving me the
opportunity to work in their group.

I was in the fortunate position to have another inspiring environment as well: the
Paralielism group at Eindhoven University. I am especially grateful to Martin Rem
for always being a source of inspiration and enthusiasm. Also the members of
the VLSI-Club are gratefully acknowledged for providing a critical yet pleasant
forum. Especially the comments of Peter Hilbers, Johan Lukkien, Tom Verhoeff,
and Rudolf Mak helped me to improve the presentation of this thesis.

Steve Furber and Jochen Jess read the first draft of this thesis as members of the
core committee, for which I would like to thank them.

The asynchronous 80C51 microcontroller that is described in this thesis became
the result of a joint project with our colleagues from Philips Semiconductors in
Ziirich. I would specially like to thank Daniel Gloor, Daniel Baumann, Gerhard
Stegmann, and Andreas Mettler for the lively discussions. Paul Gradenwitz and
Thomas Meyer are gratefully acknowledged for making the layout that appears on
the cover of this thesis.

I would like to thank Peter Klapproth, Pierre de Greef, and Eric Seelen for provid-
ing the data of the synchronous 80C51 that we compare the asynchronous version
with. Furthermore, Victor Zieren and Harry van Herten are gratefully acknowl-
edged for providing the photon emission pictures in Chapter 7 of this thesis.

vi Acknowledgements

ESPRIT Working Group 21949 (ACiD-WG) is gratefully acknowledged for fund-
ing my visits to workshops and conferences.

I am also very grateful to the fellow-PhD students both at Philips and at Eindhoven
University: Ramon, Rik, Bart, Robert, Bob, Paul, and John: many thanks!

The support of my parents, family, and friends has always been very important
to me, both in enjoying my work and my time off, for which I am very grateful
to them. Finally, and most importantly, I would like to thank Mariken for all her
support and love.

Chapter 1

Introduction

The power consumption of consumer-electronic products has become increasingly
important over the last decade. Especially for products that rely on a limited source
of power, for example battery-powered products, it is essential to keep the power
dissipation to a minimum. This not only results in a longer battery-life but makes
it also possible to use cheaper and smaller batteries, resulting in more appealing
products.

Over recent years, increasingly many consumer products have been designed for
portable use, and are hence battery powered. Examples of such products are cel-
lular phones, pagers, personal digital assistants, and notebook computers. In a
cellular phone, for example, the batteries run out after, say, 80 hours of standby
time. The phone contacts its base station a few times per second to check whether
a phone call has come in. This is not visible to the user who only notices the
batteries running empty.

In these products the power dissipated by the ICs is a substantial part of the total
power dissipation. Nowadays many chips are produced using CMOS IC-technology.
CMOS has the nice property that no power is dissipated when there is no switching
activity. Zooming in on digital ICs we see that much of the power (up to 50%) is
dissipated by the clock in the chip [21]. The clock is used to drive the operation
of the IC, and it determines the speed at which the circuit operates. In most 1Cs
nowadays the clock is global to all register elements of the chip. This implies that
the clock signal is distributed over the entire IC.

To reduce the power dissipated by the clock one alternative is to get rid of the
clock in the first place, and use distributed and selective steering of the registers in
the chip. One then speaks of an asynchronous as opposed to a synchronous (i.e.

2 Chapter 1. Introduction

clocked) IC.

Asynchronous circuits have for long been believed difficult to design, compared
to synchronous ICs. It is especially difficult to design these circuits at the gate-
level, where problems like timing of data validity and hazards arise. To solve these
problems, at Philips Research a high-level programming language, Tangram, was
defined; a compiler can translate a Tangram program in a syntax-directed fashion
into the netlist of an asynchronous circuit. This translation is done transparently,
and this makes it possible to reason about the circuit at the level of the Tangram
text. The approach of translating a high-level description into an asynchronous
circuit has also been described by Martin [23] and Brunvand [6].

This dissertation takes Tangram and the transparent compilation scheme as a start-
ing point, and investigates techniques to reason about the resulting circuits. One
can write various Tangram programs with the same functionality, but with different
sizes, performances, and power consumptions. The programming techniques are
explained using the 8-bit 80C51 microcontroller as example.

Parts of this work were reported during the 1998 Conference on Asynchronous De-
sign Methodologies [52]. At Eindhoven University of Technology, a bibliography
on asynchronous-related literature is maintained [28].

1.1 Tangram

Philips Research Eindhoven started in 1986 with the project “VLSI Programming
and Silicon Compilation”. In this project the design of a circuit is seen as a pro-
gramming activity. To this end a simple, yet expressive programming language
called Tangram was developed, together with a set of tools. Tangram is a language
like Pascal or C, but offers extra constructs to express communication, parallelism,
and reuse (sharing) of hardware. Tangram is based on Hoare’s Communicating Se-
quential Processes CSP [16]. The tools are built around a compiler that translates
a Tangram VLSI-program into the netlist of a circuit. This translation is done in
two steps with handshake circuits as the intermediate representation. Handshake
circuits were introduced by Van Berkel, and form the central part of the Tangram
system [41].

A handshake circuit is a connected graph of so-called handshake components.
Handshake components communicate and synchronize with each other using hand-
shake channels. The communication between handshake components is based on a
handshake (i.e. request-acknowledge) protocol. Each handshake component corre-

1.1. Tangram 3

Area | Tangram | | Performance
Breakdown Program analyzer
i
Tangram Timed Traces
Compiler Fault Coverage
. J/
Handshake Circuit Handshake Handshake Circuit
Analyzer Circuit) Simulator
Handshake Circuit
Compiler Test Vectors

Figure 1.1: Tangram toolbox. The boxes denote tools; the ovals denote representa-
tions.

sponds to a construct in the Tangram language. A handshake circuit is an abstract
view of a gate-level circuit. The next section introduces handshake circuits in more
detail.

Together with the compiler various tools were designed and implemented to assist
the VLSI-programmer in the design process. An overview of these tools is shown
in Figure 1.1. In this design flow the VLSI-programmer (circuit designer) starts
with a Tangram program which is first compiled to a handshake circuit. There are
two tools that give feedback on the handshake circuit corresponding to the Tangram
program:

Handshake Circuit Analyzer. This tool gives information about the area charac-

4 Chapter 1. Introduction

teristics of the circuit. Not only the numbers of transistors, cells, or gate-
equivalents can be obtained, but also a breakdown into various classes of
components: control, communication, logic, and memory. This helps the
designer to get insight into the area characteristics of the circuit, and what to
pay attention to when reducing the total area.

Handshake Circuit Simulator. This tool provides information about the func-
tionality but also about the timing and energy dissipation of the circuit. The
results can be shown to the designer using a viewer. The handshake circuit
simulator also gives information about the fault coverage of the circuit for a
given test. The designer generates the test vectors by hand, and the simulator
shows data on coverage, as well as those parts of the circuit that are not cov-
ered by the test vectors. This data is presented to the designer on the level of
the programming language. The automatic generation of test vectors for the
circuit is subject of further research and implementation.

With the information obtained from the handshake circuit analyzer and the simu-
lator, the VLSI-programmer can modify the Tangram program to obtain a “better”
circuit in some respect. For example, the designer may want to reduce the area,
improve the operating speed, or lower the power consumption. Compilation to a
handshake circuit and simulation at this level is fast and allows for rapid feedback
to the designer.

As the a next step in the design, VLSI-programmer compiles the handshake circuit
to a netlist. The netlist can be simulated using a gate-level simulator to obtain ac-
curate numbers on speed and energy dissipation. The translation of a handshake
circuit to a netlist, and simulation at the gate-level is more accurate and thus more
time-consuming than simulation at the handshake-circuit level. Therefore this de-
sign cycle is longer. When the VLSI-programmer is satisfied with the circuit, the
netlist can be used for layout (using commercially available tools, for example) and
sent to a silicon foundry for fabrication.

The compilation from a handshake circuit into a netlist is based on component-
by-component substitution of handshake components by pieces of circuitry. The
compilation also contains many optimizations at the gate-level, so-called peephole
optimizations, as described by Peeters in his thesis [30]. These optimizations re-
place combinations of circuit elements by simpler ones that are smaller, faster, and
more energy-efficient.

The translation step from a handshake circuit into a netlist can be done in various
ways, resulting in circuits with different characteristics. One classification of these
circuits is based on timing assumptions of the circuit implementation. One of the

1.1. Tangram 5

first Tangram compilers assumed only the isochronic fork: this is a branch in a wire
to inputs of gates of which it is assumed that the difference in delays between the
branches is less than the delays through the gates to which the fork is an input [23].
This results in so-called quasi delay insensitive (QDI) circuits. QDI implementa-
tion of handshake circuits implies that for the encoding of data, a delay-insensitive
encoding should be used [53]. This is satisfied by using double-rail encoding of
data, in which two wires are used for communicating one bit. Communicating a
“0” involves a signal on one wire, communicating a “1” is established by a signal
on the other wire. The feasibility of this compilation was shown with a working IC
already in 1987 [40]. A demonstrator of significant complexity is the error decoder
for the DCC (Digital Compact Cassette) player as reported in [43, 44]. This error
decoder consumes five times less power than its synchronous counterpart.

Though some QDI implementations show a remarkable advantage in power com-
pared to their synchronous counterparts, their drawback is two-fold [43, 44]. First,
the area overhead, typically between 70% and 100%, is in general very large for the
ICs to go into production. Second, using the double-rail implementation, special
cells for layout are necessary. This is a major drawback for industrial acceptance
of the design method. To solve these two problems, a single-rail (bundled data)
mapping from handshake circuits to asynchronous netlists was designed and im-
plemented [29, 30]. The single-rail bundled data implementation uses only one
wire per bit in the data communication but makes more assumptions on timing
than the double-rail translation does. For each combinatoric part of the circuit, a
matching delay path in the control is added. However, the advantage is two-fold:
the area overhead is reduced considerably, and a generic cell-library can be used
for layout. The feasibility of the single-rail compiler was demonstrated with a re-
implementation of the error corrector for the DCC-player [30, 45]. This IC shows
a power advantage of a factor 6 at the cost of 20% area overhead, compared to a
synchronous solution.

The communication between handshake components is based on the handshake
(request-acknowledge) protocol and therefore an asynchronous implementation of
handshake circuits is a natural mapping to an IC. Within these asynchronous imple-
mentations there is a lot of freedom, of which the choice between double-rail and
single-rail implementation is an example. There has also been an experiment to
use one wire instead of two to establish the request-acknowledge protocol between
components; one then obtains a single-track implementation [42]. The potential
merit of this approach is high performance. A disadvantage is that a dedicated
cell-library is needed to implement single-track. The mapping from handshake cir-
cuits to netlists need not result in an asynchronous circuit: one can even think of a
mapping to synchronous circuits.

6 Chapter 1. Introduction

1.2 VLSI-programming

This thesis is about VLSI-programming, which is the activity of specifying a VLSI-
circuit in a programming language, for example Tangram. The Tangram tool-set
makes it possible to reason about circuits at the level of the Tangram-language,
without knowing much detail of the gate-level implementation. The compiler trans-
lates Tangram programs fransparently and this is the key notion that makes reason-
ing about circuits at the level of Tangram possible. The tools at the handshake-
circuit level provide feedback to investigate the design space in terms of area, exe-
cution time, energy dissipation, and testability.

To see how the compilation from Tangram to handshake circuits works, we con-
sider the example of a 1-place buffer. In Tangram we can describe this buffer by
the procedure
buffer: proc(a?T & b!T)

begin x : var T

| forever do a?x ; b!x od

end
The header of this procedure declares two external channels (a and b) of a certain
type T. Channel a is an input channel (denoted by the question mark) and b is an
output channel (exclamation mark). The begin-end construct contains the body
of the Tangram procedure. It first declares a variable x. After the bar (“|”) we
see the statements of the Tangram program, in this case an endless loop (forever
do ... od). The body of this loop is the sequence of two statements: an input
along a into x, followed by an output of x along channel b. The corresponding
handshake circuit is shown in Figure 1.2.

In this figure we see the various handshake components that correspond to Tan-
gram constructs. Each handshake component has passive ports (denoted by open
circles), active ports (denoted by a filled circles), or some combination of the two.
In handshake circuits, a passive port is always connected to an active port, with
the exception of one unique external passive port (denoted by “>”). A handshake
channel consists of a request wire, an acknowledge wire, and (possibly zero) data
wires (Figure 1.3). Handshake channels without data wires (i.e. only consisting of
a request and an acknowledge wire) are called nonput channels. Handshake chan-
nels that carry data are denoted by an arrow, indicating the direction of the data
transport. Components communicate with each other using a handshake protocol.
An example of such a protocol is shown in Figure 1.3.

In handshake circuits, the active port takes the initiative and raises the request. The
passive port will eventually respond by raising the acknowledge wire. In the 2-

1.2. VLSI-programming 7

Figure 1.2: Handshake circuit for 1-place buffer.

phase handshake protocol the handshake is now complete, and the next handshake
can only be initiated by the active port lowering the request after which the passive
port will lower the acknowledge. In the 4-phase handshake protocol, however, a
handshake consists of both the up-going as well as the down-going of the request
and the acknowledge wires. Many possible schemes of data validity with respect to
the handshake-protocol are described by Peeters [30]. The 4-phase protocol allows
for a wide variety of these schemes with many possible implementations of the
handshake components.

For the operation of a handshake circuit we take the circuit of the 1-place buffer as
an example (Figure 1.2). A handshake circuit is activated along its startup channel
(denoted by the ©), connected to its single passive external port. At the top we
have the repeater (denoted by “*”) connected to the startup channel: activated
along its passive port it generates handshakes along its active port indefinitely. It
corresponds to the Tangram forever do ... od statement. The sequencer,
denoted by the “;”, corresponds to the semicolon in the Tangram program. When
activated along its passive port, it performs a complete handshake along its left and
after that on its right active port. The first active port it performs a handshake on, is
indicated by the “*”. When the “*” is omitted, we assume that the sequencer always
performs the first active handshake along its left handshake port in the diagram.
When the two handshakes along the active ports have completed, the sequencer
completes the handshake along its passive port.

The repeater and the sequencer are examples of handshake control components.
The other components in Figure 1.2 are datapath components. Variable x corre-

8 Chapter 1. Introduction

request
e O
acknowledge
I
active side passive side

request / \
acknowledge / \

-

time

Figure 1.3: Handshake protocol with request and acknowledge wires. The active
side is denoted by a filled circle and the passive side by an open circle.
The active side always takes the initiative to start a handshake. The
timing diagram shows the up-going and the down-going transitions on
the wires.

sponds to the handshake variable component with two passive ports: one read port
and one write port. Communication is established by the transferrers (denoted by
“—7). The transferrer, once activated along its passive port, collects data from one
active port and transports it to the other active port, in the direction of the arrow.
The left transferrer in Figure 1.2 collects data from channel a and stores it in x;
then (controlled by the sequencer) the data in x is copied to output channel b by
the right transferrer.

Making a two-place buffer out of one-place buffers is straightforward. Suppose we
have a Tangram procedure for a one-place buffer. A two-place buffer consists of
two one-place buffers in parallel:

buffer(a,b) || buffer(b,c)

As the active port of the output transferrer of the first buffer is to be connected to
the active port of the input transferrer of the second buffer, there has to be a special
component in between, the passivator. The passivator in the datapath synchronizes
two communications on its passive ports. The resulting handshake circuit is shown
in Figure 1.4. (Remark: a 2-place buffer with synchronization between control
components rather than between datapath components is described in [30]).

In this handshake circuit we see two instantiations of the one-place buffer circuit

1.2. VLSI-programming 9

Figure 1.4: A handshake circuit for 2-place buffer.

of Figure 1.2. They are connected by the passivator in the datapath and the PAR-
component in the control, denoted by “| |”. This component corresponds to the
Tangram “| | ”-construct and takes care of parallel activity of pieces of circuitry.
When activated along its passive port, it simultaneously initiates handshakes along
its left and right active handshake channel. Once both of these handshakes have
finished, the PAR-component completes the handshake along its passive port. In
the case of the two-place buffer, the repeaters will never complete the handshakes
on their passive ports and therefore the buffer circuits will continue their operation
indefinitely.

The programming language Tangram is designed to describe hardware structures.
A conventional programming language like C or Pascal lacks three constructs that
are necessary to express a circuit design: communication, parallelism, and sharing
of hardware, which will be described in Chapter 2. Tangram has these constructs
available. On the other hand, concepts such as recursion, process creation, and
dynamic data types are not necessary for hardware design, and therefore they are
not present in Tangram.

10 Chapter 1. Introduction

1.3 Low-power

The total power dissipation of a CMOS circuit can be split into two components:
the static and the dynamic part [54]. Static power dissipation is due to leakage
current and other current drawn continuously from the power supply. Dynamic
power dissipation is due to the switching transient current through resistive MOS-
transistor channels, and the charging and discharging of load capacitances.

For a synchronous CMOS circuit in operation the dynamic power dissipation is
dominant over the static dissipation and can be expressed by the formula [7, 54]

1
P:ng*fclk*CL*Ea

where V4 is the supply voltage of the circuit, fjj the frequency of the clock, Cp,
the physical capacitance of the circuit, and « the activity factor of the circuit. To
reduce the power dissipation of a circuit we have the following options.

First, we can reduce the supply voltage V4. Power scales down quadratically with
the supply voltage, and therefore the supply voltage should be as low as possible
for a low-power circuit. However, the operating speed of the circuit scales down as
well, linearly with the supply voltage [12]. Introducing parallelism in the circuit’s
operation increases the operating speed, as a result of which the supply voltage can
be lowered, resulting in lower power dissipation. On the other hand, introducing
parallelism often leads to a larger area of the circuit. This technique is exploited, for
example, on a superscalar asynchronous microprocessor, SCALP [8]. Superscalar
processors have more than one execution unit for various types of instructions.
This makes it possible to execute instructions in parallel.

Second, we have the clock frequency fji. Reducing the clock frequency reduces
the power dissipation (though not the total energy that is dissipated for a given
task!), but also implies lower performance in terms of execution time. On the other
hand, it is often possible to reduce the clock frequency to zero for some parts of
the circuit during operation. This technique, called clock gating, disconnects the
clock from (a part of) the circuit that needs not to be active at a given point in
time. There are two types of clock gating: control dependent and data dependent.
Control dependent clock gating stops the clock at some part of the circuit when
it is known that this part needs not be active. For example, in a microcontroller
the timers can be switched off when they are not needed; in the circuit the clock
is then switched off in the timer-block. Data dependent clock-gating occurs on a
more fine-grained scale. For example, suppose that in a microprocessor an offset

1.4. Metrics 11

has to be added to the program counter. When this offset is small, often only a
few bits will change while a large part will not change. This can be exploited by
not clocking the registers of the higher-order part of the addition when this is not
necessary. The penalty is some extra control to detect whether this kind of clock-
gating can be applied. Asynchronous circuits can be seen as an extreme in clock
gating: only those registers are activated that need to be activated. The distributed
control of asynchronous circuits makes this possible as we will see in Chapter 5.

Third, we can reduce the capacitance of the circuit. This can be done by resorting
to a smaller feature size in the layout. Scaling down the transistor size and the
wiring capacitance of a circuit reduces its total capacitance. When making a fair
comparison between two circuits in terms of power dissipation it is important to
compare them implemented in the same technology.

Fourth, and most relevant to VLSI-programming, we have the activity factor a.
Power in CMOS circuits is only dissipated when there is switching activity, ex-
pressed by . Minimizing activity lowers the power dissipation. The design used
throughout this thesis, the 80C51 microcontroller, shows that there can be plenty
of opportunity to minimize the activity of the circuit at the architecture level. The
synchronous implementation of this microcontroller shows many redundant ac-
tions that can be filtered out due to the asynchronous distributed control.

Many of the observations above applied to energy-efficient microprocessor design
can be found in literature [7, 12, 13]. An example of an asynchronous microproces-
sor family designed for low-power is the Amulet series that implement the ARM
instruction set [27, 11].

VLSI-programming is about specifying the architecture of a circuit. Tangram and
the Tangram-tools form a framework in which a design space exploration can be
performed. The next section describes the parameters that are of importance in the
design space, and motivates the choices for metrics for these parameters.

1.4 Metrics

There are four parameters that are important for the design space: area, operating
speed, energy dissipation, and testability of a circuit.

The area of an IC can be measured in number of transistors, number of standard
cells in the layout, number of gate-equivalents and die size. All depend on the
implementation medium: does one map to a cell library or does one opt for full
custom layout? Generally, full custom layout will result in less area, for it can

12 Chapter 1. Introduction

be optimized for the application that has to be implemented. Cell libraries allow
for a quicker and cheaper design trajectory, because each design makes of the same
standard-cell library. To compare one IC to another one should compare them when
implemented in the same technology, using the same layout style. We choose to
express the area of an IC in the number of transistors, for that is a precise measure
when using a fixed style of layout.

The operating speed of an IC can be expressed in various ways. For micropro-
cessors and microcontrollers with a fixed instruction set, one often chooses for
Millions of Instructions Per Second (MIPS). This measure is good for comparing
implementations of the same instruction set in the same technology. Some instruc-
tion sets make it possible to express a program in fewer instructions than other
instruction sets. On the other hand, some instruction sets contain more powerful
instructions than others. This makes it difficult to compare the MIPS metric for
one microprocessor to another with a different instruction set.

The energy dissipation of an IC is expressed in Joules dissipated for a specific task.
In the case of a microprocessor we can take the instruction set again and use the
measure Joules per instruction. With the present technologies available this is in
the order of a few nJ per instruction. Again this is a cumbersome metric when
comparing different instruction sets. In literature one often encounters the equiva-
lent measure MIPS/Watt as comparing metric. For the same reasons as above this
is a poor measure for straightforward comparison of different microprocessor ar-
chitectures. In this thesis, several implementations of the 80C51 microcontroller
are described. When comparing them, we compare the same instruction set imple-
mented differently but in the same technology, assuming comparable conditions
(supply voltage, temperature, etc). Therefore we use the metric energy per instruc-
tion for comparison.

For operating speed in combination with energy dissipation one can make another
observation. When one design is better in both aspects than another, we can con-
sider both aspects separately. However, when there is a trade-off between the two,
the situation is different. Suppose we have a design A and a design B that im-
plements the same function. B dissipates half of A’s energy but is twice as slow.
Which design is the better (not considering the area of A and B for the moment)?
When we would reduce the supply voltage for A with a factor of 2, the operating
speed would scale down with a factor of 2. However the energy dissipation would,
since it scales quadratically with the supply voltage, scale down with a factor of 4!
Here we see clearly that A is the better design.

To have a combined measure for speed and energy, independent of the supply volt-
age, one has to use the energy-delay-delay product ET?. For example, for the

1.5. Challenges 13

above mentioned designs A and B, ET? is constant for any supply voltage that
the circuit can operate in. When taking ET2 = m for design A, we would have
ET? = 2m for B, immediately demonstrating that A is the better design.

Last but not least, the testability of a circuit is an aspect that should be considered
when designing a circuit. When a circuit has been fabricated it has to be tested for
fabrication faults. The complexity of a circuit demands a thorough thinking of how
to design a proper test for it. This testing issue is often considered only after the
design, which makes it more difficult to create a proper test for it. Investigating the
testability can have the beneficial effect of removing redundancy from the design.
Redundant hardware is often not covered by a test, and can therefore be removed
to reduce the area and improve the test coverage. This thesis will not deal with
testability, though we will come back to it in Appendix A.

1.5 Challenges

At the beginning of this project, much attention had been paid to Tangram and the
compiler, with the single-rail backend as one of the results. The feasibility of the
approach was demonstrated by the single-rail asynchronous implementation of the
DCC error-decoder.

Also the aspect of VLSI-programming had been paid attention to, in the context
of the Reed-Solomon decoder for the DCC-player [19]. Other aspects of VLSI-
programming for low-power are explained in [46]. As the single-rail compiler pro-
duces area-competitive circuits implemented in standard-cell layout it is interesting
to research other areas of application of asynchronous low-power circuits.

The transparent compilation of Tangram into silicon enables the designer to reason
about the circuit at the level of the Tangram-language. In other words, it should
be possible to describe some techniques for VLSI-programming. As low-power is
believed to be an important benefit of asynchronous circuits, these techniques for
VLSI-programming should be tailored to obtain low-power circuits.

To demonstrate the rules for VLSI-programming a vehicle of industrial relevance
was selected: the 80C51 microcontroller. Its architecture and implementation are
reasonably old: the instruction set architecture was defined by Intel in 1980. Many
derivatives have been implemented and for Philips it is a widely used architec-
ture [4]. Some synchronous implementations are already tailored for low-power to
make them suitable for applications where low power consumption is important.

The 80C51 instruction set shows a lot of irregularity in its many addressing modes

14 Chapter 1. Introduction

and non-uniform register structure. This makes it not straightforward to choose the
better solutions in the design spectrum, and therefore a design space exploration is
interesting. The Tangram VLSI-programming approach makes such an exploration
possible, benefiting from the quick design cycle.

The 80C51 microcontroller is widely used in many products, because of its flex-
ibility as programmable device and because it is cheap to produce. It has a gen-
eral programmable CPU and therefore its application area is large. For the Tan-
gram project it is important to demonstrate the feasibility and the advantages of the
VLSI-programming approach on such vehicles of industrial importance.

1.6 Overview and contributions
This thesis is organized as follows.

Chapter 2 introduces VLSI-programming in more depth, and uses a small pro-
cessor, the Move Machine, as an example. Several optimizations, of which
sharing of hardware is important, are introduced and a small exploration of
the design space is performed.

Chapter 3 describes the synchronous 80C51 microcontroller. It is an 8-bit mi-
crocontroller and can be considered a CISC (Complex Instruction Set Com-
puter). The synchronous implementation is analyzed and six observations
concerning the energy dissipation are made.

Chapter 4 outlines an asynchronous implementation of the 80C51. This micro-
controller can be divided into three parts: a handshake-CPU, the peripherals
and a Synchronizer-block. This block takes care of synchronizing the asyn-
chronous IC in a synchronous environment. External memory access, where
there is a timing protocol between the IC and its environment, serves as an
example.

Chapter 5 describes the design space for the 80C51 CPU, the part that fetches
and executes instructions. Various alternative Tangram programs result in
different datapaths and control structures for the CPU. Furthermore, some
local optimizations are discussed.

Chapter 6 deals with the implementation of the 80CS51 peripherals. These addi-
tional pieces of hardware give the 80C51 system its flexibility, and interface
between the CPU and the environment of the microcontroller. The interface

1.6. Overview and contributions 15

between CPU and peripherals is to adhere to certain constraints. A UART
(Universal Asynchronous Receiver and Transmitter) serves as case study at
the end of this chapter.

Chapter 7 reviews the six low-power observations made at the end of chapter 3,
and discusses some alternative design methods that save power. A low-power
asynchronous implementation of the 80C51 was fabricated and in this chap-
ter the manufactured IC is analyzed. It is compared with its synchronous
counterpart as well with other low-power microprocessors and microcon-
trollers.

Chapter 8 reviews and concludes this thesis.

The aim of this thesis is to learn to reason about circuit properties at the level
of a programming language, Tangram. The main contributions of the research
described in this thesis are:

e Identification of techniques for VLSI-programming;

e Design space exploration for the design of an asynchronous 80C51 micro-
controller architecture;

e Demonstration of the feasibility of the Tangram VLSI-programming approach
to this architecture;

e A Jow-power asynchronous implementation of the 80C51 microcontroller,
showing a power benefit at the cost of some overhead in area.

The development of the asynchronous low-power 80C51 microcontroller was done
in cooperation with Philips Semiconductors. The design of the CPU (Chapter 5),
the interfaces to the environment and to the peripherals (Chapters 4 and 6), and the
design of the UART as described in this thesis, were carried out by the author. The
design of the other peripherals, as well as the final layout and the measurements
of the test chip were done at Philips Semiconductors and Philips Research. The
pictures of the photon emission, which appear in Chapter 7, were produced and
interpreted at Philips Research.

16

Chapter 1. Introduction

Chapter 2

VLSI-Programming

Conventional programming is the activity of writing a program in some language
and compiling it to a list of instructions that can be executed on a processor. Impor-
tant aspects of the resulting programs are the execution time, the usage of memory,
and the size of the generated code. In most cases, the program is executed in a se-
quential fashion, instruction by instruction. It is often possible to classify various
programs according to a parameter, for example speed or memory usage.

VLSI-programming involves the activity of specifying a VLSI-circuit in a pro-
gramming language, for example Tangram. Important aspects of VLSI-programs
are the speed, the power dissipation, the size, and testability of the resulting circuit.
Also fine-grained timing is an aspect of VLSI-circuits. To express the functional-
ity of a circuit it is important that the language has constructs for parallelism and
communication.

It is often the case that a VLSI-program for a specific function results in a smaller
but, for example, less energy-efficient or slower circuit than another VLSI-program.
Therefore it is difficult to use one parameter to compare VLSI-programs; often a
trade-off between various VLSI-programs can be made. Therefore it is hard for a
compiler to decide which translation is the best for a given program; the designer
has to make these decisions. Thus it is important that the compiler translates trans-
parently; only then the designer can reason about the circuit at the level of the pro-
gramming language, and rewrite the program in such a way that the requirements
are met.

The Tangram compiler translates a VLSI-program into a netlist of a circuit trans-
parently. Tools that perform simulations at the level of the handshake circuit give
feedback with reference to the structure of the Tangram program. Handshake cir-

17

18 Chapter 2. VLSI-Programming

cuits describe the circuit at a level of abstraction that is low enough to obtain accu-
rate data about the resulting circuit; on the other hand this level is high enough to
allow for fast simulation.

In the previous chapter we have identified four aspects that are of importance for
VLSI-programs: area, operating speed, energy dissipation, and testability. Nor-
mally, when started from an initial design, one writes other VLSI-programs that
are better with respect to all of these aspects, but when pushing one aspect to the
extreme, another might get worse. It is then possible to make a trade-off, for ex-
ample to choose for lower power dissipation at the cost of a larger area. In this
chapter some of these aspects are demonstrated on a small example, the Move Ma-
chine, which is a small and easy-to-understand processor.

The goal of this chapter is to understand some basics of VLSI-programming. To
this end, we have to understand the translation scheme from Tangram to handshake
circuits. Therefore we first take a closer look at handshake circuits.

2.1 Handshake circuits

A handshake circuit is a connected graph that consists of so-called handshake
components [41]. A classification of these handshake components is described
by Peeters in his thesis [30]. In this classification he only considers handshake
components with handshake interfaces, both internally and externally.

In general, a handshake circuit has the form as shown in Figure 2.1. First there are
the control components; these components only have control (i.e. nonput) hand-
shake channels. Second, data components can be distinguished; these only have
data handshake channels. In between there are the interface components; these can
communicate with other components using both nonput and data channels. The
data components can furthermore be divided into three categories: the pull, the
push, and the passive components.

An example of a passive nonput channel (“pn” in Figure 2.1) is the startup channel
of the handshake circuit. After initialization of the circuit, a handshake initiated on
this channel will start the circuit’s operation.

Passive components are handshake components that only have passive handshake
ports. Examples are the variable and the passivator as shown in Figure 2.2. The
variable is used for storing values of some type. In the single-rail implementation
of handshake circuits, it has one write port and and possibly more than one read
port [30]. When the variable is implemented as a latch, then it is not possible to

2.1. Handshake circuits 19

Control

pn —q
Components

Interface
Components

Push
Components

Pull
Components

Passive
po=—G Components P~ P1

Figure 2.1: General structure of a handshake circuits [30].

read and write the variable simultaneously. However, multiple simultaneous reads
are possible. The passivator that has two passive ports; it synchronizes handshakes

along these ports.

Figure 2.2: Handshake passive components: the variable and the passivator. The
variable in this picture has three read ports and one write port.

Pull components collect, modify, and output data upon request. An example of
such a pull component is a binary operator, such as addition. This operator is
shown in Figure 2.3. Once activated along its passive handshake port, it collects
two operands along the active channels, performs the addition, and outputs the
result along the passive channel.

Push components take care of the communication of data to the environment of
the handshake circuit, either via an active output, or indirectly though a passiva-
tor via a passive output. The multiplexer, which merges streams of data onto one

20 Chapter 2. VLSI-Programming

/

Figure 2.3: Handshake pull-component: binary addition.

channel, is an example of a push component (Figure 2.4). Multiplexers have two
or more passive inputs and one active output. Handshakes on the input channels
are required to be mutually exclusive. Upon activation along one of the inputs, the
multiplexer performs a handshake along its active output, after which the hand-
shake on the passive input is completed. Multiplexers that carry no data are called
mixers. Mixers also appear in the control of a handshake circuit.

Figure 2.4: Handshake push-component: the multiplexer.

The interface components as shown in Figure 2.5 have both data channels and
nonput channels as handshake interface to other components. Examples are the
transferrer, the case-component, and the do-component. The latter two form the
interface between control and datapath of a handshake circuit. The binary case-
component takes a boolean input on its passive port and, depending on the value
of this input, decides which active port to activate. The do-component also takes a
boolean input on its passive port and activates its active port until the boolean input
is false. The transferrer collects data from one active port and transfers it to the
other active port. The direction of the transport of data is indicated by the arrow.

Control components are used to steer the interface components. They decide in
what order the various other components are activated. Examples are the se-
quencer, the PAR-component, and the repeater (Figure 2.6) . The sequencer, once
activated along its passive channel, completes handshakes first along its left (in-

2.1. Handshake circuits 21

= (@

Figure 2.5: Handshake interface components: transferrer, case, and do.

dicated by “*”) and then along its right active channel. It then completes the
handshake along its passive channel. It thus sequences the handshakes along its
active channels. When the “*” is omitted in the symbol of the sequencer we as-
sume that the first handshake will take place along the left handshake channel. The
PAR-component performs handshakes along its active channels simultaneously, and
completes the handshake along its passive channel only when both handshakes
along the active channels have finished. The repeater, once activated along its pas-
sive port, continues generating handshakes on its active port forever.

Figure 2.6: Handshake control components: the sequencer, the PAR-component,
and the repeater.

In microprocessor design there is the distinction between the control and the data-
path. The datapath is the part of the circuit that contains all registers and com-
binatorics to do calculations on the values stored in these registers. Furthermore,
all communication paths including multiplexers and demultiplexers are part of the
datapath. The control literally controls the datapath; it takes care of the proper
steering of all elements in the datapath.

In what follows we adopt this view for handshake circuits. In order to make the
connection with the “microprocessor” control and datapath more explicit, we make
a slightly different, somewhat more abstract classification than the one above.

The datapath of a handshake circuit contains the following components:

22 Chapter 2. VLSI-Programming

all passive components (the variables, corresponding to the registers, the pas-
sivators used for synchronization, but also register files and memories);

the pull components, such as all arithmetic operations;

the push components, such as the data multiplexers;

the transferrers.

The control of a handshake circuit consists of

e the control components (the sequencer, the PAR-component, and the repeater);

e all interface components except the transferrer, such as the do and the case-
component.

The only handshake components whose functionality is data-dependent, are the
do and the case-component, which reside in the control. The processing of this
data takes place in the datapath, and therefore there has to be some communication
between datapath and control.

The channels that are the interface to the datapath are

e the active (ai) and passive (pi) inputs from the environment;
e the active (ao) and passive (po) outputs to the environment;
e the activation (nonput) channels from all transferrers in the datapath;

e the inputs for the conditional control components (i.e. the case and the do-
components).

Using this classification we obtain the general view of a handshake circuit as shown
in Figure 2.7.

Now that we have introduced the handshake components, it is time to look at some
design issues. Area, speed, power dissipation, and testability are important param-
eters for a circuit. For the first three aspects, the next sections explain how we can
reason about them at the level of the VLSI-programming language and on the level
of handshake circuits. To this end, we use a small processor, the Move Machine, as
running example.

2.2. The Move Machine 23

pn Control an

ai ao
Datapath

po pi

Figure 2.7: General structure of microprocessor handshake circuits.

2.2 The Move Machine

The Move Machine is a small processor with a limited instruction set. It was
proposed by Sutherland in the 1970’s [5]. Sutherland observed that in a computer
system the main processor spends most of its time moving data back and forth in
memory, while not doing any “useful” tasks it was designed for. The task of the
Move Machine is to assist the main processor by moving blocks of data around in
memory.

Birtwistle et.al. reported on a specification and an implementation of the Move
Machine [S]. An extension of its instruction set can be found in [50]. This is the
instruction set that is going to be used as running example throughout this chapter.
This work was also reported on in [51].

A processor is made to execute instructions from a given instruction set. The design
of the instruction set determines the flexibility and purpose of the processor. Since
the Move Machine is meant for moving blocks of data, its instruction set is tailored
for that task.

The Move Machine is built around a register file of 16 eight-bit wide registers, and
can access an external memory M. Both the program and the data are stored in
the same memory. The instruction set contains ten instructions and is shown in
Table 2.1. The operands for the various instructions are indices in the register file
(r1,72 and r3 in Table 2.1).

We distinguish several classes of instructions in this set:

24 Chapter 2. VLSI-Programming
Code | Acronym | Arguments | Action Description
0 LOD 1,79 T 1= M['I‘l] load
1 STO 71,72 Mri] :==1rg store
2 LDI r1,79,T3 r9 := M[ry + 73] load with offset
3 STI 71,79,T3 Mlry + 73] := 19 store with offset
4 MOV 71,79 T1I=T9 move
5 SCC 71,72 cc = (ry =7ra) set condition code
6 INC r1 ri:i=r1+1 increment
7 ADD T1,T2 r1i=711+79 addition
8 ICC r1 if cc then pc :==r; fi | jump condition code
9 NOP no operation

Table 2.1: Move Machine instruction set.

e instructions for loading and storing values in memory (LOD, LDI, STO, and

STI);

e instructions for manipulating values in the register file (MOV, INC, and

ADD);

¢ instructions to control the program flow: SCC (Set Condition Code) and JCC
(Jump on Condition Code);

e A miscellaneous instruction: NOP (No OPeration).

opc

rl

2

r3

4

Figure 2.8: Instruction encoding.

4

The length of the encoding of instructions (Figure 2.8) is fixed: each instruction is
encoded using two bytes. The first byte contains the opcode (4-bits) and register
file index r1 (also 4 bits); the second byte contains indices 7 and 3. Since not
all instructions use all these register-file indices, there is some redundancy in this
encoding, which (as we will see later on) can be used to our advantage in the
implementation of the Move Machine.

2.3. An initial VLSI-program 25

The Move Machine is to operate with an environment that contains the memory.
This memory contains both the program to execute and the data to operate on.
Schematically the interface between the Move Machine and its environment is
shown in Figure 2.9.

address (8)
>0

rw (1)

Move Machine Environment

dataout (8)

datain (8)

Figure 2.9: The Move Machine and its environment. The numbers denote the
widths of the channels, in terms of number of bits.

The Move Machine can read and write data in memory by adhering to the following
protocol:

e First, the Move Machine sends an address to the environment (along address),
together with a signal along channel rw indicating whether it wants to read
data from, or write data to the memory;

e then, the Move Machine either

— reads data from memory (along datain),

— or writes data to memory (along dataout).

2.3 An initial VLSI-program

With the instruction set and the interface to the outside world as starting points, the
main structure of a Tangram program for the Move Machine can be designed. This
main part is given in Figure 2.10.

The Tangram program starts with the definitions of types. The interface to the
outside world is described in the header of the Tangram program, in which the
input (“?”) and output (“!”) channels and their types are specified. The header
clearly follows the structure as shown in Figure 2.9.

26 Chapter 2. VLSI-Programming

[
=
o
(o]
Il

type[0..255]
type[0..1]

(address!int8

& rwlintl

& dataout!int8

&

)

-4
-
=]
p=s
—
]

datain?int8

begin /* Declarations of variables and procedures */
| main()
end

Figure 2.10: Structure of the Tangram program for the Move Machine.

Procedure main() contains the sequence of statements that constitute the VLSI-
program: it describes the implementation of the Move Machine. The processor
executes an endless loop in which it fetches an instruction and then executes the
appropriate statements. For reasons of simplicity we choose to fetch and execute
the instructions sequentially, which can be expressed by the semicolon (“;”) in
Tangram. Thus we obtain the following program for main():
main : proc(). forever

do FetchOp()

; Execute()

od
Fetching an instruction involves sending an address to memory, together with a
read-signal (which is coded as a boolean value); then the Move Machine collects
the opcode of the corresponding instruction and increments the program counter
pc. Each Move Machine instruction is coded in two bytes, so we have to do two
memory accesses per instruction:

FetchOp : proc(). dataout!pc || rwlread
; datain?<<opc,rl>> || pc:=pc+l
; dataout!pc || rw!read
; datain?<<r2,r3>> || pc:=pc+l
Here we see the use of parallelism between statements by the Tangram “| |”-
construct. Statements put in parallel are executed simultaneously.

Having received the opcode of the instruction, procedure Execute() executes
the necessary statements that implement the instruction. The opcode is simply a
number between 0 and 9 (Table 2.1); decoding can be done using the Tangram
case-statement, which selects the right instruction:

2.3. An initial VLSI-program 27

Execute : proc()
case opc
is 0 then /* LOD */ lod()
or 1 then /* STO */ sto()
or 2 then /* LDI */ 1di()

or 9 then /* NOP */ nop()

S1
The implementation of the various instructions is implemented in procedures lod (),
sto(),..., nop(). In fact, they implement the actions as given in Table 2.1. For
example, instruction inc () can be implemented by

inc : proc() . RF[rl]:=RF[rl]+l
Similarly, we can implement the ADD instruction by the procedure
add : proc() . RF[rl]:=RF[rl] + RF[r2]

Some of the instructions in the Move Machine access the memory and therefore
have to communicate with the environment. Note that there is only one memory
that contains both program code and data. The protocol for access is the same for
both for the environment does not make any difference between program and data
memory. Take instruction LOD as an example. This instruction collects a value
from memory and stores it in the register file. Tangram procedure 1od () reads
lod : proc() . address!RF[rl] || rw!read

; datain?RF[x2]
First the address of the data sent along address together with the read-signal.
Next, following the data-access protocol, the data is collected from memory and
stored in the register file. Instruction STO stores a data value in memory and is
implemented by procedure sto():
sto : proc() . address!RF[rl] || rw!write

; dataout!RF[r2]

The instructions that control the flow of the program are also straightforwardly
encoded in Tangram. The scc instruction, for example, sets a condition code:

scc : proc() . cc:=(RF[rl]=RF[r2])

Instruction JCC tests the condition code to see whether a jump has to be made:
jecc : proc() . if cc then pc:=RF[rl] fi

Finally, the NOP instruction does nothing useful:

nop : proc() . skip

As we have seen, all instructions take a few steps to be executed. Generally, an

28 Chapter 2. VLSI-Programming

instruction is implemented using a sequence of statements
Sl ¥ 82 § ... § SN

where the statements Si are assignments, communications, or conditional state-
ments.

2.4 Implementation issues

Some implementation issues of a silicon compiler that translates transparently, can
be reflected in the programming language. The Tangram compiler, for example,
uses latches to implement Tangram variables. Because latches cannot be written
and read simultaneously, the compiler demands that the statements that are in par-
allel do not read and write the same variable (though more than one simultaneous
read-action is permitted). A special case is found in in the FetchOp () procedure
of the Move Machine, where we encounter the assignment pc:=pc+1. For these
so-called auto-assignments the compiler will introduce an auxiliary variable in the
handshake circuit. Making this variable explicit in Tangram results in the same
handshake circuit:

pcaux:=pc+l ; pc:=pcaux

The same goes for the implementation of the register file. When this file is imple-
mented using latches, the auto-assignments are resolved by doing the assignments
in two steps, as is shown in the procedure of the INC instruction:

inc : proc() . x:=RF[rl]+l ; RF[rl]:=x

The programmer can make the auxiliary variable explicit and share it amongst other
(auto-)assignments, as we will see later on.

It depends on the number of read ports and write ports of the register file whether
the addition in the ADD instruction can be implemented as a single statement.
When, for example, the register file has only one read port and one write port,
auxiliary variables x and y have to be used and the addition is done in three steps:
add : proc() . x:=RF[rl]

;7 Y:=RF[r2]

; RF[rl]:=x+y
The same arguments go for the accesses to the register file in instruction Scc.

In the next sections we will demonstrate the impact of altering the Tangram pro-
gram on the characteristics of the resulting circuit. We take three parameters as
identified in the previous chapter, viz. area, speed and energy dissipation, as clas-

2.5. Area 29

sification. Testability is left outside the scope of this chapter.

2.5 Area

In general, a smaller chip is cheaper to produce. Therefore, reducing the area of a
chip is very important. One method to reduce area is to reuse hardware for similar
tasks when possible. This is what we refer to as sharing of hardware.

In Tangram we can express sharing of hardware by sharing of statements in proce-
dures. Each time the piece of hardware is to be used, the corresponding procedure
is invoked. We can distinguish two kinds of sharing: sharing in the datapath and
sharing in the control. First the principle behind both is explained and then an
example is given that combines both.

Sharing in the datapath can be applied when there are two occurrences of an as-
signment x :=y in the Tangram program text:

;ox:=y

P oxi=y
In the handshake circuit this will introduce two paths from variable y to x, and a
multiplexer on the write port of x. This multiplexer has the width of variable x.
The resulting datapath is shown on top in Figure 2.11. To create just one path from
y to x in the circuit, we introduce a procedure

Xy : proc() . X:=y

and replace all occurrences of the assignment x:=y in the main Tangram text by
invocations of this procedure:

7 Xy ()

xy ()

This will result in the handshake circuit as shown in the lower half of Figure 2.11.
In the datapath there is now only one path from y to x, saving one transferrer and
the multiplexer. However, an extra mixer in the control is added to take care of the
two invocations of procedure xy (). The mixer is a multiplexer that carries no data,
and is therefore cheaper to implement than the data-multiplexer. In effect we have
lifted the expensive multiplexer in the datapath to a cheaper mixer in the control.

~e

30 | Chapter 2. VLSI-Programming

8-bit multiplexer

!
/

¥

~<--- ponput mixer

Figure 2.11: Sharing in the datapath.

Sharing of common statements can also be applied to communication statements,
which occur often in our Move Machine program. For example, in the 1od () and
sto () procedures we have the common statement

address!RF[rl]

that can be shared in a procedure. It is straightforward to find the other common
statements in the datapath. Generally speaking, sharing in the datapath results in
smaller circuits.

Sharing of hardware is not restricted to the datapath; also control structures can be
shared. Semicolons in the program text (i.e. sequencers in the handshake circuit)
are an example. Suppose we have a Tangram program that contains the fragment

S1 ; S2

S1 ; 82

2.5. Area 31

Figure 2.12: Sharing in the control.

where S1 and S2 are Tangram statements. The corresponding handshake circuit is
shown at the left of Figure 2.12. By introducing a procedure

S182 : proc() . S1 ; S2
and replacing of the above fragment by
S1S2()

S1S2()

the handshake circuit on the right of Figure 2.12 is obtained. This circuit contains
one sequencer instead of two, and also saves one mixer.

Sharing in the control is not restricted to reducing the number of semicolons in
the Tangram program. In our Move Machine, for example, we see in procedure
FetchOp () two occurrences of

dataoutl!pe || rw!read .
that can easily be shared saving one PAR component and one mixer.

An interesting case where sharing of datapath and control structures go together is
shown by the two occurrences of the auto-assignment

pc:=pc+l

32 Chapter 2. VLSI-Programming

As auto-assignments cannot be implemented straightforwardly in the Tangram com-
piler, it introduces for each of these two statements a separate auxiliary variable.
This results in the same handshake circuit as when we would have written the Tan-
gram fragment

pc2:=pc+l ; pc:=pc2

pc3:=pc+l ; pc:=pc3

Figure 2.13: Two increments on the same variable pc.

This handshake circuit is shown in Figure 2.13. By explicitly introducing an aux-
iliary variable in the Tangram text we can share it among these assignments. We
can then write

pcaux:=pc+l ; pc:=pcaux

pcaux:=pc+l ; pc:=pcaux

and also share the semicolons between the now identical statements. The resulting
handshake circuit is shown in Figure 2.14. It saves one variable, one adder, one
constant, one multiplexer, two transferrers, and one sequencer, at the cost of an
extra mixer in the control. We would obtain the same handshake circuit when first
sharing the auto-assignments pc:=pc+1 into one procedure.

2.6. Energy 33

Figure 2.14: Making the auxiliary variable explicit and sharing hardware.

2.6 Energy

In CMOS circuits no energy is dissipated when there is no switching. For low
power consumption it is therefore important to keep the switching activity of the
circuit to a minimum. It is important to be aware of the switching activity of a
circuit at the architecture level (i.e. at the Tangram level) to exploit the potential
advantages of a distributed and asynchronous control. The control of a circuit
determines the activity of the datapath by steering the appropriate transferrers in
the handshake circuit. Thus we have to investigate where actions take place in the
datapath and where activity can be reduced.

The Move Machine encodes instructions in two bytes. Though for most instruc-
tions these two bytes are necessary, for some only one byte will suffice. For exam-
ple, the second byte in the code for the INC instruction is superfluous. It makes the
control simple if we fetch two bytes in all cases. However, for the INC instruction
fetching the second byte is wasting energy; we can instead just increment the pro-
gram counter. This will complicate the control a bit: after fetching the first byte we
have to check whether we have to fetch a second byte or not. Here we can trade
larger area for lower energy dissipation.

When we wish to minimize the area even further, we can try to reduce the number
of variables. It is often possible to communicate values by using existing commu-
nication paths in the datapath. When introducing some extra variables, i.e. extra
communication paths, it is often possible to reduce the number of communication

34 Chapter 2. VLSI-Programming

steps during the execution of an instruction. This saves energy, for there is less
activity in the datapath.

500

asp L OO

ml

400
|

Energy (nJ)

350 r

300 { o

m2 'm3

250 : : :
0.25 0.27 0.29 0.31 0.33
Area (mm?2)

Figure 2.15: Handshake simulation: area vs energy.

For the Move Machine, these two aspects of reducing energy dissipation are illus-
trated using a small benchmark program. This program copies blocks of data in
memory, and uses all instructions in the instruction set. Using the techniques as
described in the previous section, we obtain Move Machine m0 that reduces the
area by keeping the control and datapath small. Figure 2.15 shows that m0 occu-
pies 0.26 mm? dissipates approximately 470 nJ to execute the benchmark program.
Move Machine m1 reduces the number of memory fetches for the instructions: it is
slightly larger but also more energy efficient.

Taking m0 as starting point, Move Machine m2 has more variables and communi-
cation paths in its datapath. It is larger but significantly more energy-efficient than
m0. Reducing the number of memory fetches in m2 results in m3, which is larger
and only marginally more energy-efficient.

Pictures like in Figure 2.15 visualize the trade-off between area and energy dissi-
pation. The same can be done for area versus execution time, as illustrated in the
next section.

2.7. Execution time 35

2.7 Execution time

To increase the operating speed of a circuit there are two things that can can done
at the Tangram level: reducing the number of actions and introducing parallelism.

First, reducing the number of steps that the chip has to do to perform its task,
makes the chip faster. For the Move Machine, the actions taken to lower the energy
dissipation, also lower the number of steps taken. Therefore they are also good for
speed. Figure 2.16 takes the same designs of the Move Machine as in the previous
section and shows a similar picture as for the energy dissipation. One can now
trade area for operating speed.

170
160 |
150 p ™m0

140 | i
130 |
120 |
110 | o

100 m3 |

90 : . :
0.25 0.27 0.29 0.31 0.33
Area (mm2)

Execution time (us)

Figure 2.16: Handshake simulation: area vs execution time.

Second, there is parallelism. Executing actions in parallel clearly reduces the time
necessary to complete a given task. In the Move Machine, we already did so in
the FetchOp () instruction by putting the collection of a byte from memory and
incrementing the program counter in parallel. When one wants to introduce more
processes running in parallel one often has to introduce extra registers (variables)
and some overhead in the control of the circuit. Pipelining is a typical example
of introducing parallelism in instruction execution. It overlaps the execution of
several consecutive instructions. By doing so, one has to transport information
from one stage to another; this information would be global to the design in a non-
pipelined version. For example, the program counter and instruction opcode have
to be transported along the stages. This costs extra registers and communication

36 Chapter 2. VLSI-Programming

paths, and thus area and energy.

Increasing the operating speed of a chip is also interesting for energy dissipation.
When a chip is faster than demanded by the specification, one can lower the supply
voltage. An asynchronous circuit runs freely and as fast as possible (i.e. not ham-
pered by a clock): therefore it will have a certain speed at a given supply voltage.
By reducing the supply voltage, the speed will go down as well, but the energy
dissipation will even go down quadratically with respect to the supply voltage.

2.8 Review

The transparent compilation from Tangram into handshake circuits, and then into
netlists, implies that what is expressed in Tangram, is implemented exactly in the
circuit. When there are two adders in the Tangram program, for example, also two
adders will be implemented in the circuit. For small examples, like the sharing of
hardware in Figures 2.13 and 2.14, the compiler could be constructed in such a way
that the parallel transfer paths (the two paths from pc to itself) are automatically
shared into one path. There are also transformations that result in a smaller but
slower circuit, or in a circuit that is larger but consumes less energy. The compiler
cannot choose the better design; this is a task of the designer. Therefore, it is
important that the designer can reason about the resulting circuit at the level of
the programming language. This property can be used to the full extent when the
compiler translates a VLSI-program completely transparently into a circuit.

Sharing of small and local Tangram constructs can be done in any design. Some
optimizations are good for area, speed, and energy dissipation; obviously, these op-
timizations result in a better circuit in any respect and should therefore be applied.
The interesting parts of the design space are those areas where a trade-off between
area, speed, and energy can be made. The Move Machines in Figures 2.15 and 2.16
show this part of the design space.

All aspects of optimizing VLSI-programs discussed in this chapter have a local
character; they involve small Tangram constructs in datapath and control. The
global structure of the circuit is determined by the way the Tangram program is
written. The remainder of this thesis deals with the design of datapaths and con-
trols for a sequential processor architecture (i.e. without pipelining): the 80C51
microcontroller. The next chapter introduces this microcontroller and analyzes the
power aspects of the synchronous architecture.

Chapter 3

The 80C51 Microcontroller

Microcontrollers are used in various products, like VCRs, television sets, and
portable telephones, because of their flexibility as programmable devices. They
are often based on somewhat older architectures, having the advantage that exist-
ing software and software development environments can be used. With the aid
of some extra hardware, microcontrollers can be used in many applications where
there has to be some central unit to keep control of the system. Their programma-
bility and therefore their flexibility makes them often more popular than a dedicated
hardware solution.

Microcontrollers are often used in hand-held and battery-powered applications like
portable CD-players, mobile phones, and pagers. Power consumption of the chips
in these products is often a considerable part of the total power dissipation of the
product; reducing the power has the product survive longer on one battery charge.
For some applications that involve radio transmission and reception (like pagers
and mobile phones) the electro-magnetic emission of the ICs is also of importance,
as it can interfere with the radio.

In this chapter we first characterize a microcontroller. Then we zoom in on one
microcontroller architecture, the 80C51. Analyzing the synchronous architecture
we observe what the characteristics of this implementation are and where the bulk
of the power is dissipated. These observations are the basis for the next chapters
where a low-power asynchronous version of the 80C51 and its design aspects are
discussed.

37

38 Chapter 3. The 80C51 Microcontroller

3.1 Characterization

A microcontroller consists of a general-purpose programmable CPU (Central Pro-
cessing Unit) with program memory and data memory, and a number of peripher-
als connecting the CPU to the environment. The CPU executes instructions from
a fixed instruction set; therefore the CPU is fixed. The peripherals make the dif-
ference in the microcontroller world. By adding peripherals the system obtains the
functionality that is needed for the environment where the microcontroller works
in. Microcontrollers are often used in embedded applications, integrated with other
blocks of hardware. These other blocks can be other processors (a digital signal
processor, DSP, for example) or blocks of dedicated hardware.

A microprocessor is a stand-alone chip that is often tuned for high-performance.
Microprocessors are used in computer systems like PCs and workstations. In a
system the microprocessor is visible to the user, and in principle, programmable
by the user. Microprocessors do usually not contain large blocks of memory other
than caches that help the processor to improve its performance. They commu-
nicate with the main memory and other chips in the system using, for example, a
bus. A microcontroller is often used in embedded systems with blocks of hardware
such as timers and an interrupt controller, integrated onto one chip. An embedded
program memory contains the program that is executed by the microcontroller. Mi-
crocontrollers are also available as stand-alone devices for manufacturers that do
not have the facilities to produce their own ICs. These manufacturers can inte-
grate the microcontroller into their (embedded) systems using their own software.
Microcontrollers that are embedded in a system are not visible or programmable
by the user. The use of microcontrollers is as widespread as the use of embedded
systems: from a simple remote control unit for a television to the complicated ICs
in a cellular phone.

In the world microcontroller market, the 8-bit microcontrollers take a substantial
part: in 1995 worldwide more than 1200 million units of 8-bit microcontrollers
per year were produced [1]. Predictions say that this amount will certainly not
decrease over the next few years. Even 4-bit microcontrollers take a substantial part
in the microcontroller world market. Some bicycle-computers, which keep track
of average speed, time, and distance, contain a 4-bit microcontroller, for example.
Microcontrollers can be made cheap to produce, when produced in quantity (some
derivatives sell for less than US$1 per packaged device).

The 80C51 is one of the most widely produced 8-bit microcontroller in the world [22].
The 80CS51 instruction set originates from Intel (1980). Philips uses the 80C51 for
embedding in many of its products, and produces many derivatives of the standard

3.2. Synchronous architecture 39

80C51. In 1995 a 16-bit extension extension (the 80C51 XA, eXtended Architec-
ture) was introduced to comply with the market needs for 16-bit architectures [3].

For this thesis, we concentrate on the standard 8-bit 80C51 microcontroller. An
analysis of the synchronous architecture shows where the bulk of the power is
dissipated. In the next few chapters the design spectrum of the 80C51 architecture
will be explored with a low-power 80C51 implementation as a goal.

3.2 Synchronous architecture

Most of the material of this section is based on the Philips 80C51 Data Hand-
book [4]. This book contains about 100 pages of general architecture description;
the other 1250 pages (!) contain information about the numerous derivatives of the
80C51. We focus on the general architecture description.

3.2.1 80C51 system

The 80C51 microcontroller consists of several parts; the CPU with its memories,
and various peripheral blocks. The CPU fetches, decodes, and executes instruc-
tions. The peripherals comprise blocks as timers and counters, the interrupt con-
troller, and the port logic. An overview of the 80C51 “system” is shown in Fig-
ure 3.1.

The CPU and the peripherals run in parallel and communicate with each other
where and when necessary. The 80C51 derivatives are all based on the same CPU-
architecture but they differ in the sizes and the implementation of the memories
(ROM, OTP, Flash, etc), and in the peripherals. A derivative can have more func-
tionality implemented in its peripherals, for example an extra timer or an interrupt
controller that can handle more interrupts. But it is also possible that a derivative
has extra peripherals, like a UART (Universal Asynchronous Receiver and Trans-
mitter). For this chapter we first zoom in on the 80C51 CPU and then we take a
look at some peripherals.

3.22 80C51CPU

The CPU is the part of the microcontroller that fetches, decodes, and executes
instructions. Instruction memory and data memory are separated: the 80C51 is a
Harvard architecture. The program memory (usually implemented as ROM) can

40 Chapter 3. The 80C51 Microcontroller

Externe;l Inienupts

Interrupt [~ | program data .
Control [| ROM RAM Timer(/1
ﬁ N
CPU K
H AV4
Osc Bus Control Four I/O Ports Serial Port

v

PO P2 P1 P3
Address/Data

Figure 3.1: 80C51 block diagram.

be split into an internal and an external part. External memory is accessed using the
I/O-ports: first a 16-bit address is sent along ports 0 and 2, and then the external
memory puts the data on port 0. Most embedded 80C51 microcontrollers will
only fetch from the internal program memory. The data memory (implemented
as RAM) can also be split into an internal and an external part. The internal data
RAM contains four register banks of eight registers each. Furthermore, a small
part of the data memory is reserved as bit-addressable space. A special part of the
memory is known as the space for the Special Function Registers (SFRs). These
registers are readable and writable by the CPU, and interface between the CPU and
the peripherals.

The 80C51 instruction set contains 255 instructions, of which the opcode is en-
coded in eight bits. An instruction can carry addresses of source and destination
registers, making the instruction length encoding variable (1, 2, or 3 bytes). The
complete 80C51 instruction set can be found in the table in Appendix B. In this
table the format of the instruction opcode is F; ++Z; (2 and j in hexadecimal
notation). Note that columns 8 to F are taken together; the last three bits of the
instruction code specify a register (0..7) in a register bank. The same goes for
columns 6 and 7 that involve the instructions using indirect addressing: the last

3.2. Synchronous architecture 41

bit represents the register (0 or 1) that contains the address of the register to be
operated on. The instruction set can be partitioned into five classes:

Arithmetic instructions: ADD (additioﬁ), ADDC (add with carry), INC (incre-
ment), DEC (decrement), MUL (multiply), DIV (divide), and DA (Decimal
Adjust);

Logical instructions: ANL (logic AND on bit patterns), ORL (logic OR), XRL
(logic exclusive OR), CLR (clear), CPL (complement), SWAP and several
instructions that rotate bit patterns;

Data transfer: moving data from and to internal (MOV) as well as external data
memory (MOVX, MOVC);

Boolean instructions: instructions that operate on individual bits of registers;

Jump instructions: instructions that can conditionally or unconditionally change
the contents of the program counter.

The 80C51 instruction set supports six addressing modes:

Direct addressing: the operand is specified by an 8-bit address field in the instruc-
tion code. Only internal data RAM and SFRs (special function registers) can
be directly addressed. Example: INC eOh (operation: A := A+ 1, eOh is the
direct address of the accumulator A);

Indirect addressing: the instruction specifies a register that contains the address
of the operand. Both internal and external RAM can be indirectly addressed.
Example: INC @Ry (operation: (Rp) := (Rp) + 1);

Register instructions: the register banks, containing registers Rp ... R7 can be
accessed by instructions that carry a 3-bit register specification within the
opcode of the instruction. Example: DEC R3 (operation: R3 := R3 — 1);

Register-specific instructions: some instructions operate on specific registers. Ex-
ample: RR A, which rotates the bit pattern in the accumulator 4;

Immediate constants: the value of a constant is part of the instruction code. Ex-
ample: MOV A,#100 (operation: A := 100);

Indexed addressing: only program memory can be accessed with indexed ad-
dressing, and it can only be read. This addressing mode is intended for
reading look-up tables in the program memory where the address of in the
table is formed by adding the accumulator to a base pointer.

42 Chapter 3. The 80C51 Microcontroller

FFH: FFH
i Accessible by | Accessible by
v indirect direct
i addressing addressing
E only
80H! 80H
7FH
Accessible by
direct and
indirect . . .
addressing Special Function Registers
00H

Figure 3.2: Internal data memory.

The memory structure of the 80C51 is not uniform. This goes for the registers first;
the system is not built around a uniform register file. All registers have separate
addresses that can be part of the instruction encoding. Also the structure of the
internal data RAM is not uniform; it is even so that some addresses are shared
with the space for the Special Function Registers (SFRs), as shown in Figure 3.2.
The SFRs are the registers that interface between the CPU and the peripherals;
they contain both control information as well as data, as described in the next
section. The SFRs are accessible only by direct addressing. The upper half of
the internal data memory has the same address-space, but is only addressable by
indirect addressing. In the standard 80C51 the SFR-space is not completely filled:
the data handbook shows that this standard version has only 21 of the 128 available
places in the address space occupied by SFRs [4].

The synchronous architecture that implements the instruction set is shown in Fig-
ure 3.3. It is built around the internal bus 1B, to which all registers can write and
from which all registers can read. In the picture we see all registers, an ALU, the
SFR-space, and the four bidirectional ports. A separate bus (“B” in Figure 3.3) is
used for modifying the program counter PC.

All communications between registers use the 1B-bus, except the communications
for modifying the program counter PC. Having only one bus for these commu-
nications makes a compact implementation of the datapath possible. However, it
also implies sequential execution of instructions. These executions take place in a
number of steps, each of which communicates a value from one register to another
or does some calculation. As all communications use the bus, the steps in each in-

3.2. Synchronous architecture 43

Port 0 Port 2
Drivers Drivers

Peripheral ﬁ T\F T{Eﬁ

RAM Port 0 Port 2
Addr re, RAM L%{ch Latch (EP)ROM

T1
ALU SFR Space
psen
ale Tirgling
ea =——Control PSW ﬁ ’j .
st —— I
IR “:y II o ﬁ e

Port 1 Por

t3

Latch Latch
Port 1 Port 3
Drivers Drivers

r 3

Figure 3.3: 80C51 synchronous architecture.

44 Chapter 3. The 80C51 Microcontroller

clock o
St S2 S3 S4 S5 S6
T— Read opcode T-7Read 2nd byte
S, machine Cycle .. >;

Figure 3.4: Clocking scheme for instruction MOV A #data.

struction execution have to be done sequentially. When one would want to overlap
the execution of instructions (i.e. implement pipelining) then one would have to
separate pieces of datapath for each stage in the pipeline. Therefore it is difficult
to implement pipelining using this architecture. (Remark: The 80C51XA (eX-
tended Architecture) 16-bit microcontrollers are implemented using a three-stage
pipeline [3]). In the 80C51 we see that there are two separate pieces of datapath:
the internal bus IB and the program-counter bus B. Therefore we can do two steps
in parallel per step in the instruction execution: one communication using bus 1B
and one communication using bus B. It is, for example, possible to fetch a byte
from the program ROM while incrementing the program counter PC.

The 80C51 instructions require a number of steps to execute, and therefore it is
important to look for a scheme in which all executions fit. The instructions are
executed with respect to a clocking scheme. Each instruction takes one, two or
four machine cycles to execute. Each machine cycle consists of six slots, and each
slot takes a clock cycle. Only the divide (DIV) and the multiply (MUL) instructions
take four machine cycles; the other instructions take one or two machine cycles.
(Remark: the 80C51 Data Handbook specifies that each slot in the instruction ex-
ecution takes two clock cycles [4]. Recent synchronous 80C51 implementations,
however, use internally only one clock cycle per slot.)

The clocking scheme of instruction MOV A #data, which is a 2-byte 1-cycle in-
struction, is shown in Figure 3.4. The execution steps that take place in the six
slots are listed in Table 3.1. In this table we see the required control signals and the
data transfer actions that take place in the synchronous implementation to execute
this instruction. Note that the IB-bus is used in all slots except slot 5. When we
consider all 80C51 instructions we see that the IB-bus is used in i— of all slots. The
actions in upper case letters in Table 3.1 denote required actions for this instruc-

3.2. Synchronous architecture 45

St | s2 | s3 | s4 | s5 | s6
ROM—IB [acc—ib | ram—ib | ROM—IB [QA=000 | ALU—~IB
IB»IR | ib—t2 | ib—buffer | IB5T2 | (ADD) | IB2ACC
0—-T1
INCR PC INCR PC

Table 3.1: Instruction execution scheme of MOV A # data.

S1 S2 | S3 S4 S5 S6
Cl || ROM | ACC— | RAM [ROM | OP— | ALU—
access T2 access | access | T1/T2 | destination
S1 2 | s3 S4 S5 S6
C2 || ROM calculate PC | OP— | ALU—
access | jump address incr. | T1/T2 | destination

Table 3.2: General 80C51 instruction execution scheme.

tion; the lower case letters denote redundant actions. Execution of these redundant
actions simplify the implementation of the CPU, but they have no impact on the
state of the controller after completion. In the above instruction, for example, the
instruction code consists of two bytes that are fetched from the program ROM in
slots 1 and 4. In these slots also the program counter is incremented. In slot 6 data
is transferred to the accumulator. In slots 2 and 3 redundant actions take place: the
contents from the accumulator is copied into T2 and an item from the data RAM is
placed in the Buffer.

The general execution scheme in which all 80C51 instructions except the divide
and multiply instructions (DIV and MUL) fit is shown in Table 3.2. The DIV and
MUL instructions are implemented using the shift-and-add algorithm as described
in [15, 20]. An instruction consists of one, two, or three bytes; an opcode and two
bytes containing operand addresses or immediate data. These bytes are fetched in
the first and fourth slot of the first machine cycle and the first slot of the second
machine cycle. Slot 2 of the first machine cycle copies the contents of the accumu-
lator into register T2. For many instructions this is a redundant action. Slot 3 does
a RAM access (which also includes access to one of the four register banks). Slots
5 and 6 of the machine first cycle take care of the ALU operation to be performed

46 Chapter 3. The 80C51 Microcontroller

and the write-back to the destination register. Machine cycle 2 starts with another
ROM-fetch, after which the jump instructions calculate their offset (slots 2 and 3).
For 2-cycle non-jump instructions, the actions in these slots are redundant. The
fourth slot increments the program counter, and the 5th and 6th slot take care of
an ALU operation. It turns out that approximately % of all slots contain redundant
actions.

When drawing a complete instruction execution scheme of the 2-cycle instructions
it turns out that in the second cycle not much “useful” work is done. This is one of
the major aspects of the synchronous implementation where we can save on power
and on execution time; leave out the redundant actions and execute only those
statements that are required for that instruction. In terms of the power equation
P = V; q* fo * C * %a, reduce the activity factor « to save power.

3.2.3 80CS51 peripherals

Peripherals assist the CPU in its task and take care of the communication between
the CPU and the outside world. Examples of peripherals are timers, the interrupt
control, the input/output block, and the UART.

Timers and counters provide for timing references; they can be configured to
either count multiples of clock-ticks (in timer mode) or events on external pins
(in counter mode). In all of these events the timers or counters are incremented.
Their values can be inspected and they generate an interrupt when they overflow.
Timers and counters can serve as a timing reference to either the CPU or to another
peripheral.

The Interrupt controller takes care of the proper dealing with (possibly external)
interrupts. It decides which interrupt has priority over another and it supplies the
CPU with an interrupt address vector. This vector points to the piece of program
code (the interrupt service routine) that the CPU executes upon occurrence of an
interrupt.

The Input/Output (I/0) peripheral takes care of the communication between the
CPU and the outside world. It is involved in executing the proper protocol when
external memory access is required. The protocol is an agreement between the mi-
crocontroller and the environment on the validity of data on external ports. In order
for a new design to work in an existing environment, it is essential that the new de-
sign implements these protocols. An example of this issue of timing compatibility
with an existing environment is discussed in Chapter 4 of this thesis.

The UART (Universal Asynchronous Receiver and Transmitter) is a peripheral

3.3. CISC-nature of 80C51 47

that takes care of bit-serial transmission and reception of bit-patterns. A standard
80CS51 UART can be configured in four modes with various baud-rates that depend
either on the clock or on a timer-overflow. The configuration of the UART is done
in software, by the program running on the 80C51 CPU that reads and writes the
SFRs for the UART. An asynchronous implementation of the UART for the 80C51
is discussed as a case-study at the end of Chapter 6.

The bridge between CPU and peripherals is formed by the Special Function Regis-
ters. These registers are readable and writable by the CPU and by the peripherals.
They can be divided in control registers and data registers. The control registers
specify the configuration of the peripherals and contain the interrupt bits. The
data registers are used for communication between the CPU and the environment.
Chapter 6 describes an implementation of the peripherals and their communication
with the CPU, as well as with the environment.

3.3 CISC-nature of 80C51

The literature of microprocessor design makes a distinction between two classes
of processors: RISC (Reduced Instructions Set Computer) and CISC (Complex In-
struction Set Computer) [15, 11]. These classes differ in the complexity of the
functionality of the instructions, the style of encoding of the instructions, and the
uniformity of the register structure in the implementation. The 80C51 microcon-
troller can be considered a CISC because of the following characteristics.

1. There are various addressing modes: direct addressing, indirect addressing,
register bank addressing, and so on. It is even the case that the same ad-
dresses are mapped onto different register spaces, as was shown for the SFRs
and the data RAM.

2. The instructions are encoded in variable length, either in one, two, or three
bytes, of which the first byte contains the opcode of the instruction.

3. The register structure is not uniform. There are four register banks that reside
in memory. Furthermore, there is the SFR-space that is only partially filled.

4. 1t takes a variable number of clock cycles to execute an instruction. We have
seen that each instruction execution fits into the execution scheme as shown
in Table 3.2. Each instruction takes either one, two, or even four machine
cycles (i.e. 6, 12, or 24 clock cycles) to execute.

48 Chapter 3. The 80C51 Microcontroller

In contrast, the basis of a RISC (Reduced Instruction Set Computer) processor
is its uniform register structure. For example, a load-store architecture like the
DLX [15] is built around a register file. All instructions access registers in this file
and perform operations on them. Therefore there is only one addressing mode in a
RISC machine: the one that addresses a register in the register file by its index.

In a RISC instruction set the instructions have a fixed length. For example, the DLX
has 32-bit wide instructions, as have the MIPS R3000 [18] and the ARM6 [11]. In
these machines the instruction opcode can be split into several fields, for example
an opcode field, three indices for registers (two source registers and one destina-
tion), and an immediate field. The main advantage of fixed-length instruction en-
coding is the simplicity of the decoding in the processor, which is good for speed
and power dissipation. Furthermore, for each instruction only one access to the
program memory is needed. On the other hand, fixed-length instruction encoding
implies redundancy; the instruction words are larger (in number of bits) than is
strictly necessary. In contrast, the 80C51 instruction set contains 255 instruction
opcodes encoded in 8 bits, which keeps redundancy to a minimum. However, as
instructions may carry immediate values or addresses of registers, several accesses
to program memory are needed in the execution of some 80C51 instructions.

Instructions in a RISC instruction set tend to be simpler in functionality than in a
CISC instruction set. This is a result of the uniform register space and uniform ad-
dressing. Therefore, a RISC instruction can in general be executed in fewer steps
than a CISC instruction. These steps are called “stages” in a RISC instruction ex-
ecution. A DLX instruction, for example, can be executed in only 5 stages: an
instruction fetch; the instruction decode and register file access; an ALU opera-
tion; a memory access; and finally a write-back into the register file. The ARM6
and ARM7 instructions can be executed in only three stages (fetch, decode and
execute) [11].

In a RISC machine the datapath of the processor and the execution schemes of
the instructions are designed simultaneously. Each stage in the execution scheme
is designed in such a way that it uses a separate part of the processor’s datapath.
Also, each stage can generally be executed in one clock cycle. This makes it pos-
sible to overlap execution of consecutive instructions, which is implemented by
pipelining. Pipelining makes it possible complete one instruction execution per
clock cycle, i.e. achieve a CPI close to 1 (CPI = Clock Cycles per Instruction). The
80C51, however, is a sequential machine in which each slot (stage) of the instruc-
tion execution uses the bus in the datapath. Therefore, instruction execution cannot
be overlapped unless a stage does not use the bus (i.e. when there is a communica-
tion path that bypasses the bus). When a slot takes one clock cycle, the CPI of the

3.4. Power analysis 49

80C51 is approximately 9, depending on the program that the CPU runs. This is a
higher number than the CPI of a many RISC machines.

On the other hand, an instruction in a CISC-machine is more powerful and does
more work, in general, than a RISC instruction. Indirect addressing, for example, is
possible in various instructions in the 80C51, but it would take at least two separate
instructions in a RISC (one for fetching the address, the second for collecting the
data). Another example is the 80C51 instruction DJNZ (Decrement and Jump if
Not Zero). This instruction executes the following steps:

e First, the value of a register is decremented;

e Then, if the result is not equal to zero, the jump is taken.

In a RISC instruction set the functionality of the DJNZ instruction would take at
least two instructions: one for decrementing the register, and the second to take
the jump when the result would not equal zero. In general, when we compile the
same program to RISC instructions and to CISC instructions, the CISC program
will contain fewer instructions.

3.4 Power analysis

In this section we describe a model of the power dissipation of a synchronous
80CS51 to gain insight in where the power is dissipated. This model is used only
for getting a feel of where we should pay attention to when reducing the power
dissipation.

We take a netlist of a synchronous 80C51 including peripherals, as starting point.
This 80C51 is a recent VHDL-synthesized implementation by Philips [35]. The
netlist is used for simulation in which we can find activities of the nets. The bench-
mark for simulation is a program that contains all instructions of the 80C51 in-
struction set.

The synchronous 80C51 implementation can be partitioned into the control and the
datapath, as shown in Figure 3.5. An important part of the datapath is the bus. Both
the control and the datapath consist of flipflops and combinatorics. The flipflops
are steered by the clock. The flipflops that are connected to the bus are multiplexed,
so that they keep their value when they are not addressed in a bus-communication.

For the power we take the formula as given in Section 1.3:

50 Chapter 3. The 80C51 Microcontroller

— bus .
control _contr Flipflops
Combinatorics
- ‘QﬂCk
i driver
Combinatorics
datapath Flipflops
MUX
bus
driver g

Figure 3.5: Model of a synchronous 80C51 implementation.

1 2
P= Ea*C*fclk*Vdd

felk and V;d are constants in a simulation. The variable components in this for-
mula are @ and C. For & we take a.oc = 2, implying that a gate has @ = 1
when the output of that gate switches once at each clock cycle.

e For the flipflops, we distinguish between the datapath and the control of the
circuit, as they show a different activity a. Simulation shows that for the
datapath we have o = 0.06, and for the control we have @ = 0.2, which is
due to the compact encoding of the state space. For the capacitance Cg of
the flipflops, we take the following:

Ctt = Ct clock T Ctt data

Cff,clock = Cclock, internal Cclock, input
Cff,data = Cdata, internal Cdata, input + Cyire

3.4. Power analysis 51

For the wire capacity of the data part we multiply the average fanout with a
standard capacity number: Cg, ¢ * fanoutaverage-

e We take the combinatoric circuitry of the control and the datapath together.
We adopt the following model: we count the number of gate equivalents
(NAND-2) and observe from simulation that the average activity o = 0.06.
For the capacitance we take

C

comb —

C

comb, input + Ccomb, internal T C

wire
For the wire capacity we take the same formula as used for the wire capacity
of the ﬂlpﬂOpS Cfanout * fanoutaverage.

e For the bus, we observe that & = 0.43 from simulation. This is also ex-
plained by the fact that the bus is used in approximately 75% of all slots for
communicating uncorrelated data, which means that on average half of the
wires will switch per bus communication. For the capacitance we take

Cbus = Owire + Cdriver

For the wires we estimate the length of the wires in the layout, which is 1.5
by 1.5 mm. A bus wire has 30 flipflops connected to it. We estimate that
the length of a bus wire is approximately 12 mm. This number is multiplied
with a capacity per mm, which is known from the technology in which the
synchronous chip was produced. The load capacitance is counted with the
the flipflops.

e For the clock, we observe that o = 2. The capacitance is estimated in the
same way as for the bus:

C C

clock = Cwire T Cariver

For the length of a clock wire, we observe that there are in total 732 flipflops
to be controlled. Suppose that these are distributed in a matrix of 27 by 27
flipflops, then we have a clock wire length of approximately 41 mm. The
load capacitance is counted with the flipflops.

For the bus we have to make a correction. A number of flipflops in the control
steer the bus communication; the energy dissipated by these flipflops is added to
the bus-energy. Furthermore, the multiplexer to the bus consists of complex gates

52 Chapter 3. The 80C51 Microcontroller

15% ff (datapath)
34%

ff (control)

Combinatorics 13%

25%

Figure 3.6: Distribution of the energy dissipation in the synchronous 80C51. A
considerable part of the energy dissipated by the flipflops is due to
clocking. This makes the total clock energy about 50%.

in the netlist implementation; for this combinatoric part of the circuit we estimate
the energy dissipation and add it to the bus-energy. We then obtain the energy-
dissipation distribution as shown in Figure 3.6.

From this distribution we see two main sources of energy dissipation. First we
have the control of the circuit: when the clock energy dissipated in the flipflops is
added to the total clock energy, then this part contributes about 50% to the total
dissipation. This coincides with numbers in literature [21]. Second, the bus energy
is a source of possible savings.

3.5 Low-power opportunities

Taking the architecture of the synchronous implementation and the analysis of the
previous section in mind we observe the following low-power opportunities.

1. The centralized control with a compact encoding of the state space implies
a high switching activity in the control of the synchronous implementation.
A more redundant encoding of the state space would result in a larger con-
trol structure, but the changes between states could be encoded more locally.
This would result in less activity in the control. However, it would require
more flipflops for the state encoding, and therefore more clock power. The

3.5. Low-power opportunities 53

centralized control fits nicely with the sequential execution of instructions
using the slot-structure. In each slot some action (i.e. communication in the
datapath) is taken, whether that is necessary or not. For the instruction exe-
cution scheme of the 80C51 it turns out that approximately },7 of the actions
in the slots are redundant. Distributed control enables the designer to leave
out a communication when it is redundant. This will cost some extra area for
the control, but it can also save activity in the datapath and in the control.

2. The clock enables all registers (flipflops) in the synchronous implementa-
tion. Some implementations have auxiliary clocks running at one tick per
machine cycle, e.g. to support ROM access in the first slot, or to reduce the
activity in the timer-peripheral. However, for the CPU, the sequentiality of
instruction execution makes it necessary for the clock to generate at least six
and sometimes twelve ticks per instruction. It turns out that less than 10%
of all registers is updated in a slot. When all registers are clocked, many of
these clock cycles are thus not necessary for the majority of the registers.

3. The IB-bus stands central in the synchronous architecture. All registers are
connected to this bus, making its wires in the circuit layout relatively long,
resulting in a high switching capacitance. Furthermore, it turns out that the
IB-bus is used in approximately ;Zl of all slots for communicating uncor-
related data. Therefore, in each slot of an execution of an instruction, on
average half of the wires of the bus will switch, implying a high switching
activity on the bus.

4. The datapath of some recent synchronous implementations is based on master-
slave flipflops for each bit in a register. It is often possible to re-arrange the
structure of communication in the chip in such a way that latches can be used
instead of flipflops.

5. For the peripherals we can make the observation that their switching activity
is generally lower than the clock frequency to the CPU. Furthermore, the
activity can be quite irregular. An interrupt controller is a good example; it
only needs to be activated when interrupts occur, which can be rare events
that are not evenly spread in time. Making the peripherals clock-driven burns
power unnecessarily. Even when there is some regularity in the activity of a
peripheral, it is hardly necessary to keep up with the pace of the clock. An
example of this is a timer which counts the number of executed instructions:
it needs not to be triggered with the frequency of the clock to the CPU.

6. The synchronous 80C51 has two power-saving modes: /dle mode and power-
down mode. Idle mode gates the clock off the CPU but keeps the peripherals

54 Chapter 3. The 80C51 Microcontroller

clocked, to make immediate response to an interrupt possible. This interrupt
controller is then clock-driven, burning power unnecessarily. Power-down
mode stops the oscillator from running with the disadvantage that it takes
time (a few ms) to restart the system.

There are five low-power opportunities of asynchronous circuits described in [47].
These opportunities are: reduced clock power, distributed control, architectural
freedom, elimination of standby power, and adaptive scaling of the supply volt-
age. This article shows two applications where these low-power opportunities of
asynchronous circuits are exploited: the DCC error corrector and standby circuits
for pagers. The six low-power opportunities for the 80C51 coincide with the first
four opportunities in [47]. Adaptive scaling of the supply voltage is left outside the
scope of this thesis.

With the six low-power opportunities for the 80C51 in mind, we develop a Tangram
program of the 80C51 microcontroller in the next chapters. First a global overview
of an asynchronous 80C51 is given, and the design decisions and their implications
at this global level are discussed.

Chapter 4

An Asynchronous 80C51
Microcontroller Architecture

This chapter gives a global overview of the asynchronous 80C51 microcontroller
that we will describe in detail in the next chapters. The synchronous implementa-
tion is divided into several blocks, viz. the CPU and the peripherals. In principle,
we wish to make an asynchronous implementation of the 80C51 that is compatible
with the synchronous imiplementation. The situation we then aim for is that the
asynchronous version is a plug-and-play substitute for the synchronous one, i.e.
showing the same external behaviour. The issue of compatibility is explained in
more detail in Section 4.3.

Asynchronous ICs have no clock, i.e. there is no global timing reference to the
system. The synchronous 80C51 implementation has the notion of a global timing
reference, which is used for correct functioning. An asynchronous implementation
of the microcontroller should therefore have facilities to mimic the synchronous
timing behaviour when and where necessary, without burdening the potential ad-
vantages of asynchronous implementation, i.e. low-power, average case execution
time, and low electro-magnetic emission.

This chapter explains the partition of the various blocks and their interfaces in the
asynchronous 80C51 microcontroller. Furthermore, the issue of compatibility is
discussed.

55

56 Chapter 4. An Asynchronous 80C51 Microcontroller Architecture

4.1 Partition of the 80C51 microcontroller

In the previous chapter we have seen that the synchronous 80C51 microcontroller is
divided into the CPU with embedded memories, and the peripherals (Figure 3.1).
They communicate with each other using the IB-bus, which is controlled by the
global clock signal.

The CPU is the part of the microcontroller that fetches and executes instructions.
To this end, it makes use of two memories: one for the program code and one for
the data. The specification of the CPU is the instruction set, which is fixed. The
instruction set specifies the registers in the CPU, the various addressing modes,
and the operations that the CPU can perform. For most derivatives of the micro-
controller, the CPU is fixed (as the instruction set is fixed), but the sizes and kinds
of the memories ((E)PROM, FLASH, OTP etc.) may differ.

A peripheral is a small block of hardware that can perform a specialized and usu-
ally well-defined task. An example of a peripheral is the timer block that contains
a number of timers to be configured to count events or units of time. Peripherals
also form the boundary of the chip to the environment. For example, the port logic
can be considered to be a peripheral. Peripherals communicate with the CPU using
shared memory, viz. the Special Function Registers. These registers contain the
control and data information for the peripheral.

Peripherals make the difference in functionality between the derivatives of a mi-
crocontroller. For example, a derivative may contain an extra timer, which is then
an extension of the timer-peripheral. But a derivative may also contain a complete
new peripheral like a UART, which takes care of serial transmission and reception
of data. The operation of peripherals is often demand-driven as opposed to clock-
driven. For example, the interrupt controller checks if an interrupt has occurred.
An interrupt is an asynchronous event: it is not known on beforehand when an
interrupt will occur. An asynchronous circuit is demand-driven by nature: a piece
of circuitry only starts operating when there has been a request to do so. There-
fore the demand-driven operation of peripherals fits nicely with the demand-driven
operation of an asynchronous circuit.

To allow for fast generation of a new derivative of a microcontroller it is impor-
tant that new peripherals can be added to an existing microcontroller. Therefore
we choose to design the microcontroller in a modular fashion, containing a CPU
and peripherals. Furthermore we have a Synchronizer unit that deals with the im-
plementation of timing compatibility, as we will discuss later on this chapter. The
asynchronous 80C51 is shown in Figure 4.1.

4.1. Partition of the 80C51 microcontroller

57

Program Data
ROM RAM
Reset
Handshake
CPU
Power-on
Reset

Peripheral 1

Peripheral 2

Peripheral n

]

Synchronizer

Clock

psen

ale

Figure 4.1: Global structure of an asynchronous 80C51 microcontroller. The mi-
crocontroller consists of a handshake CPU, a number of peripherals
and the Synchronizer-unit, which serves as a timing reference to some
peripherals and to the environment. This chapter discusses the compat-
ibility issues and the Synchronizer. Chapter 5 of this thesis deals with
the handshake CPU, and Chapter 6 discusses the peripherals and their
interfaces to the CPU and to the environment.

58 Chapter 4. An Asynchronous 80C51 Microcontroller Architecture

4.2 Communication

For the internal communication between CPU and peripherals on the asynchronous
80C51 we choose handshake communication. This has the advantage that it is pos-
sible to communicate between CPU and peripherals only when and where neces-
sary, which potentially keeps the energy dissipation to a minimum. Also, hand-
shake communication between the various blocks makes it possible to design the
system within the Tangram framework.

The 80CS51 uses the Special Function Registers as communication medium be-
tween the CPU and the peripherals. The SFRs are part of the register space as
specified by the instruction set. Therefore we adopt the same space for the SFRs in
the asynchronous 80C51. We also would like to exploit the advantages offered by
the asynchronous implementation as much as possible. For example, none of the
components, CPU and peripherals, should be blocked from operating when that is
not necessary. Both the CPU and the peripherals should be able to instantly access
and modify the SFRs whenever necessary. In other words, we would like to de-
couple their operation and communicate between them only when and where nec-
essary. Furthermore, no component should dissipate energy unnecessarily. These
constraints make it necessary to locate the SFRs in between in the CPU and the
peripherals, using a so-called SFR-interface. This interface implements the above
mentioned constraints. The design of the peripherals and their interfaces is dis-
cussed in detail in Chapter 6.

The handshake CPU communicates with its memories using handshake interfaces.
The functionality of the program memory can be described in Tangram by receiv-
ing the address and sending the data at that address in the program ROM:

ROM : proc() . forever
do ROMaddr?addr
; ROMdata!ROM[addr]
od

The data RAM is different from the program ROM in that it can be read and written.
The difference between the two is encoded by an extra bit that is supplied with the
address (as we have seen in Chapter 2 with the Move Machine):

RAM : proc() . forever
do RAMaddr?<<rw,addr>>
s if rw
then /* Read */ RAMdataout!RAM[addr]
else /* Write */ RAMdatain?RAM[addr]
fi
od

4.3. Synchronization: compatibility 59

The only interface channels to the CPU that are not handshake channels, are the
Reset and Power-On-Reset lines. A transition on these lines forces the microcon-
troller to stop its current activity and replace the state by the initial state. This
so-called special condition, together with the handling of interrupts is discussed in
Chapter 5 about the design of the CPU.

4.3 Synchronization: compatibility

A chip is fully compatible with another chip when their packages are replaceable
without making any adjustments to the environment. Put differently, two ICs are
fully compatible when the environment cannot distinguish between the two. Com-
patibility can be divided into two classes:

® Bit-compatibility: two ICs are bit-compatible when they can execute the
same program code and produce the same data;

o Timing-compatibility: both ICs implement the same assumptions on timing.
For example, when the 80C51 accesses external memory using two external
ports, there is a prescribed protocol where signals denote the validity of data
on these ports. The environment inspects these signals and acts accordingly.

Pin-compatibility combines both bit and timing-compatibility and demands that a
pin on one chip has the same functionality as the pin at the same location on the
other chip. Therefore, also the pins for power and ground on both chips have to be
at the same location. Two chips are pin-compatible when their pins show the same
bit and timing behaviour when communicating with the same environment.

Bit-compatibility is ensured by taking the same instruction set and the same encod-
ing as starting point. That is what we will do with the asynchronous 80C51: it will
run the same program code as its synchronous counterpart.

The issue of timing-compatibility has to be paid special attention to. Asynchronous
circuits have the property that they run freely, i.e. as quickly as possible and with-
out a global clock to control their operation. Asynchronous circuits therefore show
average-case execution time: some tasks take a short time and some take a longer
time. An asynchronous CPU executes some instructions in shorter time than oth-
ers. A simple MOV-instruction, for example, is finished earlier than a complicated
multiply (MUL) instruction. In the execution schemes of the synchronous 80C51
instructions we also see variance in the instruction execution time: an instruction

60 Chapter 4. An Asynchronous 80C51 Microcontroller Architecture

may take one, two, or four machine cycles to complete. However, an asynchronous
CPU shows a more fine-grained variation in instruction execution times.

It is possible, in principle, to execute instructions in an asynchronous chip at the
same pace as in a synchronous chip. The asynchronous chip would then have to
synchronize with a timing reference (i.e. a clock) to mimic the synchronous timing
behaviour. Suppose that all timing requirements are met, i.e. all actions between
two clock ticks in the synchronous chip can also take place between two clock ticks
in the asynchronous chip. Then the asynchronous chip would implement worst-
case execution time, just as the synchronous chip. Therefore the asynchronous
1C would not show the potential advantage of average-case execution time any-
more. Therefore we choose to synchronize the asynchronous chip with a clock
only when necessary. We want to exploit the advantage of average-case execution
time and choose not to synchronize the CPU with the clock during the execution
of each instruction. Instead we choose to start the execution of the next instruction
immediately after finishing the previous one. Therefore our implementation of
the asynchronous 80C51 will not be fully timing compatible with its synchronous
counterpart.

In the 80C51, various peripherals need a timing reference to perform their tasks.
A timer, for example, can be configured in such a way that it counts machine
cycles (i.e. blocks of 6 clock ticks) for which it needs a timing reference. Another
example is the UART as introduced in the previous chapter. It operates at a certain
baud-rate, which can be derived from a clock signal, for example.

Therefore we need a timing reference (i.e. a clock) to the asynchronous 80C51
to be able to make it timing-compatible with its synchronous counterpart where
necessary. However, we want to distribute this clock signal (or a derivative of
the clock) only to those blocks of the circuit that need it, avoiding unnecessary
energy dissipation. The various blocks should run as autonomously as possible,
only synchronizing with each other and with the clock when necessary.

To this end, we have a separate block in the asynchronous microcontroller: the
Synchronizer (Figure 4.1). This block takes an external clock signal as input and
communicates with peripherals that need a timing reference signal. These commu-
nications can in principle be implemented using handshakes, but that would result
in the use of arbiters in the peripherals to choose between a communication from
the CPU or from the Synchronizer [30]. Another possibility is to use internal direct
channels. These channels are implemented using a single wire without handshake
protocol. In Tangram, a direct channel d can be inspected for its value (by the
statement sample(d)), for up-going (edge(d/)), down-going (edge(d\)), or
any transition (edge (d)). The use of direct channels saves the implementation of

4.3. Synchronization: compatibility ST 61

arbiters, which is good for area, speed, and execution time. On the other hand,
the use of direct channels also implies that the designer has to verify that timing
constraints are met in the implementation..

The Synchronizer also takes care of external timing signals that are also imple-
mented as direct channels. Consider the external memory access mode of the
80C51 [4]. External memory access takes place in two steps:

e first, a 16-bit address is sent along ports 0 and 2;

e then, the environment provides the microcontroller with the 8-bit data (the
instruction byte) along port 0.

The environment has to determine whether the microcontroller wants to access
the external memory, when the data on ports 0 and 2 (the address) is valid, and
when the data from the environment has to be valid on port 0. To this end, the
microcontroller provides two extra signals, psen and ale, to determine the data-
validity. These signals depend on the global clock signal, and the protocol is shown
in Figure 4.2 [4].

The protocol is as follows. Halfway through slot 1, both psen and ale go high. At
the beginning of slot 2, the microcontroller puts the 16-bit address on port O (the
low-order eight bits) and port 2 (the high-order eight bits). Halfway through slot
2 ale goes low, to indicate that the environment can latch the the data on port 0
in an external latch (address latch enable). At the beginning of slot 3, psen goes
low, indicating that port 0 is now free to put data on. The environment now gets
the time to put the data on port 0. At the beginning of slot 4 this data is supposed
to be valid on this port in such a way that the microcontroller can read it.

The dotted arrows indicate that the transitions on the wires psen and ale and the
data-validity on port O and 2 are dictated by the clock. In Tangram, we can mimic
the protocol by using direct channels. The Synchronizer inspects transitions on the
clock, and synchronizes with the CPU, which takes care of the data on the ports.
The two corresponding pieces of Tangram text for the Synchronizer and for the
CPU are shown in Figure 4.3. At slot 4, 5, and 6 of the machine cycle the same
protocol can be repeated. In this way it is possible to do two external memory
accesses per machine cycle, viz. in siot 1 and 4 of the synchronous instruction
execution scheme (Table 3.2).

This implementation imposes some timing requirements on the implementation of
the Synchronizer and the CPU. For example, signal ale going low indicates to the
environment that the data on Port 0 (and Port 2) is valid. The CPU is signaled one

62 Chapter 4. An Asynchronous 80C51 Microcontroller Architecture

| s s2
_clk [—i o B
Synchronizer ale__ * 2“
psen E

CPU

LPZ pch X

pch

Figure 4.2: External access protocol in the synchronous 80C51: external signals
psen and ale denote the validity of the data on ports 0 and 2.

Synchronizer CPU-fragment
forever

do sync~ ; sync~

; edge(clk) || ale:=1 || psen:=1

; edge(clk) ; sync~ ; sync~

; edge(clk) ; ale:=0 ; (pOout!pcl
; edge(clk) ; psen:=0 | | p2outipch
; edge(clk))

; edge(clk) ; sync~ ; sync~

od

; pOin?data

Figure 4.3: Tangram program for the Synchronizer (left) and the corresponding
Tangram program fragment for the CPU (right), implementing the tim-
ing protocol of Figure 4.2. The arrows indicate how to read through

the combined program.

4.3. Synchronization: compatibility

63

clk <F ° P

Synchronizer | ale ‘I

psen“| L 1

pO " pcl
CPU -

T

Figure 4.4: When the completion of the output of pcl along p0 is used to signal
the 1-to-0 transition on ale, one clock tick can be saved (five instead
of six clock ticks) to implement the protocol (cf. Figure 4.2).

Synchronizer CPU - fragment
forever

do sync~ < | ; sync~

; edge(clk) || ale:=1 || psen:=1

; edge(clk) ; sync~ ; sync~

; sync~

; ale:=0

; edge(clk) ; psen:=0
; edge(clk)

; edge(clk) ; sync~

od

; (pOoutl!pcl
|| p2out!pch
)

; sync~

; sync~
; pOinz?data

Figure 4.5: Tangram program for the Synchronizer (left) and the corresponding
Tangram program fragment for the CPU (right), implementing the tim-

ing protocol of Figure 4.4.

64 Chapter 4. An Asynchronous 80C51 Microcontroller Architecture

clock transition earlier to put this data on these ports. Therefore, the timing interval
between the two clock edges must be large enough for the Synchronizer and the
CPU to synchronize and output the data along the ports.

We can do with a slightly slower clock in this case by noticing that ale may go
low when the low-order part of the address is sent along Port 0. We then derive
this fact from these actions being completed, rather than from the clock signal. We
can then do the protocol with one clock tick less (i.e. five ticks instead of six), as
shown in Figures 4.4 and 4.5. In an asynchronous implementation we can derive
the timing of an event (1-to-0 transition of ale) from the completion of another
event (pOout ! pcl), as opposed to deriving it from the clock. This protocol can be
repeated, but the difference with the protocol in Figure 4.2 is that the new execution
of the protocol starts with a down-going edge instead of an up-going edge of the
clock.

This scheme imposes another timing requirement on the implementation. The in-
terval between the second and the third clock edge of the protocol must be large
enough to synchronize between the Synchronizer and the CPU, put the data on the
ports, establish a 1-to-0 transition on ale, and release the data on port 0.

In this way we can, in principle, build an interface between an asynchronous IC
and a synchronous environment within the Tangram framework. This is possible
under the assumption that the synchronization between the handshake modules and
the actions these modules have to take, take place fast enough to meet the timing
constraints.

In the asynchronous implementation of the 80C51 that we will develop over the
next chapters, we make the chip bit-compatible in that it can run the same program
code as its synchronous counterpart. For timing compatibility we implement the
above scheme for external memory access.

4.4 Modular design

In terms of Tangram, the modular design as shown in Figure 4.1 can be expressed
by writing procedures for the CPU, the Synchronizer, and the peripherals. These
procedures implement both the functionality of the blocks as well as their inter-
faces. The procedures run in parallel and constitute the microcontroller system:

4.4. Modular design 65

microcontroller
: proc() . CPU()
|| Synchronizer()
| | peripheral 1()
|
||

peripheral n()
The CPU is the most complex of these blocks, and the most interesting part of the
microcontroller for an exploration of the design space. Furthermore, simulations of
a synchronous implementation of the 80C51 show that in normal operation mode
the CPU accounts for 50-60% of the total power dissipation. Therefore we first
concentrate on the design of a low-power CPU in the next chapter. Chapter 6
discusses the design of the peripherals.

66

Chapter 4. An Asynchronous 80C51 Microcontroller Architecture

Chapter 5

An Asynchronous 80C51 CPU

This chapter addresses the design of a 80C51 handshake-CPU in Tangram. The
CPU fetches and executes instructions, and is specified by the instruction set.
Therefore we first focus on the instruction set and show what resources we need to
implement the CPU. It turns out that the CPU can be split into two parts: the data-
path and the control. The datapath contains the registers, communication paths and
arithmetic circuitry; the control decodes the instructions and steers the datapath to
execute them. For both parts we have various design alternatives that we discuss in
this chapter. It turns out that both for the datapath and the control, the best design
in terms of area, energy dissipation, and execution time, uses a mixture of these
various design alternatives.

5.1 CPU and instruction set

The specification of the functionality of the CPU is given by the instruction set of
the processor. An instruction set takes a set of registers and a set of values that the
registers can assume. The state can then be viewed as a set of pairs, of which each
pair represents a register and an associated value. Formally, when the instruction
set assumes NN registers, we have the following formula:

STATE : {(R;,v;)|0 <i< N}.
An instruction can be seen as a mapping from states to states:
instr : STATE — STATE

67

68 Chapter 5. An Asynchronous 80C51 CPU

Instruction Class Specification

ALU, Logical, Boolean PC:=PC+c
i Biest := ALU(Rgpe1, By, 0pC)

Data transfer PC:=PC+c
5 Ryest = Rsrc
Jump and Branch PC:=PC+ec

; WWALU(Rgcq, Ry, 0pC)
then PC := ALU(PC, offset, add)
else skip
fi

Table 5.1: Instruction classes and their specification. R . denotes a destination
register, and R;.1, B o0, and Rgre denote source registers. ALU is a
function of which the functionality is determined by opcode opc. PC'is
a special register, viz. the Program Counter, to which in each instruction
class (usually small) constant ¢ is added. The offset can be a positive or
a negative value.

There is one special register, the Program Counter PC. The program counter is
used to point to an instruction opcode. When an instruction is executed, the Pro-
gram Counter is adjusted in such a way that it points at the next instruction. An
instruction specifies which registers it operates on and which register values are
changed by the instruction. This specification can be expressed by assignments. In
the 80C51 we have various classes of instructions, as discussed in Chapter 3. The
associated assignments that specify the instructions are shown in Table 5.1.

From Table 5.1 we see that we need two kinds of resources to implement instruc-
tions:

e Registers and communication paths between them;

e Arithmetic to perform operations on the values in registers (as denoted by
the ALU function).

5.1. CPU and instruction set 69

These two components constitute the datapath of the CPU. A datapath is capable
of performing operations on register values and communicating these values. A
control structure uses these resources and determines what parts of the datapath
are used in what order in time. The control of a CPU has the following tasks:

e fetch an instruction from memory and add the constant ¢ to the program
counter;

e decode the instruction and determine the actions that the datapath has to take;

e control the datapath in such a way that the specification of the instruction is
satisfied.

It depends on the structure of the datapath how a suitable control structure can
be implemented. The control steers the various parts of the datapath, and deter-
mines what actions are taken in what order. Thus, the control also determines the
concurrency and sequentiality in the operation of the circuit.

In the CPU we can implement a separate piece of datapath for each instruction,
implying that we do not need to reuse pieces of hardware for different instructions.
However, when we look at the specification of the various instructions in an instruc-
tion set, we can think of splitting each instruction execution into various steps: we
then have an instruction execution scheme. We can look for overlap between the
schemes for all instructions and try to reuse hardware for these steps. The circuits
can then be produced cheaper because they implement fewer transistors.

Take the ALU-instructions in Table 5.1 as an example. Once the instruction is
fetched and the program counter is incremented, the remainder of its specification
is the assignment

Ryest = ALU (Rgpe1, Rgpen, 0pC).

We wish to implement the ALU -function independent of the source and destination
registers, and therefore we introduce auxiliary registers X,Y, and Z. We can then
satisfy the specification by three steps as shown in Table 5.2.

Step a and step ¢ deal with the communication of values between registers. In step
b the ALU-function is performed on the two dedicated registers X and Y, and the
result is stored in dedicated register Z. In hardware, this execution scheme makes
it possible to share the ALU-function among all ALU-instructions.

70 Chapter 5. An Asynchronous 80C51 CPU

X,Y := Rg1, Rgrep | (Step @)
Z := ALU(X,Y,o0pc) | (step b)
Ryest =2 (step ¢)

Table 5.2: Execution scheme of an ALU instruction in three steps.

X, Y :=Ry1: By (step 1a)
Z := ALU(X,Y, opc) (step 1b)
cc:=27 (step 1c)
if cc then

X, Y 1= PC,offset (step 2a)

Z = ALU(X,Y,add) | (step 2b)

PC:=2Z (step 2c)
else skip
fi

Table 5.3: Execution scheme of a jump instruction.

The same can be done to find similarity in the execution of, for example, ALU-
instructions and jump-instructions. A jump instruction, after increment of the pro-
gram counter, is specified in Table 5.1 by

if ALU(Rg .1, Rgcn,0pc) then PC := ALU(PC, offset, add) else skip fi .
This (conditional) assignment can be split into

cc:= ALU(Rg;q, Ry, 0PC) (step 1)
if cc then PC := ALU(PC, offset, add) else skip fi | (step 2).

Step 1 can now be split into three new steps, as can be done with step 2. We then
obtain the execution scheme as shown in Table 5.3. Steps la, 1b, and 1c as shown
in this table are similar to the three steps in Table 5.2, as are steps 2a, 2b, and 2c.
In terms of hardware it is possible to share pieces of datapath between the various
instructions.

Parallel execution of instructions or steps in an instruction execution is a method to
reduce the execution time of instructions. However, for parallel execution it is often

5.1. CPU and instruction set 71

necessary to have separate pieces of datapath. In the jump-instruction in Table 5.3,
for example, we could want to execute the two ALU-functions in parallel, when the
jump is taken. In hardware this is only possible when there are two ALU circuits
instead of one. This will reduce the execution time, but it will cost area.

Instructions are executed sequentially when an instruction is fetched only after
the execution of the previous instruction has finished. When all instructions are
executed sequentially, we speak of sequential instruction execution. Sequential
execution allows for the reuse of pieces of hardware in the datapath for each step.
In the synchronous 80C51 all instructions are executed sequentially. Each step
in the instruction execution uses the bus IB for communication between registers.
This makes a compact implementation of the datapath possible, as we have seen in
Chapter 3.

Building an asynchronous datapath is not necessarily much different from building
a synchronous datapath. We still need the registers, the communication paths, and
the arithmetic circuitry to perform the operations. As in the synchronous case, we
still have freedom in how to establish the communication between registers, as we
shall see in the next section about datapath design.

However, the control of an asynchronous circuit is different from the centralized
control in a synchronous circuit. Synchronous control is global: all registers are
clocked by a global clock signal. Asynchronous control using handshake circuits,
on the other hand, is distributed and makes selective steering of the elements of the
datapath possible.

In Chapter 3 we have seen that the execution schemes of the synchronous 80C51
CPU show many redundant actions. The instructions show that there is a wide
variety in the number of necessary, i.e. non-redundant actions that have to take
place during execution. Take three instructions in the synchronous 80C51 as ex-
ample. Their non-redundant actions are shown in Table 5.4. This table shows three
instructions, that take 4, 8, and 10 actions to complete, taking the datapath of the
synchronous implementation as starting point (Figure 3.3). The synchronous con-
trol makes worst-case assumptions: take the instruction that takes the most steps to
complete, and take this number for all instruction executions to complete. In case
of the three instructions in Table 5.4 we would let all instructions take 10 steps
to complete. For the complete 80C51 instruction set we then obtain a scheme as
shown in Table 3.2. This approach keeps the control simple, which is beneficial for
the area of the circuit. The resulting redundant actions are not good for execution
time and energy dissipation.

A distributed control structure can filter the redundant actions and control the data-

72

Chapter 5. An Asynchronous 80C51 CPU

MOV A,#data | ADD A,#data | ADD A,@Ri
ROM — IB ROM — IB ROM — IB
IB— IR IB— IR IB— IR
ROM — IB ACC— IB ACC— 1B
IB— ACC IB— T2 IB— T2
ROM — IB RAM — IB
IB— T1 IB — RAR
T1+T2 — IB RAM — IB
IB— ACC IB—T1
T1+T2 = IB
IB = ACC

Table 5.4: Non-redundant actions for three 80C51 instructions, taking the syn-
chronous datapath as starting point. Instructions MOV A,#data, ADD
A,#data, and ADD A, @Ri need 4, 8, and 10 communications in the
datapath, respectively.

path in such a way that only the non-redundant actions are performed. In case of
the instructions as shown in Table 5.4, the three instructions would take 4, 8, and
10 actions respectively, instead of 10 for each instruction. This saves energy and
reduces the execution time, as instructions are executed with average speed and
power. The drawback is that the control is more complicated than the synchronous
control, which is disadvantageous for the area of the circuit.

The synchronous 80C51 CPU implementation implements sequential execution
of instructions, making the area for both the datapath and the control small. We
wish to make an asynchronous version of the 80C51 microcontroller by VLSI-
programming in Tangram, and aim to save power where possible. On the other
hand, we also wish to keep the area of the circuit small. Therefore we decide to
assume sequential execution of the instructions, making it possible to reuse the
pieces of the datapath.

Sequential execution of an instruction can be expressed in Tangram by

FetchOp() ; Execute()

Fetching an instruction is straightforward, using the handshake model of the mem-
ories as introduced in the previous chapter: sending an address (the program counter
PC) to the program memory and waiting for the data to arrive. The program counter

5.2. Datapath 73

value PC can be incremented in parallel with the arrival of the data (cf. the state-
ment PC := PC + ¢ in Table 5.1):

ROMaddr ! PC
; ROMdata?ir || IncPc()

For the Tangram procedure Execute () we have various possibilities for imple-
mentation. We make a distinction between the datapath and the control of the
CPU, as we have done for handshake circuits in Figure 2.7.

5.2 Datapath

The datapath of a processor contains all registers, communication paths between
them, and arithmetic circuits. It constitutes the part of the processor where the
actual computations take place and where the data is stored and moved. In the
80CS51 the variety of addressing modes and the non-uniform address space demand
a wide flexibility in data traffic, as it is possible to move data from any register to
any other. To implement this flexibility of data traffic there are two “extremes” in
the design spectrum. First we can choose to introduce channels between any two
registers; we then implement so-called point-to-point communication. The other
extreme minimizes the number of communication paths by introducing the notion
of a bus. In this datapath, communication between two registers always takes place
in two steps via the bus: first the source register is copied to the bus; then the value
of the bus is transferred to the destination register.

5.2.1 Point-to-point communication

Registers in a microcontroller CPU can be implemented with variables in Tangram.
A variable is implemented by a component VAR in the handshake circuit. Each
variable has one or more read ports but exactly one write port. In the single-rail im-
plementation of a datapath, the number of read ports of a variable is unbounded; no
extra de-multiplexer is needed [30]. However, this is not the case for the write-port;
all paths to the variable are multiplexed to the write port. The number of inputs to
this multiplexer is equal to the number of textual assignments to the variable in the
Tangram text. For example, if the Tangram program contains two assignments to a
variable x:

74 Chapter 5. An Asynchronous 80C51 CPU

then a 2-way multiplexer on the write port of x is introduced, as shown in Fig-
ure 5.1.

Figure 5.1: A multiplexer provides two alternative access paths to variable x.

When starting the design of a VLSI-program for a microprocessor’s datapath,
point-to-point communication is quite an intuitive thing to do. Suppose we have
n registers, x1 to xn, and we wish to establish a communication path between all
pairs of registers apart from auto-assignments (i.e. communication from xi to xi).
This can be described in Tangram by

x1x2 : proc() . xl:=x2
xlxn : proc() . xl:=xn

xnxl : proc() . xn:=xl

R R

xnxnl : proc() . xn:=xnl

In the corresponding handshake circuit there are n(n — 1) communication paths
between registers (i.e. there are n(n — 1) transferrers); each register can be as-
signed values from n — 1 source registers. In the handshake circuit this introduces
a multiplexer with n — 1 inputs on the write port of each variable, as shown in
Figure 5.2.

5.2

Datapath 75

chl2

ch21

chnl -
chln
chnl

chln

ch(n-1)n ol 119
n -

Figure 5.2: Datapath with point-to-point structure.

The introduction of multiplexers in the datapath is implicit in the Tangram text. For
dense communication networks the multiplexing can have a considerable impact on
the area, execution time, and energy dissipation of the resulting circuit. Therefore
it can be worthwhile to reduce the number of multiplexers.

5.2.2 Bus structure

To reduce the number of multiplexers we split each communication z; := z; into
two parts: first the value of z; is assigned to a new variable bus; then the value
in bus is assigned to z;. Thus, in the Tangram text for the point-to-point structure
each occurrence of

xi:=x]j

is replaced by

bus:=xj ; xi:=bus

In this way we obtain the Tangram text

76 Chapter 5. An Asynchronous 80C51 CPU

x1x2 : proc() . bus:=x2 ; xl:=bus
Xxlxn : proc() . bus:=xn ; xl:=bus
x2xl : proc() . bus:=x1 ; x2:=bus

x2x3 : proc() . bus:=x3 ; x2:=bus
x2xn : proc() . bus:=xn ; x2:=bus
xnxl : proc() . bus:=x1 ; =xn:=bus

xnxnl : proc() . bus:=xnl ; xn:=bus

R RR R R

In order to avoid unnecessary multiplexing on write ports of variables we can share
common assignments in procedures. The resulting handshake circuit is shown in
Figure 5.3.

Figure 5.3: Datapath with bus structure.

This datapath is cheaper in area, in that it implements n + 1 variables, only one
n-input multiplexer and 2n transferrers (i.e. communication paths). As described
in [30] a multiplexer consists of a control part and a data part. It is beneficial to
replace a tree of binary multiplexers by one multi-input multiplexer. Extending the
number of inputs of a multiplexer involves extending the data part while the control
part stays more or less the same. Therefore extending a multiplexer with an extra
input is cheaper than introducing a new multiplexer.

5.2. Datapath 77

Point-to-Point Bus
VAR (Variables) n n+1
MUX (Multiplexers) ™(n—1)-input ln-input
TRF (Transferrers) n? —n 2n
SEQ (Sequencers) - n?
MIX (Mixers) - 2n(n—1)—input

Table 5.5: Number of handshake components for point-to-point network and bus-
structure with m registers, assuming a full network without auto-
assignments.

For a complete network, the costs of the point-to-point network and of the bus-
implementation in terms of handshake components are compared in Table 5.5. The
bus-structure is the cheaper in number of handshake components for the datapath,
for we have only one multiplexer in front of bus. The drawback is that the control
of the datapath becomes more complex. In the case of point-to-point communi-
cation only one transferrer per assignment has to be steered, whereas using the
bus-structure two transferrers per assignment are controlled, by a sequencer. For
a full network, assignments bus:=xi and xi:=bus occur more than once and
therefore extra mixers in the control are introduced.

This sequencer-mixer control structure maps the n(n — 1) steering channels (i.e.
the number of communication paths) to the 2n steering channels of the transferrers
in the bus-network. Each sequencer has two active ports, and therefore the mixers
have to combine 2n(n — 1) handshake channels into 2n channels; each mixer thus
has n — 1 inputs. The control overhead for the 3-variable bus-network is shown in
Figure 5.4. In this figure channels cij establish communication from register xi
to xj. Similarly, channels cib steer the transferrer from xi to bus; channels cbj
steer the communication from bus to x3j.

It is interesting to see where the overhead in the control for the bus-structure starts
to dominate the gain in the area for the datapath. For a full network of 8-bit wide
variables, without auto-assignments, this is shown in Figure 5.5. For these net-
works, a point-to-point implementation is smaller for fewer than four variables;
when more than four variables are implemented, the bus-network is smaller.

For various numbers of variables (of various widths) in the circuit we can generate
Tangram programs that implement both point-to-point and bus networks. To com-
pare them, we calculate the difference in transistor count between the two. The

78 Chapter 5. An Asynchronous 80C51 CPU

cl2 cl3 c2l c23 c31 c32

clb c2b c3b cbl cb2 cb3

Figure 5.4: Control overhead for bus-structure.

results are shown in Figure 5.6. There is only a small area where point-to-point is
smaller than the bus, viz. the light-gray area in the left-bottom corner in the figure.
As soon as the number of variables and their width increase the bus-network is
smaller than point-to-point.

For execution time and energy dissipation we can simulate the Tangram designs at
handshake level. It appears that, disregarding the width and number of variables,
energy dissipation of the bus-structure is about twice as high as the dissipation of
the point-to-point network. This is explained by the fact that for each communi-
cation we need two assignments instead of one. For the complete network, one of
these assignments goes through a multiplexer. For execution time we see a similar
result; the bus is roughly twice as slow as the point-to-point communication.

In practice one hardly ever encounters a microprocessor datapath in which the
graph of communication paths is full. It depends on the “fullness” of this graph
whether the gain in area in the datapath will compensate for the overhead in con-
trol.

5.2.3 An 80C51 CPU datapath

Having seen two possibilities for the design of a datapath we consider the datapath
of the 80C51. With its non-uniform register structure we can nicely exploit the
design space and see what is the best solution in terms of area, execution time, and
energy dissipation.

Many of the 80C51’s registers are Special Function Registers. Therefore, we first

5.2. Datapath 79

1200 T I T T T
"bUS" o]

"p2p|l

/
N
s
/
s

1000

800

600

400

Number of gate-equivalents

200

Number of variables

Figure 5.5: Comparison in area (in number of gate-equivalents) between a point-
to-point network and a bus-network for 8-bit wide variables. The num-
bers are for a 0.5u generic cell-library. The bus-network is smaller for
networks with more than 4 variables.

discuss the implementation of the SFR space. The SFRs all have addresses, and
they can be accessed by instructions by means of direct addressing. The address
space of the SFRs is shown in Figure 3.2, and one possibility is to declare a register
file for them. Addressing of a SFR is then straightforward: we access the register
file by using the address of the SFR. It is also possible not to use a register file,
but to declare the registers as separate variables. Decoding the address of the SFR
has then to be programmed explicitly (by means of a Tangram case-statement).
Adding new SFRs to a microcontroller is straightforward in case of a register file:
the register is already present and has the appropriate address. In case of separate
variables, we must add a line to the case-statement that takes care of the address
decoding.

80 Chapter 5. An Asynchronous 80C51 CPU

#tr(p2p)-#tr(bus)

Figure 5.6: Area comparison between point-to-point and bus.

In the definition of the standard 80C51, the SFR memory map is sparse: only 21
of the 128 addresses are in use for SFRs [4]. Declaring a register file for the SFRs
implies that the majority of the register space is not used. In other words, declaring
separate variables for the registers and dealing with the decoding of the addresses
explicitly, will result in a smaller solution.

The datapaths shown in the previous sections can all just copy values from one
variable into another. Of course this is not the total picture of a useful datapath; in
fact we left all combinatorics out. For the 80C51 we mimic the synchronous archi-
tecture and introduce an ALU with associated input registers T1 and T2. Operands
to the ALU are first assigned to these registers, after which the ALU can perform
an operation. The result is written back to the destination register. Registers T1
and T2 implement the registers X and Y as used in Tables 5.2 and 5.3.

In case of a point-to-point datapath, there have to be communication paths between
any register to T1 and T2, for any register can contain a source operand. Further-
more, the result of the ALU can be written back to any register (all registers can
be destination). In the datapath this results in large multiplexers on the write ports
of T1 and T2, and extra inputs on the write-port-multiplexers of the destination

5.2. Datapath 81

registers.

In Tangram this is easy to implement. Suppose we have instruction ADD A,R5
which adds the value of register R5 in a register bank to the accumulator. When we
implement a point-to-point datapath we simply write

Tl := R5
; T2 := A
7 A =Tl + T2

Because the communication paths from R5 to T1, and form A to T2 are separate,
the first two communications can be done in parallel:

which reduces the execution time.

When we adopt the bus-structure in the datapath, we see that each communication
between registers passes through variable bus. Therefore this variable is an obvi-
ous place to read values into variables T1 and T2. The result of the ALU can be
communicated to bus, which then has the same function as register Z in Tables 5.2
and 5.3. We thus obtain the datapath as shown in Figure 5.7.

How can we implement instruction ADD A,R5 in Tangram in such a way that we
obtain this datapath? Using the bus will take more steps in the program execution
than in the point-to-point datapath:

bus := A
; T1 := bus
; bus := R5
; T2 := bus
; bus := Tl + T2
; A := bus

The datapath with bus-structure is smaller, but the penalty is clear from this ex-
ample: it takes more steps to execute the instruction and the control is more com-
plicated, as there are more semicolons in the program text. There are no parallel
paths anymore from the source registers to T1 and T2, and therefore the two com-

82 Chapter 5. An Asynchronous 80C51 CPU

-0
@O
Qz}

O-@—

O

Figure 5.7: Handshake circuit of datapath with bus structure.

munications have to be done in sequential order, resulting in a longer execution
time.

For the 80C51 CPU we have implemented the two datapaths, each using the same
control structure. The results are shown in Table 5.6. The bus-datapath turns out
to be smaller than the point-to-point datapath, but it is also a lot slower and less
energy-efficient.

We wish to combine the advantages of both the bus scheme (small area), and
the point-to-point scheme (low energy dissipation, low execution time). In other
words, we want direct communication paths that are used frequently, and a bus-
network for communications that are not used frequently. The direct communica-
tions paths then bypass the bus and are therefore called bypasses. An example of
such a hybrid datapath is shown in Figure 5.8: this datapath contains one bypass,
from register x2 to x1. Compared to a pure bus-datapath, this handshake circuit
contains one more multiplexer (on x1) and an extra transferrer.

5.2. Datapath 83

Figure 5.8: Datapath with bus structure and one bypass from x2 to x1.

To investigate what paths in the 80C51 are used frequently, we take a benchmark
program, and count the number of uses of eight communication paths. The results
are shown in Figure 5.9. Note that the assignment T2 : =SFR is not a single assign-
ment: it stands for all assignments from special function registers to register T2. In
this benchmark, the special function registers are not read frequently into register
T2.

We have implemented bypasses for the top-4 of frequently-used communications
paths. A comparison between point-to-point implementation, a full bus-network,
a bus where the program counter is bypassed to the program ROM, and a bus
with four bypasses is shown in Table 5.6. The design with the full bus is the
smallest, but also the slowest and the least energy-efficient of the four. In fact, in
the synchronous implementation there is also a path from the PC to the program
ROM that bypasses the bus (Figure 3.3). Introducing a few bypasses results in a
circuit that is only marginally larger, but because of the frequency with which the
bypasses are used, it also results in the fastest and most energy-efficient circuit of
the four.

84 Chapter 5. An Asynchronous 80C51 CPU

IR==ROM[PC]—:| 824

T1:=ACC 194
T2:=ACC 62
T2 :=RAR

43
RAR:=T2 _ 43
T2:=SFR 48
T1:=BREG 25
RAR:=SP 22
Sb

Figure 5.9: The number of times that certain communication paths are used in the
80C51. The benchmark used for these numbers is a program in which
almost all 80C51 instructions are executed. It turns out that only a few
communication paths are used very frequently.

100 150 200

5.3 Control

When we have designed a datapath for a processor, we see that the main task of a
control structure for this datapath is the steering of the various transferrers in the
datapath. These transferrers control the communications that take place along the
communication paths in the datapath. In this section we consider various control
structures, assuming sequential execution of instructions.

The global step of executing an instruction is first fetching it from program memory

Area Speed E/instr
(trans.) (MIPS) (nJ)
Point-to-point 31374 1.92 1.28
Full bus-network 27306 1.86 1.81
Bus with PC-bypass | 27320 1.95 1.31
Bus with 4 bypasses | 27482 2.10 1.06

Table 5.6: Comparison between various datapath implementations.

5.3. Control 85

and then executing it. The global semicolon for the separation of fetch and execute
appears in the Tangram fragment

FetchOp() ; Execute()

Executing an instruction consists of two major steps: decoding and execution of
the decoded instruction. As with the design of a datapath we can distinguish two
“extremes” in designing a control structure. The first decodes instructions com-
pletely, after which the proper actions in the datapath are taken; the other approach
decodes instructions while executing them, thereby attempting to share common
actions between various instruction executions. It is also possible to implement a
combination of these two schemes.

5.3.1 Centralized decoding

The first approach of executing an instruction starts with completely decoding the
instruction. Once we have decoded an instruction opcode we know exactly which
actions have to be taken (i.e. which statements in the Tangram program have to be
executed). Decoding in a handshake circuit can be done by using the case com-
ponent with the instruction opcode as input. This is established by the following
Tangram fragment, in which we assume that variable ir, the instruction register,
contains an 8-bit instruction opcode:

case ir

is 0 then instr0()
or 1 then instrl()
or 2 then instr2()

or 255 then instr255()
si

The various procedures instri () contain the statements that control the datapath.
Usually, an instruction takes several steps to be executed, for example fetching two
operands from registers, then adding the two, and finally storing the result in a
register. As we consider only sequential execution in this section, these steps can
be described by the Tangram fragment

instri : proc() . SO ; S1 ; S2

86 Chapter 5. An Asynchronous 80C51 CPU

As we have seen in the previous section, the communications in the statements S0,
S1, S2, ... determine the structure of the datapath. We obtain a control structure
as depicted in Figure 5.10.

FetchOp() Execute ()

Data Path

Figure 5.10: Handshake circuit of control structure with centralized decoding.

In this figure we view the program ROM as a handshake component that (after
sending an address) delivers an opcode of an instruction. This opcode is copied
into instruction register ir. In Execute () the opcode is input to the central case
component that first determines which instruction is to be executed. It steers the
corresponding multi-sequencer that controls the datapath. Upon completion of the
execution of the instruction, the handshake protocol between the various control
components is completed. Finally, upon request, the sequencer on top will start
fetching the next instruction.

5.3.2 Distributed decoding

The second approach looks for overlap in execution schemes of all instructions, as
was demonstrated in Section 5.1. For example, when we have two instructions

5.3. Control 87

ADD R3,R1,R2 : R3:=R1+R2
SUB R3,R1,R2 : R3:=R1-R2

the corresponding instruction execution schemes might look like

ADD : TIl:=R1
SUB : T1:=R1

T2:=R2 ; bus:=T1+T2 ; R3:=bus
T2:=R2 ; bus:=T1-T2 ; R3:=bus

~e ~e

We see a lot of overlap in instruction execution steps; in fact only the third step
(addition or subtraction) differs. Therefore we can use simple decode steps for the
first, the second and the last assignment (i.e. we do not have to distinguish between
ADD and SUB) and have a more complex decoding for the third step (in which we
do have to distinguish between the two).

Following this scheme we first try to fit all instructions into one execution scheme,
in such a way that for one stage in this scheme most instructions demand the same

action. This keeps the decoding per stage simple. Thus, in Tangram we have for
the stages he fragment

stagel() ; stage2() ; ... ; stagen()
where the stages are programmed as

stagei : proc(). case expr0(ir)
is 1 then S0
or 0 then case exprl(ir)
is 1 then S1
or 0 then ...
si
si

The corresponding handshake circuit is depicted in Figure 5.11.

Fetching the instruction is done in exactly the same manner as with centralized
decoding. The decode step is different: there are various stages, each with its own
(small) decoding done by a case component. Instruction register ir is input to
the various case components and the complete structure is controlled by a multi-
sequencer. After completion of the instruction execution the handshake protocol

between the various control components is finished and the next instruction can be
fetched.

In the scheme with distributed decoding, the actual decoding for a stage takes place
in two steps:

88 Chapter 5. An Asynchronous 80C51 CPU

FetchOp() Execute()

Data Path

Figure 5.11: Handshake circuit of control structure with distributed decoding.

o first, the expressions are evaluated;

o then their value is inspected in the case-statement for that stage.

This introduces an overhead in the area of the handshake circuit. The expressions
contain the information what transferrers in the datapath for a stage have to be
steered. The case-statement decodes this binary value: either the expression is
true, or false. If it is true then the associated transferrer is activated, otherwise not.
In other words, the case-statement translates a boolean value into a handshake. In
the handshake circuit, one would want to “skip” the case component, and connect
the result of an expression directly to the passive handshake channel of a transferrer.
Though this is in principle possible at the handshake level, it is not possible to
express this construction in Tangram. Therefore, an automatic translation from
Tangram into such a handshake circuit is not possible. Tangram demands to use the
case-statement in this case, resulting in a larger, slower and less energy-efficient

5.3. Control 89

Addressing mode
0111213/415161718191AIB|IC|DIE|F
INC
DEC
ADD
ADDC
ORL
ANL
XRL
Regular MOV
MOV
SUBB
MOV
CINE
XCH
DINZ
MOV
MOV

Instruction

Irregular

HHTIQIE[P> [O|R [N [N]H R[N |= O
Aol B loleQialnlslwn=To

Table 5.7: Regular (Right) and Irregular (Left) part of the 80C51 instruction set.

circuit than necessary.

5.3.3 An 80C51 control structure

For the 80C51 we can apply all of the above schemes. In fact, it turns out that
the cheapest solution is the hybrid scheme of centralized and distributed decoding.
To this end, we split the instruction set into two parts: regular() and irregular().
To see where the split can be made, we go back to the table of the instruction set
(Appendix B). The regularity shows itself best in the rows on the instruction set
table. For each row, only one type of instruction occupies the largest part. For ex-
ample, we see the INC instruction in row 0, the DEC instruction in row 1, etc. The
difference per row is in the various addressing modes that are encoded in columns:
columns 8 to F access registers, columns 6 and 7 access registers indirectly, col-
umn 5 implements direct addressing, etc. Taking all the same instructions per row
together, we obtain the partition as shown in Table 5.7.

90 Chapter 5. An Asynchronous 80C51 CPU

The instructions located at the right of the split belong to the regular part of the
instruction set; the instructions at the left constitute the irregular part. The regular
part can be implemented by the Tangram text

ReadOperands() ; Operation() ; WriteOperands()

where ReadOperands () and WriteOperands() decode in columns and pro-
cedure Operation() decodes in rows. In this fragment we have a three-way
sequencer on top and (small) decoding steps at the leaves of the sequencer. For
example, operation() can be implemented by

case row
is 0 then INC(T2)
or 1 then DEC(T2)
or 2 then ADD(T1,T2)

si

One can separate regular and irregular in various ways. In this implementation we
have chosen to draw the separation such that the regular part is as large as possible
to exploit the regularity in instruction execution as much as possible. As can be
seen from Table 5.7 the separation is not a straight line and one could investigate
whether moving the separation line has an impact on the performance and area of
the resulting circuit.

A boolean function £, expressed in the bits of the instruction opcode, determines
whether an instruction opcode belongs to the regular or the irregular part of the
instruction set:

if f(ir)

then regular()
else irregular()
£i

The resulting handshake circuit for the control of the 80C51 is shown in Fig-
ure 5.12.

The irregular part of the instruction set contains clusters of similar instructions.
For example, all AJMP and ACALL instruction are clustered in column 1, the jump
instructions appear in column O (rows 1 to 7), and the rotate instructions are in
column 3 (rows 0 to 3). Each of these clusters of instructions shows regularity
in the execution scheme. For example, the jump-instructions follow the scheme

5.3. Control

91

o

FetchOp()

Execute()

irregular()

ReadOperands ()

Q Q Q Q
Operation() WriteOperands()

Datapath

Figure 5.12: Handshake circuit for 80C51 control: hybrid scheme with both cen-

tralized and distributed decoding.

92 Chapter 5. An Asynchronous 80C51 CPU

in Table 5.3. The jump-instructions differ in their calculation of the condition to
jump; the second step (adjusting the PC if necessary) is for all jump-instructions
the same. The rotate-instructions follow the scheme

bus:=ACC
Tl :=bus
bus :=ROTATE(T1,CARRY)
ACC:=bus

- we e

when using a bus-datapath. The calculation of the ROTATE function is different for
rotate instructions; the other communications are identical.

In other words, the irregular part of the instruction set shows clusters of regu-
lar instructions. For procedure irregular () we can therefore first decode into
these clusters, and then exploit the regularity in the same way as was done for
the first instruction-decode step. In the handshake circuit of Figure 5.12 the case-
component on top of irregular () decodes into these clusters and the sequencers
beneath control the regular parts in the clusters.

Note that regular () is implemented in such a way that the instructions are ex-
ecuted in a minimal number of steps. Therefore this implementation filters the
redundant actions as implemented by the synchronous 80C51. The distributed con-
trol of handshake circuits makes such an implementation an attractive solution in
terms of energy dissipation. Furthermore, the asynchronous character of the con-
trol saves energy in the control as well, because only one path from the root of the
control tree to a leaf (i.e. a transferrer in the datapath) is active during the execution
of an instruction.

5.4 Local optimizations

The previous sections describe global approaches to the design of datapath and
control of a sequential architecture. Zooming in on smaller pieces of Tangram
text one can often identify local constructs that can be optimized. Some of these
optimizations are discussed in this section.

Some straightforward optimizations that apply to any kind of circuit are the ones
mentioned in Chapter 2: sharing of statements in the datapath and sharing of con-
trol structures. Sharing of common statements in the datapath results in moving
expensive multiplexers in the datapath to cheaper mixers in the control. This not
only saves area, but is also better for energy dissipation. Sharing in the control

5.4. Local optimizations 93

saves area, but it often results in a circuit that is slightly slower and less energy-
efficient.

The optimizations in this section go further than sharing of identical structures;
the goal is to optimize by sharing nearly identical structures in the datapath. For
the control it is often possible to rewrite the program text in such a way that the
compiled circuit is cheaper in some sense (area, energy, or execution time). We
first consider the datapath and then look at the control.

5.4.1 Datapath

We distinguish two kinds of optimizations in the datapath: the ones that reduce the
execution time and the ones that reduce the area.

Execution time: faster adders

An adder is an example of a combinatoric circuit. For each occurrence of a “+”
in the Tangram text a separate adder is implemented in the circuit. These adders
are implemented using ripple-carry adder circuits. For large additions this is not
the best solution for performance; it takes quite some time for the carry to ripple
through all full-adder cells. Other schemes result in faster, but less area-efficient
and energy-efficient circuits. An example of such a scheme is the carry-select
adder [20, 15], which is shown schematically in Figure 5.13. It splits the addition
into separate parts, for example the low-order half and the high-order half. Separate
additions are calculated for both parts. For the high-order part in fact two additions
are done, one assuming the carry-out of the low-order part is 0 and one addition
using a carry-out of 1. All three additions are done parallel and can be implemented
using ordinary ripple-carry addition or any other scheme. The carry-out of the
low-order part then selects the correct value of the high-order part. This can be
expressed in Tangram by the function shown in Figure 5.14 [30].

This technique is easily generalized to a carry-select adder that splits the arguments
into more than two parts. The carry-select adder saves time, because the additions
are done in parallel. On the other hand it is larger and less energy-efficient because
for the high-order part two additions are done instead of one.

94 Chapter 5. An Asynchronous 80C51 CPU

X

ol =]
< < ||
A I P PR N PR

X

1 A

=]]

*~Carry-in

Figure 5.13: Carry-select adder scheme. Three additions are performed in paral-
lel: one for the low-order sum, and two for the high-order sum: one
assuming the carry-out of the low-order addition is 0, and one assum-
ing that the carry-out is 1. The carry-out of the low-order addition, C,
determines which high-order sum is chosen for the result (Note: this
figure assumes the Tangram notation, in which the least significant bit
is written on the left hand side).

Reducing area: sharing functions

Suppose we have three functions £, g, and h, that all take variables x and y as
input, and produce output in variable z. Examples of such functions are addition,
subtraction, and boolean bit-wise operations like logical AND and logical OR. A
straightforward implementation of these function is represented by the following
three Tangram procedures:

calcf : proc() . z:=£f(x,y)
& calcg : proc() z:=g(x,y)
& calch : proc() . z:=h(x,y)

The corresponding handshake circuit is shown in Figure 5.15.

Suppose we can construct a function F that generalizes £, g, and h: this function
uses x and y, and an opcode opc as input, and produces output in z. The opcode
determines whether the result of F will be the result of £, g, or h. The correspond-
ing handshake circuit is shown in Figure 5.16. This handshake circuit saves on the

5.4. Local optimizations 95

/* carry-select implementation of z := x+y */
<<z ,cout>> :=

begin

sumlow = val (x.0 + y.0) cast <<int8,bool>>
& sumhigh0 = val (x.1 + y.1l)
& sumhighl = val (<<1,x.1>> + <<1,y.1>>)

cast <<bool,int8>>.1
& sgn = val sumlow.l
& sumhigh = val MUX(sumhighO, sumhighl,sgn)
| <<sumlow.0,sumhigh >>
end
end

Figure 5.14: Sketch of a Tangram program for a 16-bit carry-select addition, as-
suming a multiplexer function MUX.

multiplexer on the write port on z, and saves on the capacitive load on the vari-
ables x and y by reducing their number of read ports. The corresponding Tangram
program fragment is

F : func(x,y ¢: Tl & opc : T2) : Tl .
/* function text */
& alu : proc() . z:=F(x,y,opc)

The circuit for function F implements the ALU (Arithmetic Logic Unit) function in
Table 5.2. To generate the circuitry for F in the circuit only once, it is essential that
the function is invoked only once in the program text. This is possible when the
function uses only one source per input and one destination per output, as expressed
by the rule of invocation:

Rule of invocation: Reduce the number of invocations of functions to one.

In a CPU that executes instructions, it is best to express the opcode for the function,
opc, in terms of bits of the instruction opcode. This saves the introduction of an
extra variable for opc and an extra assignment to this variable.

‘We consider a few examples of functions F that combine increment and decrement,
combine addition and subtraction, and combine bitwise boolean operations.

Example: Increment and decrement

96 Chapter 5. An Asynchronous 80C51 CPU

Figure 5.15: Three functions take input x and y and produce output in z. The
handshake circuit contains a 3-input multiplexer in the datapath.

Figure 5.16: Function F combines the function £, g, and h. F takes an opcode opc
to determine the result.

5.4. Local optimizations 97

It is possible to take the increment and the decrement functions together into one
new function that uses an extra parameter. This parameter determines the function
to be calculated. Using that

z—1=z+(-1)

one can write a function that optionally negates “1” and performs the addition.
This saves one subtracter. The function that implements this technique in shown
in Figure 5.17. Negative values are represented in Tangram using 2’s complement
notation: negating the value of a register is done by inverting all bits and adding 1
to the result.
incdec = func(b : bool & x : int8) : int9
begin /* if b=0 then x+1 else x-1 fi */
w = val <<true,b,b,b,b,b,b,b>> cast int8
| << x + w >> cast int9
end

Figure 5.17: Function for increment and decrement.

Example: Addition and subtraction

In a more general sense we can write a function in Tangram that combines sub-
traction and addition using only one adder. This function is based on the following
observation.

z—y=2z+(-y)

The function optionally negates the value of y and performs the addition, using
only one adder. The Tangram text is shown in Figure 5.18. In the addsub function
in Figure 5.18 the inversion of all bits is done by function inv; adding 1 can be
done by function £1 by invoking this function with value 1 for parameter c that
represents the carry-in. The parameters used in this function can be derived from
the instruction opcode in the 80C51; in this way it is possible to invoke the function
only once in the program text.

Example: Boolean operations

Another example merges bitwise logical functions into one new parameterized
function. The functions to combine are logical AND (*), OR (+), and XOR (#)
(exclusive OR). For this, we observe that

98 Chapter 5. An Asynchronous 80C51 CPU

addsub :
func(£ : bool & c¢ : bool
& x : int8 & y : int8
) : int9
begin /* case <<f,c>>
is <<0,0>> then x+y
or <<0,1>> then x+y+1l
or <<1,0>> then x-y
or <<1,1>> then x-y-1

si
*/
bib = type <<bool,int8,bool>>
& inv = func(£ : bool & vy : byte) : int8
<< f#y.0 , f#y.l1 , f#y.2 , f#y.3 ,
f#y.4 , f#y.5 , f#y.6 , f#y.7
>>
& f1 = func(c¢ : bool
& x : int8 & y : int8
) = bib .
((<<c,x>> cast int9
+ <<c¢,y>> cast int9
)) cast bib
& v = val fl1(f#c , x , inv(f,y cast byte))

| <<v.l , v.2 # £>> cast int9
end

Figure 5.18: Tangram function for addition and subtraction, with or without carry.

z#y = (z+y) *—(zxy)

This formula expresses the exclusive OR in terms of the logical AND and logical
OR. By parameterizing this formula to

E={p+(z+y)*—(g*xz*y)

we obtain the following table:

5.4. Local optimizations 99

p ¢| E
0 0| z+y
0 1 TH#y
1 0 true
1 1| —(zxy)

In the 80C51 we can use this function for taking bitwise logical functions (in the
ANL, ORL, and XRL instructions) together. The parameters (p and g in the pre-
vious formula) can be expressed in terms of the bits of the instruction opcode, for
the logical instructions appear in separate rows in the instruction set table (Ap-
pendix B).

When expressing the three bitwise operations AND, ORL, and XRL separately,
the resulting handshake circuit will contain a 3-input multiplexer on the result reg-
ister. This multiplexer is saved by using formula F as introduced above. On the
other hand, formula E uses three AND-operations, two OR-operations, and one in-
verter per bit, instead of one AND, one OR, and one XOR-operation. Furthermore,
formula E has the disadvantage that when (p, ¢) = (1,1), —(zxy) is calculated in-
stead of (z * y). Therefore we need another function to invert all the bits. Suppose
we have this function already available (for example function inv in the addsub
function in Figure 5.18!), then we obtain Table 5.8 from handshake simulation.
This table shows that the combined function (“blu”) is smaller but also slower and
more energy consuming than the three separate functions.

5.4.2 Control

The second class of local optimizations concentrates on the control circuitry. Here
we show two examples.

Multiply and Divide

This example involves the 80C51 instructions DIV and MUL. Both use the classic
shift-and-add approach as described by Koren [20], Hennessy and Patterson [15],
and other textbooks on computer arithmetic. The algorithms for division and mul-
tiplication have similarities and they can be combined into one algorithm as ex-
pressed in the Tangram fragment in Figure 5.19.

100 Chapter 5. An Asynchronous 80C51 CPU

Width of variables | Type Area E/operation | T/operation

(bits) (transistors) (nJ) (ns)

4 blu 598 0.35 40
separate 726 0.15 22

8 blu 1030 0.62 44
separate 1174 0.25 24

16 blu 1894 1.15 44
separate 2070 0.45 24

32 blu 3622 2.22 45
separate 3862 0.85 24

Table 5.8: Implementation of separate boolean functions (“separate”) vs one
boolean function (“blu”) combining these functions, for various widths
of the variables. The combined function results in a smaller, but also
slower and more energy-consuming circuit. The numbers are obtained
from handshake circuit simulation, assuming a 0.8u generic standard-
cell library.

Semicolon-sweeping
The second example is called semicolon-sweeping: reduce the number of semi-
colons in the Tangram text (i.e. sequencers in the control of the handshake circuit)

by rewriting pieces of Tangram text. Suppose we have the Tangram fragment

case <<b0,bl>>

is <<0,0>> then S0 ; PO ; Sl
or <<0,1>> then S0 ; P1 ; S1
or <<1,0>> then $2 ; P2 ; S3
or <<1,1>> then S2 ; P3 ; S3

si

In the 80C51 we encounter such fragments, for example in the decoding of instruc-
tions: in the above Tangram case-statement, SO and S1 address registers directly,
and S2 and S3 address registers indirectly; PO ... P3 stand for operations like INC,
DEC, etc. A part of the corresponding handshake circuit is shown on the left-hand
side of Figure 5.20. This figure shows one half of the complete handshake circuit,
only for two alternatives of the case-statement; the other half is identical. The
handshake circuit contains in total eight sequencers and four mixers, for statements
S0...53 are each invoked twice in the Tangram text.

5.4. Local optimizations 101

/* A = acc <<A.7,...,A.0>> and
B breg = <<B.7,...,B.0>> and
P =<< 0,...,0 >

*/

carry:=0 ;
for 8 do if DIV then shiftleft() fi

; if A.0 then P := P + B
else if DIV then P := P - B
else /* MUL */
carry := 0
fi
fi
; 1if DIV then A.0 := -carry

else /* MUL */
shiftright()
carry := 0

-e

fi
od ;
if DIV
then if (P<0) then P:=P+B fi
fi

Figure 5.19: Tangram text for multiply and division, assuming procedures
shiftleft() and shiftright () that shift bit patterns.

By replacing the Tangram fragment by

case b0
is 0 then SO
> case bl
is 0 then PO
or 1 then P1
si
; Sl
or 1 then S2
B case bl

is 0 then P2
or 1 then P3
si
S3

~e

si

102 Chapter 5. An Asynchronous 80C51 CPU

<<b0,b1>>

Figure 5.20: Handshake circuits for case-statements: optimizations by rewriting
the Tangram program.

we obtain the handshake circuit as shown on the right-hand side of Figure 5.20.
This handshake circuit saves four semicolons and the mixers on the invocations of
S0...53, because these statements are invoked only once. The case components
in the two handshake circuits are slightly different; in the left circuit decoding on
two booleans is done, whereas in the right circuit decodes on only one boolean,
twice. The right-hand side handshake circuit results in a smaller but also faster and
less energy-consuming circuit than the circuit on the left.

5.5. Exception-handling 103

5.5 Exception-handling

The previous sections describe the part of the CPU that fetches and executes in-
structions. The microcontroller system also has to handle so-called exceptions. An
exception can be either

e an interrupt,

e or a special condition.

An interrupt is an internal or external event which causes the CPU to postpone
execution of the next instruction until some interrupt service routine has been ex-
ecuted. In general an internal interrupt can be generated in the CPU itself (for
example when an addition of two numbers causes an overflow) or by another block
connected to the CPU (for example when a timer has overflowed). An external in-
terrupt is generated by the environment of the microcontroller. In the 80C51 some
lines of Port 3 are reserved as external interrupt lines. In all of these cases the CPU
adjusts the program counter to point to the first instruction of the interrupt service
routine (which is part of the program that runs on the 80C51). After completion
of this routine, and when no other interrupt or special condition has occurred, the
CPU will fetch and execute the next instruction of the normal program flow.

A special condition forces the CPU to stop the execution of the program and turn
into some special mode. An example of such a mode is the reser mode which
forces the microcontroller to initialize the complete 80C51 system and start fetch-
ing the first instruction of the program. Other examples of special conditions are
the idle and power-down modes. In the synchronous implementation, in idle mode
the clock is disconnected from the CPU, but timers, interrupt controller, and the se-
rial port functions are still clocked. In power-down mode the on-chip oscillator is
stopped and all blocks stop executing. The only exit from this mode is a hardware
reset; this resets the contents of all registers in the 80C51 while the contents of the
internal data RAM is maintained. Table 5.9 shows the exceptions that occur in the
80C51, and describes how the exceptions are dealt with.

The synchronous 80C51 checks for an exception at the end of each machine cycle,
but an exception is serviced only after the instruction has been executed. As we
have seen in Chapter 3, all instructions except DIV and MUL execute in one or
two machine cycles. The asynchronous CPU does not have the notion of machine
cycles. Therefore we choose to check for an exception at the beginning of the
execution of each instruction. The frequency at which exceptions are then checked
is not exactly the same compared to the synchronous implementation. It is possible

104 Chapter 5. An Asynchronous 80C51 CPU

Exception Name | Function Escape
Interrupt Postpone execution of the next instruction -
(internal or until an interrupt service routine

external) has been executed

Power-on-reset | Resets the circuit when the power is turned on | -

Reset Resets and initializes the microcontroller -
while the system is running

Idle The clock is disconnected from the CPU; interrupt
timers, interrupt controller, and serial or reset
port functions are still clocked

Power-down All blocks stop executing Hardware
reset

Table 5.9: Exceptions in the 80C51 microcontroller.

to design the Synchronizer-block in Chapter 4 in such a way that it synchronizes
with the CPU at the beginning of each “machine cycle”, but this would make the
CPU more complicated, because of the extra synchronization.

If neither an interrupt nor a special condition has occurred, the 80C51 can safely
fetch the next instruction and execute it. The order in which the exceptions are
checked has to do with their priority. A reset replaces the current state of the
processor by the initial state, and has therefore the highest priority. Idle mode
and power-down mode stop the CPU’s activity, but the state of the CPU is kept.
An interrupt saves the current state of the processor, executes an interrupt service
routine, and restores the saved state. The order of priority is reflected by the nesting
of the if-statement in the Tangram program for the main loop of CPU():

forever
do CheckInterrupt() || CheckSpecialCondition()
; 1if -Interrupt * -SpecialCondition
then FetchOp() ; Execute()
else if PORline
then PowerOnReset() /* special condition */
else if ResetLine
then Reset() /* special condition */
else if IdleBit

5.6. Review 105

then Idle() /* special condition */
else if PowerDownBit
then /* special condition */
PowerDown ()
else /* interrupt */
JumpToInterruptVector()
fi
fi
fi
fi
fi
od

5.6 Review

This chapter has presented a design space exploration for a sequential handshake
80C51 CPU that was isolated in Chapter 4. It can be split into the datapath and the
control.

For the datapath we observed that it is best for power to have a bus-structure for
rarely-used communication paths, while having a direct path for the frequently
used communications. The bus-structure reduces the area, and the point-to-point
communication is better for execution time and energy dissipation when there is
not much multiplexing involved. In the 80C51 only a few communication paths
are used very frequently, and this makes it possible to combine the advantages of
both the bus-structure and the point-to-point communication into one datapath.

For the control we observed that a distributed control structure enables the designer
to reduce the number of redundant actions in the execution of instructions. This
saves execution time, and energy dissipated in the datapath. Furthermore, an asyn-
chronous distributed control makes it possible to save power in the control as well,
because only those parts of the control are active that do useful work, at a given
point in time.

106 Chapter 5. An Asynchronous 80C51 CPU

Chapter 6

Asynchronous 80C51 Peripherals

Thus far we have concentrated on the CPU of the 80C51: the part that fetches and
executes instructions of the program. However, there are other blocks, such as the
timer block and the interrupt controller, that make the 80C51 a microcontroller: the
peripherals.

The derivatives of a microcontroller use the same CPU, for the instruction set is
fixed. The derivatives differ in the sizes and the implementation of the memo-
ries and in the number and functionality of the peripherals. Peripherals make the
microcontroller a modular system.

In this chapter we describe an interface between the CPU and the peripherals. This
description abstracts from the functionality of a peripheral; it solely describes the
communication protocol between CPU and peripheral. The interface implements
some constraints that we first identify. At the end of this chapter we discuss the
UART as an example of a peripheral for the 80C51 microcontroller.

6.1 Characterization

6.1.1 What is a peripheral?

A peripheral is a piece of hardware that is capable of performing a specialized
(and usually small) task. It assists the CPU in doing its job. They communicate
when necessary, but run as autonomously as possible. Some peripherals take care
of the communication between the CPU and the outside world, the environment. A
peripheral and the CPU operate concurrently. Section 3.2.3 gives some examples

107

108 Chapter 6. Asynchronous 80C51 Peripherals

forever

do wait(start condition)
; execute task()

; set_interrupt()

od

Figure 6.1: General Tangram program for the operation of a peripheral.

of peripherals: timers and counters, the interrupt controller, the Input-Output (I/O)
peripheral, and the UART.

6.1.2 Peripherals and power

A peripheral is capable of doing a specific task upon request. Its general function-
ality can be described by the pseudo-Tangram fragment in Figure 6.1.

After enabling, the peripheral performs its task; an interrupt to the CPU is set
upon completion. It then starts the cycle again. From the program fragment in
Figure 6.1 we observe that the peripheral works demand-driven. The CPU sets the
start condition, and the peripheral starts executing its task only when this condition
is set.

The activity of a peripheral occurs generally

e less frequent than the clock frequency of the CPU;

e not evenly spread in time.

A timer that counts machine cycles in the 80C51, for example, does so only at
1/6th of the clock frequency to the CPU and is therefore less active than the CPU.
The interrupt controller, waiting for an external interrupt, is waiting for an event of
which it cannot be predicted when it will happen. Even so, it might never happen.

Synchronous implementations of the 80C51 keep the peripherals clocked at the
clock frequency to the CPU, or a division of that frequency (for example, a timer
that counts machine cycles can be clocked at 1/6th of the clock frequency). All
registers in the peripheral are clocked, even when the peripheral is not enabled,
in which case energy is dissipated unnecessarily. One can say that the peripher-
als in the synchronous implementation are clock-driven while the nature of their
operation is demand-driven.

6.2. Implementation 109

Asynchronous systems are demand-driven by nature; only the piece of circuitry
that needs to be active is doing useful work upon request, while the inactive parts
of the circuit are not dissipating energy. Asynchronous circuits are demand-driven
by nature, and therefore an asynchronous design style fits nicely with the demand-
driven operation of peripherals.

6.1.3 Constraints on the implementation

Before embarking on design issues of peripherals we first compile some constraints
that an implementation must adhere to.

1. To ensure maximum progress of program execution by the CPU, the periph-
eral should run as autonomously as possible. It should synchronize with the
CPU only when necessary.

2. In addition to this, a request from the CPU should be granted by the periph-
eral instantly, to enable maximum progress by the CPU. In other words, a
CPU that is waiting is not acceptable in the implementation.

3. As some peripherals cater for the communication between the CPU and the
outside world they should comply with the environment’s protocols. In other
words, they must ensure bit-compatibility as well as timing-compatibility as
discussed in Chapter 4. This is of importance when a redesign of an existing
microcontroller is made; it must fit in any existing environment that works
correctly with the old design. In the asynchronous version, this means that
we have to build an interface between an asynchronous system and a syn-
chronous environment. For timing compatibility of external memory access
this was shown in Chapter 4. For the UART, the timing-compatibility issue
is discussed at the end of this chapter.

4. Power consumption must be kept to a minimum.

5. The microcontroller system should be modular to make it possible to add
extra peripherals to extend the system’s functionality. To enable testability
of the microcontroller system, peripherals as blocks should be made testable.

6.2 Implementation

In this section we specify an interface between the CPU and any peripheral. This
interface must satisfy the constraints as described in the previous section.

110 Chapter 6. Asynchronous 80C51 Peripherals

6.2.1 General architecture

In the 80C51, the CPU and the peripherals communicate with each other using the
Special Function Registers (SFRs). These registers are either control or data reg-
isters. For example, for the timer-peripheral we have two control registers: TMOD
(the Timer/Counter Mode Control) and TCON (Timer/Counter Control Register).
Furthermore, there are the data registers TLO, TL1, THO, and TH1 that contain the
counted values.

Both the CPU and the peripherals are able to access these SFRs; therefore we have
to decide where (i.e. in which Tangram procedure) to locate them. Suppose we
have a sequential implementation of the peripheral as shown in Figure 6.1. One
possibility is to locate the SFRs in the CPU. This makes reading and writing the
SFRs by the CPU straightforward, for they are local to the CPU. On the other hand,
what happens when the peripheral wants to access an SFR? It then has to issue
a communication to the CPU with the proper request. The CPU has to monitor
the communication channels between itself and the peripherals regularly, say each
instruction execution. This violates constraint 1, viz. maximum progress of the
CPU and of the peripherals.

Another possibility is to position the SFRs in the peripheral itself. This makes it
possible for the peripheral to access the SFRs at any time, i.e. the peripheral needs
not to wait. With some communication channels the CPU can request access to the
SERs for reading and writing, and the initiative for communication lies with the
CPU. But when the peripheral is implemented as a sequential process, and busy
performing its task, it is not ready for answering any request from the CPU, which
blocks the CPU in its progress. This form of waiting by the CPU is not acceptable
(constraint 2).

Therefore we opt for another solution: we put the SFRs in a separate process in
between the CPU and the peripheral, i.e. we create a Special Function Register
Interface (SFRI), as shown in Figure 6.2.

6.2.2 SFR-interface

The SFR-interface! implements the constraints mentioned in Section 6.1.3. The
SFRI decouples the operation of the CPU and of the peripheral, and takes care of

!Coined by Joep Kessels

6.2. Implementation 111

CPU SFRI Peripheral |f«——

Figure 6.2: SFRI as interface between CPU and peripheral.

1. autonomy of execution: both the CPU and the peripheral must be able to
make progress reducing delay (constraint 1) and waiting (constraint 2);

2. the shared-data problem: the SFRs are shared between CPU and peripherals.
When both want to access an SFR at the same time, access must take place
in mutual exclusion.

In addition to this, the SFRI should

1. make sure that no process overwrites important information that another pro-
cessor has written in an SFR. We will explain this below, by means of the
Read-Modify-Write problem;

2. be a generic design, in such a way that it is possible to instantiate this de-
scription and have an SFRI for a new peripheral.

We will now explain what read-and-write actions in the 80C51 are to be imple-
mented as atomic actions. When the CPU wants to change a bit in an SFR, by
executing a bit-instruction, it first reads the complete SFR, then modifies the sin-
gle bit, and writes the value of the SFR. Suppose that CPU has read the SFR but
not yet written the modified SFR. Furthermore, suppose that the peripheral has
just finished its task and wants to set an interrupt, which happens to be a bit in
the same SFR. The peripheral then accesses the SFRI and changes the bit. Just
after that, the CPU overwrites the same SFR, replacing the interrupt bit with the
old value. The interrupt is then lost, and the CPU will not be notified that the pe-
ripheral has completed its task. This is called the Read-Modify-Write problem: the
peripheral should never write a SFR when the CPU has initiated but not yet fin-
ished its Read-Modify-Write cycle. Put differently, the Read-Modify-Write cycle
is to implemented as an atomic action.

112 Chapter 6. Asynchronous 80C51 Peripherals

In the 80C51 instruction set all instructions that potentially alter the contents of an
SFR are “RMW-dangerous”. All instructions that have a directly addressed regis-
ter as destination are RMW-dangerous, for this register might be an SFR. Further-
more, SFRs can be bit-addressable; therefore also bit-instructions that alter a bit
are RMW-dangerous. An overview of RMW-dangerous instructions in the 80C51
is shown in Table 6.1.

| zo Jzi | z2 | z3 | z4a | 25 || 267 || z8F
PO INC
dir
P1 JBC DEC
bit,ad8 dir
P2
P3
P4 ORL ORL
dir,A dir,#data
P4 ANL ANL
dir,A dir,#data
P4 XRL XRL
dir,A dir,#data
P7
P8
P9 MOV
bit,C
PA
PB CPL
bit
PB CLR XCH
bit Adir
PC CLR DINZ
bit dir,ad8
PE
PF

Table 6.1: Read-modify-write instructions in the 80C51 instruction set.

6.2.3 Communication between CPU, SFRI, and peripheral

Let us take a look at the communication interface between the CPU, the SFRI, and
the peripheral as shown in Figure 6.2. The values that are communicated along
these channels are the values in the SFRs. Suppose we have a peripheral with two
SFRs: SFRO and SFR1. These registers can be read and written both by the CPU
and by the peripheral. One way of implementing this is by introducing separate
read channels and write channels for all SFRs, as shown in Figure 6.3.

The SFRI can now watch all channels for a pending communication by using arbi-
tration (the Tangram sel. . .les-statement):

6.2. Implementation 113

€250 P2S0
c2s1l _| P2S1
CPU SFRT Peripheral
$2C0 S2P0
s2c1 s2P1

Figure 6.3: An implementation of the SFR-Interface between the CPU and a pe-
ripheral.

forever

do sel C2S0?SFRO or C2S1?SFR1
or S2CO0!SFR0O or S2Cl!SFR1
or P2S0?SFR0 or P2S1?SFR1
or S2P0!SFRO or S2P1!SFR1
les

od

This solution is expensive in both the number of channels and in the arbitration
used. Accesses to an SFR are done strictly sequentially, according to the sequential
nature of instruction execution by the CPU. This implies that at most one communi-
cation channel between SFRI and CPU is use at some point in time. The same goes
for the communication channels between SFRI and peripheral. Therefore we intro-
duce an extra channel, code, making a number of other channels redundant. This
channe] indicates which SFR needs to be accessed and whether that SFR should be
read or written. Using the code-channel we need only one read channel and only
one write channel. Arbitration is now cheaper, as the SFRI has to arbitrate between
only one request from the CPU and only one request from the peripheral. In this
way we obtain the solution as shown in Figure 6.4.

A possible Tangram fragment for the SFRI is

forever
do sel codeC?<<b0,bl>>
; case <<b0,bl>>
is <<0,0>> then readC!SFRO
or <<0,1>> then writeC?SFRO
or <<1,0>> then readC!SFR1
or <<1,1>> then writeC?SFR1

114 Chapter 6. Asynchronous 80C51 Peripherals

codeC codeP |

CPU pYEiteCd gQpRy p¥ELtePy peripheral

readC readP

Figure 6.4: A cheaper implementation of interface CPU, SFRI and Peripheral.

si

or codeP?<<b0,bl>>

H case <<b0,bl>>

is <<0,0>> then readP!SFRO
or <<0,1>> then writeP?SFR0
or <<1,0>> then readP!SFRI1
or <<1,1>> then writeP?SFR1
si

les

od

This implementation saves on the arbitration at the cost of multiplexing in the chan-
nels for reading and writing the SFRs (readcC, readP, writeC, and writeP). Ex-
tending the SFRI with an extra SFR involves the extension of the case-statements
with a new alternative, and possibly the extension of the width of channel code.

Suppose that the CPU executes instructions that are Read-Modify-Write danger-
ous. The CPU can indicate this by means of a boolean expression in the bits of the
instruction opcode (Table 6.1). The SFRI can block the peripheral from writing
that SFR by first waiting for the correct value to arrive from the CPU:

forever
do sel codeC?<<b0,bl, rmw>>
s case <<b0,bl>>
is <<0,0>> then readC!SFRO
: if rmw then writeC?SFRO fi
or <<0,1>> then writeC?SFRO
or <<1,0>> then readC!SFR1
: if rmw then writeC?SFR1 fi
or <<1,1>> then writeC?SFR1
si

6.3. Case study: the UART 115

or codeP?<<b0,bl>>

case <<b0,bl>>

is <<0,0>> then readP!SFRO

or <<0,1>> then writeP?SFR0
or <<1,0>> then readP!SFR1

or <<1,1>> then writeP?SFRI1
si

-

les
od

This solution still has the property that the SFRI has to arbitrate between only two
channels. When the peripheral itself is able to cause a RMW-problem then a similar
solution can be applied in the second alternative of the select-statement.

6.3 Case study: the UART

In this section the observations made in the previous sections are applied to the de-
sign of a UART for the 80C51. The UART (Universal Asynchronous Receiver and
Transmitter) takes care of serial data communication with the environment. Upon
request by the CPU, it transmits a bit pattern to, or receives a bit pattern from the
environment. When the UART is enabled to receive a bit-pattern, the environment
may decide when the reception starts, by means of sending a start-bit. This explains
the asynchronous character of the UART: it is not determined on beforehand, when
the bit-pattern will arrive. A timing protocol describes the validity of the data with
respect to a timing reference (for example a clock or a timer-overflow rate). Thus,
the UART has to implement an asynchronous-to-synchronous interface (constraint
3 in Section 6.1.3). It also demonstrates how to implement an SFR-interface.

6.3.1 Specification

The specification of the UART is taken from the data-handbook [4]. The serial
port of the 80C51 is full duplex, meaning that it can receive and transmit simulta-
neously. It is also receive-buffered, meaning that it can commence reception of a
second bit pattern before a previously received bit pattern has been read from the
receive-register.

There are two Special Function Registers that are of importance for the UART.
The first is SBUF, which is used for transmitting and receiving data. When the
CPU writes data into SBUF, this bit pattern will be transmitted by the UART; when

116 Chapter 6. Asynchronous 80C51 Peripherals

a bit pattern was received by the UART, it is stored in SBUF and the CPU can collect
the data by reading this register.

7 6 5 4 3 2 1 0
SMO SM1 SM2 REN TBS8 RB8 TI RI

Figure 6.5: Special Function Register SOCON.

The other SFR involved is status-register SOCON, which is shown in Figure 6.5. In
this register the bits have the following interpretation:
e SMO and SM1 denote the mode in which the UART operates (see below);

e SM2 enables multiprocessor communication in mode 2 and 3, which will not
be dealt with in this section;

e REN indicates that reception of data is enabled;

e TB8 is the 9th data bit that is transmitted in modes 2 and 3;

e RBS is the 9th data bit that is received in modes 2 and 3;

e TI is the transmit interrupt;

e RI is the receive interrupt.
The UART can operate in four different modes as shown in the Table 6.2. The
baud rate in modes 0 and 2 depends on the clock frequency. Thus, the UART
has to communicate with the Synchronizer (Chapter 4). The baud rate in mode 1
and 3 depends on the overflow rate of a timer. Therefore, the UART also has to

communicate with the timer-peripheral. Loading the timer with different values
will result in variable baud rates for the UART in modes 1 and 3.

6.3.2 Architecture

The architecture consists of the UART itself and the Special Function Register
Interface. The UART transmits and receives bit patterns, while the SFRI contains
the special function registers SBUF and SOCON, which are readable and writable
by the CPU. The UART only reads these registers, and therefore it cannot cause

6.3. Case study: the UART

117

Mode | SMO | SM1 | Description Baud rate
0 0 0 | shift register T /12
1 | o | 1 |subituart | 2ZSELSOD g L
. PCON.SMOD
2 1 0 | 9-bit UART | Z—g— x foi
3 | 1 | 1 |9bituART | 22SOR-SMOD g L

Table 6.2: UART modes of operation. Bits SM0 and SM1 are bits in the SFR
socoN (Figure 6.5). The baud rates in modes 0 and 2 depend on the
clock frequency f). The baud rates for modes 1, 2 and 3 depend on bit
PCON. SMOD (the 7th bit in the Power Control special function register).
Modes 1 and 3 have variable baud rates, dependent on the timer overflow

rate fioy-

a Read-Modify-Write problem. It communicates the received bit patterns to the
SFRI. The UART should of course never deadlock: it must always return to the
initial state when an error in data reception or transmission has occurred.

The UART contains two processes, Transmit and Receive, that run in parallel. Both
processes can run independently, and therefore we need two sets of communication
channels between UART and SFRI, instead of one set of channels as shown in
Figure 6.4. The architecture is shown in Figure 6.6. The communication channels
between the UART and the CPU follow the same structure as in Figure 6.4.

In this Figure we see three main blocks: the processor CPU, the interface contain-
ing the special functions registers (SFRI) and the UART itself. The set of interface
channels of the UART can be divided into three categories:

1. The interface channels to the environment of the microcontroller: RxD and
TxD, for reception and transmission of serial data from and to the outside
world. These channels are implemented as direct (i.e. non-handshake) chan-
nels;

2. The clock (c1k), the timer overflow (tov) and the baud-rate bit PCON . SMOD.
When this last bit is set to 1, transmission and reception are performed at
double baud rate.

118 Chapter 6. Asynchronous 80C51 Peripherals

clk tov pcon.smod

startt

codeC (3) AccModeT (2)

1 1
: !
PH———————>C :]] TXD
ModeT (2) H Transmit e

t 1

SBUFchan (9) i E

'

, ,

ﬁ) O

veade (8.0 | | hemememmemeaeeend

CPU o~ SFRI UART
| Sttt g {]
startr ; i
AccModeR (1) i E
© ' . 1 RxD
writeC (8) o ModeR(2) i Receive Vo
.——’C ! |
DataOut (9) | |
1 1
: i

Figure 6.6: The SFRI as interface between the CPU and the UART. The handshake
channels between SFR-interface (SFRI) and the UART are depicted by
arrows with circles; their width is denoted by the numbers. The direct
channels are depicted by arrows without circles.

3. The channels to the SFR-Interface:

(a) For transmission we have a direct start-channel startt to enable trans-
mission (when the CPU writes in SBUF), and three handshake channels.
AccmodeT indicates what data the UART wants to exchange with the
SFRI (cf. channel CodeP in Figure 6.4):

e the mode (communicated along ModeT) in which the UART has
to transmit data;

e the data to be transmitted (communicated along SBUFchan);

e whether the interrupt flag (TT) in SOCON should be raised (upon
completed transmission of data).

(b) For reception we have a similar communication interface:

e the direct channel startr to initiate reception. This channel is
connected directly to SOCON. REN (Figure 6.5);

6.3. Case study: the UART 119

e handshake channel AccModeRr to indicate that the UART requests
for receiving the mode from the SFRI;

e ModeR to communicate the mode in which reception has to take
place;

e handshake channel DataOut to transfer the received bit pattern
upon completion of the reception.

The specification of the UART in the data handbook describes the functionality
of the various modes separately, but does not give any constraints as to when a
mode may change [4]. It is, for instance, possible to receive a pattern in mode 2
while transmitting in mode 3. In mode 0 both the serial bit lines TxD and RxD are
used for either transmission or reception, but not for both simultaneously, as TxD
is used to generate a clock signal in this mode. Therefore, when the UART starts
transmitting or receiving in mode 0, it should be in the initial state, i.e. not busy
receiving or transmitting in any other mode. This constraint is not mentioned in
the data handbook [4].

6.3.3 Design of the UART

The UART consists of two processes in parallel, i.e. the Transmit process and the
Receive process. Both processes communicate with the SFRI by means of the
direct channels and the handshake channels as introduced in the previous section.
After initialization, the main part of the Tangram program consists of the parallel
composition of the transmit process and the receive process:

initialize()
; Transmit() || Receive()

Transmission

The transmission of serial data is initiated by the CPU writing new data in SFR
SBUF. Once the CPU has written into SBUF, the SFRI responds with a transition
from O to 1 on channel startt, initiating the transmission. The transmission-
block of the UART detects this transition and asks the SFRI in which mode the
data has to be transmitted. The data is collected from the SFRI and transmitted (in
procedures tr0 () and tr123() respectively) as described in [4].

A sketch of the Tangram program for the transmission looks like

120 Chapter 6. Asynchronous 80C51 Peripherals

forever

do wait(startt)

AccModeT! 0

ModeT?m

if (m.0 + m.1)

then trl23() /* transmission in mode 1,2 or 3 */
else tr0() /* transmission in mode 0 */
fi

od

~e ~eo wo

Procedures tr0 () and tr123 () take care of the transmission interrupt upon trans-
mission of a bit pattern. The value communicated along channel AccModeT indi-
cates which data has to be transferred between UART and SFRI. We distinguish
the following possibilities:

1. AccModeT!0: communicate (along ModeT) the mode in which the UART is
to transmit a bit pattern;

2. AccModeT! 1: communicate the bit pattern to be transmitted (along channel
SBUFchan);

3. AccModeT!2: indicate that the transmission interrupt (TI) in the SOCON
register should be set by the SFRIL. The UART signals that the interrupt has
to be set, but the SFRI actually sets the bit.

The implementation of the actual transmit procedures (tr0() and tr123()) is
straightforward and follows the specification in the Data Handbook [4]. After send-
ing a start bit, the data bits are transmitted; finally a stop bit is sent.

Reception

The Tangram procedure that takes care of the reception of bit patterns has a similar
structure. A sketch of this procedure:

forever
do TxDOrbit:=true /* reception clock in mode 0 */
; wait (startr)
; AccModeR!(
;7 if (m.0 + m.1)
then recl123() /* reception in mode 1,2 or 3 */
else recO() /* reception in mode 0 */

6.3. Case study: the UART 121

fi
od

A value communicated along channel AccModeR indicates that the UART wants
to read the mode from the SFRI. Upon completion of reception the UART commu-
nicates the received pattern with the SFRI along Dataout. The SFRI then checks
the conditions to write the received pattern into SBUF and raises the interrupt flag
(SOCON.RI). As with the transmission-section, the SFRI sets the interrupt bit upon
request by the UART.

During reception in mode 0 a clock signal is generated along TxD; we refer to [4]
for a complete description of this functionality. The clock is used by the environ-
ment for detection of data-validity. In modes 1, 2, and 3 we have the following
situation: reception of serial data is enabled by SOCON.REN=1 and a down-going
transition on RxD. First the start bit is checked; if it is not a O then the UART starts
checking for another down-going edge on RxD. When the start bit was correct, 8
or 9 bits of data (depending on the mode) are collected, followed by the stop bit,
which should be 1. If it is not a 1 then the data is thrown away, and the UART
starts checking for another down-going edge on RxD repeatedly. If the stop bit was
correct then the received data is communicated to the SFRI that checks whether the
data can be accepted and whether the receive interrupt SOCON.RI can be raised.
Each data bit is determined to be the majority of three sampled values, during states
7, 8, and 9 of each bit period. This bit period is derived from the clock (c¢1k) or
the timer overflow rate (tov), and the value of PCON.sSMOD. While the SFRI deals
with the received byte, the UART can commence receiving a second byte.

6.3.4 Design of the SFRI

The SFRI is to be designed in such a way that waiting of any other module (UART
or CPU) is avoided. Its main procedure checks for any request from the other
components to read or write data, and acts accordingly. Variable starttbit is
connected directly to channel startt while channel startr is connected to bit
SOCON.REN (reception enable). A sketch of the Tangram program for the SFRI is
shown in Figure 6.7.

A handshake-circuit simulation of the operation of the UART is shown in Fig-
ure 6.8. In mode 0 we see that during transmission and reception a correct clock
signal is generated by the UART (signals TxDOtbit and TxDOrbit, respectively),
as specified in the Data Handbook [4].

122 Chapter 6. Asynchronous 80C51 Peripherals

forever
do sel codeC?<<b0,bl, rmw>>
; case <<b0,bl>>
is <<0,0>> then readC!SOCON
s if rmw then writeC?S0CON
H startrbit:=S0CON.4
/* reception enable */
fi
or <<0,1>> then writeC?S0CON
s startrbit:=S0CON.4
/* reception enable */
or <<1,0>> then readC!SBUF
" if rmw then writeC?SBUF fi
or <<1,1>> then writeC?SBUF
i if startbit then /* uC too early */
skip
else starttbit:=true

fi
si
or AccModeT?accmt
H case accmt

is 0 then ModeT!mode
or 1 then SBUFchan!SBUF ; startbit:=false
or 2 then SOCON.TI:=1 /* transmission interrupt */
si
or AccModeR?accmr
s ModeR!mode
or DataOut?x
; if "conditions" then SBUF:=x || SOCON.RI:=1
fi /* receive interrupt */
les
od

Figure 6.7: Tangram fragment for the Special Function Register Interface (SFRI).

6.3. Case study: the UART 123

UART in ALL Modes

TxDOtbit |
RxDObit L
TxDOrbit [|
RxDbit
TxD123bit Lf unn LAy
mW 40.

30.0

20.0+

10.0

o L"T—i' T T T L e e I L s ey T Ir LI S S B

9 50 100 150 200 250
us
UART in Mode 0

TxDOtbit
RxDO0bit
TxDOrbit QL [U Iy I oy 1 I
RxDbit L[L1 | I
TxD123bit
mW 40,

30.0

20.0-

10.0

| T A N b Lo B g 1 Ll
0.0 L T E A S SR S SR A S S S SR S B S Rt | |
5 10 15 20

us

Figure 6.8: Handshake-Circuit Simulation of the UART. A 12 MHz clock fre-
quency and a 5 MHz timer overflow rate are assumed.

124 Chapter 6. Asynchronous 80C51 Peripherals

6.4 Review

This chapter has introduced a design alternative for the peripherals of an asyn-
chronous 80C51 microcontroller. The separation between the CPU and the periph-
erals by means of a Special Function Register Interface enables us to construct a
modular microcontroller system. New peripherals can be added by defining some
special function registers and programming another interface to the new peripheral.

The separation between the CPU and a peripheral enables both units to run as
autonomously as possible. They can run in parallel, only communicating when
necessary, but not blocking each other. For the UART, even the peripheral itself
consists of two parallel processes in (transmit and receive) that run independently
of each other.

The UART also shows that no energy is dissipated when the peripheral is not doing
anything useful. It just waits to be started and no clock energy is dissipated. The
functionality of a peripheral can easily be extended or shrunk by rewriting the
Tangram program, which is typical advantage of the VLSI-programming approach.
For example, it is straightforward to implement a UART that can only operate
in two modes with one baud-rate. Ease of design results in quick generation of
derivatives of the microcontroller family.

Chapter 7

Low-Power Implementation

Chapter 3 of this thesis outlines the basic function of the 80C51 microcontroller
and identifies some low-power opportunities of the synchronous implementation.
Chapters 4, 5, and 6 describe an exploration of the design space of an implementa-
tion of the 80C51, using Tangram as a VLSI-programming language.

To demonstrate the feasibility of the Tangram approach to building a competi-
tive asynchronous microcontroller, demonstrator silicon was produced early in the
project. The test chip was reported in [52], and was designed in cooperation with
Philips Research Eindhoven and Philips Semiconductors Ziirich. In this respect,
it also served for supporting the transfer from the Tangram tools and the Tangram
approach from Research to a product division. The chip has the complete function-
ality of the 80C51 CPU, with the peripherals that implement the Input/Output, the
interrupt controller, and the timers and counters. It shows a power benefit with re-
spect to the synchronous implementation with an overhead in area. A comparison
with the synchronous 80C51, as well as with other low-power microcontrollers, is
discussed in this chapter.

Before embarking on the chip itself we first review the low-power opportunities as
mentioned in Chapter 3. We then describe the asynchronous 80C51 test chip and
compare it to a synchronous version of the 80C51, as well as to other microcon-
trollers and microprocessors.

125

126 Chapter 7. Low-Power Implementation

7.1 Low-power contributions

In summary, we made the following low-power observations based on the syn-
chronous implementation. For the control, we observed that the distribution of
the clock together with the centralized control has two implications: energy is
dissipated in the control, but also in the datapath by the redundant actions in the
instruction execution scheme. For the datapath, the internal bus IB is central in
the synchronous implementation. This bus is used in each step of the execution
of instructions for communicating uncorrelated data, and therefore shows a high
switching activity. Furthermore, some synchronous 80C51 microcontrollers im-
plement master-slave flipflops instead of latches. The peripherals are clocked at
the clock frequency of the CPU (or a division on that frequency), whilst they show
less activity, which is not evenly spread in time. Finally, idle power can take a sub-
stantial part of the total power dissipation, especially in embedded applications.

7.1.1 Distributed control

The distributed control of the asynchronous 80C51 offers a natural way to leave
out the redundant actions in the synchronous instruction execution. We have seen
examples of such redundant actions in Chapter 3 (Table 3.1). Leaving these actions
out can reduce the total energy dissipation significantly.

Distributed control is more complex and occupies more area than centralized con-
trol. This is a clear point where area and energy dissipation can be traded for each
other. Larger area can result in more energy-efficient implementations. For the
80C51, the hybrid control structure using a mixture of centralized and distributed
decoding exploits the regularity in the instruction set execution, and offers a com-
promise between area and energy efficiency.

7.1.2 Asynchronous control

The asynchronous character of the distributed control in handshake circuits not
only reduces activity in the datapath, but also in the control itself. The control of a
handshake circuit takes the structure of a tree, in which the leaves are the handshake
channels to the transferrers in the datapath. Due to the sequential nature of the
instruction execution, there is only one path from the root to a leaf active at any
point in time. All others paths remain inactive and thus dissipate no energy.In the
synchronous implementation the state machine keeps being clocked, dissipating
power.

7.1. Low-power contributions 127

A clock distributed over the entire circuit triggers each register (flipflop or latch) at
every clock cycle. When no clock gating is applied, all registers are clocked while
for many of them this is not necessary. For these registers the clock-power is in
essence wasted power.

Some studies, like the one in Chapter 3, show that often half of the total power
dissipation of a circuit is directly related to the clock [21]. In an asynchronous im-
plementation latches are enabled selectively, thereby avoiding redundant switching
of latch-enable signals. The consequence of selective steering of latches is that
such a control structure is more complex than a clock-network.

7.1.3 Bus with bypasses

The synchronous implementation has two buses: the internal bus IB and a bus
for program-counter traffic. For each step in the execution the same part of the
datapath can be used. Therefore, the use of the buses in combination with the
sequential nature of instruction execution makes a small implementation possible.
Connecting all registers to the bus makes its wires in the circuit layout relatively
long, and thus the associated switching capacitance high. Since the bus is used for
communicating uncorrelated data, on average half of the wires of the bus switches
during each slot of the execution. Therefore the switching activity on the bus is
high.

To reduce the switching activity, point-to-point communication can be introduced,
as shown in Chapter 5. Assembler programs for the 80C51 typically show an
uneven spread in use of communication paths: some paths are used much more
than others. Using this observation makes a construction with bus and bypasses
attractive: we use direct paths (bypasses) for frequent data traffic, saving long wires
and thus switching capacitance. For the less frequent data traffic we opt for the
bus in Tangram, with its associated smaller area (fewer multiplexers) but poorer
performance and higher energy dissipation.

A trade-off can be made to obtain a solution which combines favorable speed, low
energy-dissipation and competitive area. One may observe that bypassing the bus
for frequent data traffic can also be applied to the synchronous implementation, but
this has not been done yet.

A bypass can be seen as a separate piece of datapath, which can be used in parallel
with the rest of the datapath. Therefore it allows us to introduce parallelism in the
execution of instructions. For example: suppose we have a bypass from the pro-
gram ROM to the instruction register. This makes it possible to fetch the next byte

128 Chapter 7. Low-Power Implementation

from the program memory, while executing the current instruction, thus building
a 2-stage pipeline. It heavily depends on the encoding of the instructions whether
this scheme can be implemented easily. In the 80C51, a byte in the program ROM
can be interpreted as an instruction opcode, immediate data, a relative offset, or an
address of some kind. This makes prefetching instructions more cumbersome com-
pared to a RISC with fixed-length instruction encoding, as we will discuss briefly
in Chapter 8.

7.1.4 Latches

Some synchronous implementations of the 80C51 are based on flipflops. The se-
quential nature of instruction execution makes it possible, however, to use latches
instead, as reading and writing the same variable in one clock cycle do not occur.
The asynchronous implementation is latch-based, but also a synchronous imple-
mentation can be made using latches. Avoiding flipflops makes the implemen-
tation more energy-efficient because there is less switching power. On the other
hand, using flipflops makes a design easier to test because flipflops can easier be
incorporated in a scan-chain.

7.1.5 Peripherals

We have seen that peripherals are demand-driven by nature; they start their activity
upon request. The synchronous implementation clocks peripherals at the clock fre-
quency of the CPU, or a division of that, thereby dissipating energy unnecessarily.
The asynchronous nature of the Tangram-compiled circuits makes it possible to ac-
tivate the peripheral circuit only when necessary. The SFR-interface as discussed
in Chapter 6 decouples the CPU and the peripherals, making such an implementa-
tion possible. Furthermore, the SFR-interface ensures maximum progress of both
the CPU and the peripherals.

7.1.6 Idle power

In embedded applications, idle power can be an important issue. For example, a
cellular phone in standby-mode has to contact its base station a couple of times per
second. The circuitry for this function only has to be activated at this frequency,
which is orders of magnitude lower than the frequency of the clock of the CPU. In
embedded applications the circuits are often in idle mode for a large portion of the

7.1. Low-power contributions 129

total execution time. Therefore, the power dissipated in idle mode is important for
the total power dissipation in these applications.

In the synchronous implementation there are several modes for power saving, in
each of which the clock is switched off in some parts of the circuit. Idle mode
switches the clock off the CPU, but keeps some peripherals active. Sleep mode
stops the oscillator completely. Stopping the oscillator has the disadvantage that
resuming the activity of the circuit takes a long time (several ms) to start the oscil-
lator.

The asynchronous 80C51 has no distinction between idle mode and sleep mode.
Compared to the synchronous 80CS51, the asynchronous version has the advantage
that in idle mode the peripherals are active only when necessary, i.e. they are po-
tentially lower-power. In sleep mode, the asynchronous 80C51 has the advantage
of instantaneous wake-up; the circuit can instantly resume its activity.

We have seen six measures that were taken to reduce the energy dissipation in an
80C51 microcontroller. Schematically, these measures are shown in Figure 7.1.

— < Distributed control
ontro
Asynchronous control

CPU
Bus with bypasses
Datapath <) P)
80C51 Latches instead of flipflops
) Demand-driven implementation
Peripherals —<

Idle power

Figure 7.1: Parts of the 80C51 microcontroller and measures to save power.

7.1.7 Evaluation

The components in a handshake circuit can be divided into several classes, of which
the energy dissipation per class can be obtained by simulation on the gate-level.
The VLSI-programmer can make any such classification. For the 80C51 CPU, we
distinguish between the bus (variable, drivers, and multiplexer), control (the control
handshake components), latches (the other variables), combinatorics (for example

130 Chapter 7. Low-Power Implementation

the binary adder), and multiplexing. Using this classification for the asynchronous
80C51 CPU without bypasses, apart from a direct path from the program counter
to the program memory (Table 5.6), we obtain the distribution of the energy dissi-
pation as shown in Figure 7.2.

Multiplexing
16%

Bus (latches + drivers)

22%
Combinatorics Bus multiplexer
21% 7%

Control

Latches 19%

15%

Figure 7.2: Distribution of the energy dissipation in the asynchronous 80C51 CPU
with one bypass (the path from the program counter to the program
memory).

The energy dissipated by the control is, percentage-wise, considerably less than in
the synchronous case. This is due to the distributed control and its asynchronous
character. We see that the energy dissipation by the bus is rather large, of which
a considerable part is dissipated by its multiplexer. As far as energy dissipation
is concerned, there is not much difference between the synchronous and the asyn-
chronous bus. The synchronous 80C51 bus consumes about 0.6 nJ per instruction,
and the asynchronous bus 0.4 nJ. However, the asynchronous 80C51 reduces on
the redundant actions that account for % of the total number of actions. Therefore,
energy-wise, there is not much difference between the asynchronous bus and the
synchronous bus.

It is now worthwhile to reduce the energy dissipation of the bus by introducing four
bypasses as discussed in Chapter 5. We then obtain Figure 7.3. The energy in the
final 80C51 CPU is evenly distributed over the various classes of components.

From these charts we conclude the following. First, the energy dissipation by the
control in the asynchronous 80C51 is substantially lower than in the synchronous
implementation. About % of the energy in the asynchronous 80C51 is dissipated in
the datapath, in contrast to the energy dissipated by the clock and in the control-

7.2. Demonstrator chip 131

Bus (latches + drivers)
12%

Bus multiplexer
5%

Muiltiplexing
20%

Control

Combinatorics 24%

20%

Latches
19%

Figure 7.3: Energy distribution of the asynchronous 80C51 CPU with four by-
passes.

flipflops in the synchronous 80C51 (Figure 3.6).

The latches in the datapath take a smaller part in the asynchronous 80C51 than
the flipflops in the synchronous case. This is the result of less clock energy as the
latches are only enabled when necessary.

What remains is an energy distribution where the bus takes a substantial part. By-
passing the bus is an attractive alternative, especially in the 80C51 where only a
few communication paths are used frequently.

7.2 Demonstrator chip

The history of the project goes back to January 1995. Taking the hardware descrip-
tion in the 80C51 Data Handbook [4] as starting point, a prototype of the CPU
was designed in Tangram. This prototype could execute all but two instructions
(multiply and divide). The control of this prototype already eliminated most of the
redundant actions by distinguishing between the Regular and the Irregular part of
the instruction set (Section 5.3.3). It was completed in two months time.

Simulations of the prototype showed a significant power advantage compared to
the best-known synchronous 80C51 CPU at that time. It was then decided to com-
plete the design, including peripherals such as timers and counters, an interrupt

132 Chapter 7. Low-Power Implementation

controller, and port logic. The chip also implements the timing-compatibility con-
straints for external memory access, as discussed in Chapter 4. The completion
was done in four months time, as a joint project between Philips Semiconductors
Ziirich and Philips Research Eindhoven. The design of the CPU was completed at
Philips Research by the author, and the design of most of the peripherals was done
by Philips Semiconductors. The general architecture of the SFR-interface was de-
veloped at Philips Research, as was the design of the UART (by the author), as
discussed in Chapter 6. This UART was not yet incorporated in implementation of
the test chip.

While many optimizations at the Tangram level were not yet incorporated, the lay-
out of a netlist was sent for fabrication in July 1995. This chip was meant to be
a demonstrator of the feasibility of the Tangram design flow to design and im-
plement a low-power version of the 80C51 microcontroller. It was fabricated in
a 0.5u 3-metal layer CMOS process using a generic standard-cell library. The
on-board program ROM and data RAM are the same as used in synchronous im-
plementations in the same technology. The only difference is that they have a
handshake wrapper: data-valid signals in the memories are connected to the ap-
propriate handshake-signals in the standard-cell block. In that way it is possible
to describe the communication with the memories on the level of Tangram, as
shown in Section 4.2. Simulations were done at the gate-level, using Verilog! (for
functional correctness and timing behaviour) and Diesel (for power estimation at
the gate-level) [2]. Three months later, silicon arrived and the testing of the chip
started. It proved almost first-time right: available tests revealed an error in the
DA-instruction that could easily be fixed at the Tangram level.

7.2.1 Chip

The layout of the chip is shown in Figure 7.4. It can be divided into three parts:
a program ROM of 16KByte (the block on top right), a data RAM of 256 bytes
(top left) and a standard-cell block. This block implements the complete 80C51,
including CPU, peripherals, and the Synchronizer, as shown schematically in Fig-
ure 4.1.

Area of the chip had no priority in the first place; the test chip is about twice as
large as the synchronous implementation in the same cell library. In the first place
this is due to the introduction of debug-registers on the chip for testing purposes.
They have no use for the functionality. Second, the chip implements point-to-point
communication between the registers. As we have seen in Chapter 5, communi-

"Verilog is a trademark of Cadence Design Systems, Inc.

7.2. Demonstrator chip 133

Figure 7.4: Layout of an asynchronous 80C51 microcontroller.

134 Chapter 7. Low-Power Implementation

cation using a bus with a few bypasses results in a circuit that is smaller, while
saving power and increasing speed. This was learnt after the chip was fabricated.
Furthermore, many local optimizations, also described in Chapter 5, can be applied
on the test chip’s design, resulting in a smaller area.

7.3 Evaluation

7.3.1 Comparison with synchronous 80C51

We can draw a comparison with a synchronous version of the 80C51, implemented
in the same cell library, but with a few more functions (a UART for example).
This is the same implementation of the 80C51 that we used in Section 3.4 for the
power analysis. The asynchronous version runs 4 MIPS when running freely. To
make a fair comparison we let the synchronous version run on a 36 MHz internal
clock to achieve the same speed, at the same supply voltage (Vgg = 3.3V). The
synchronous 80C51 is a VHDL design that is synthesized to run a maximum in-
ternal clock frequency of 40 MHz (i.e. one clock cycle per slot in the instruction
execution). Thus, the asynchronous 80C51 is slightly slower than its synchronous
counterpart. Table 7.1 shows that the asynchronous 80CS51 is 4 times more power
efficient than its synchronous counterpart when running under similar conditions.
The values are measurements of the chips, including CPU, peripherals, and memo-
ries. When a correction is made for the different functionality of the ICs, the power
advantage of the asynchronous version is reduced to a factor 3.

Version MIPS | Power | MIPS/W
’ (mW)

Sync 80C51 4.0 40.0 100

Async 80C51 4.0 9.00 444

(with CPU V1)

Table 7.1: Measurements of synchronous and asynchronous 80C51 ICs (CPU, pe-
ripherals, and memories) under fypical conditions. When a correction
for different functionality is made, the power advantage of the asyn-
chronous version is reduced to a factor 3.

Another way to compare the synchronous and asynchronous 80C51 is by visualiz-
ing photon emission. When a circuit is in operation, photons will be emitted from
the places on the chip where circuitry is switching. These photons can be registered

7.3. Evaluation 135

Area | Speed | MIPS/W
‘ (trans.) | (MIPS)
CPU V1 (on-chip: point-to-point) [39174 1.86 685
CPU V2 (local optimizations) 31374 1.92 781
CPU V3 (bus and bypasses) 27482 2.10 943

Table 7.2: Results of gate-level simulations of three asynchronous 80C51 CPUs,
excluding memories, assuming worst-case conditions. All CPUs exe-
cute instructions from external memory.

with a camera when their energy intensity, integrated over some period of time, is
above a certain threshold. This can be made visible by white spots on a picture.
Figures 7.5 and 7.6 show the synchronous and the asynchronous versions of the
80C51 under similar conditions running similar code. As can be seen from the
picture the synchronous version releases more photons than the asynchronous one,
indicating higher power consumption. Furthermore, activity on the asynchronous
chip is more local than on the synchronous one.

7.3.2 Improvements

The test chip was designed and implemented early in the project. It showed the fea-
sibility of the VLSI-programming approach for making a redesign of an existing
microcontroller architecture, with an interesting power advantage. The area of the
test chip had no priority, but the overhead of almost a factor 2 should be brought
down. The first step in reducing the area was to remove the redundant debug reg-
isters that were implemented on the test chip. Other reductions in area had to do
with restructuring the VLSI-program.

Chapter 5 of this thesis describes how we can reduce area of the CPU, by rewriting
the original Tangram program. For the 80C51 CPU, the results of these improve-
ments are shown in Table 7.2.

There are two major steps to reduce the area. First, local optimizations can be
done, like sharing combinatoric functions and reducing the sequencers in the con-
trol (Section 5.4). This yields CPU V2 in Table 7.2, which still implements point-
to-point communication. Second, going from point-to-point to a bus-structure in-
cluding four bypasses (Section 5.2), we were able to save even more area (CPU
V3). The improved speed and energy-efficiency are due to the fact that the by-

136 Chapter 7. Low-Power Implementation

Figure 7.6: Photon emission of the asynchronous 80C51, showing less activity,
which is more localized.

7.3. Evaluation 137

passes are used frequently in the 80C51 CPU.

With exception of RAM and ROM, all handshake components are mapped onto
a generic standard-cell library, which contains no dedicated asynchronous cells.
This does contribute to the area overhead of single-rail handshake circuits: with
the addition of about 4 asynchronous cells (various C-elements) the area can be
reduced by approximately 10%.

Handshake circuits are implemented using a four-phase handshake protocol and
single-rail encoding of data. The standard-cell implementation makes that special
attention has to be paid to delay matching and the verification (after layout) of the
timing assumptions that have been made [30]. In order to minimize the verification
effort, delay-matching is done conservatively. For the chip, a safety margin of
100% was chosen, but a margin of 30% for delays in the datapath is feasible, even
in standard-cell implementation. These delays have not been corrected for the
additional safety margin that results from the delay in the control path.

The Tangram programs for the peripherals also give room for reducing the area.
These improvements at the Tangram-level, together with the few extra cells in the
cell-library, make an area overhead of 30% over the synchronous implementation
possible. The asynchronous 80C51 is slightly slower than its synchronous coun-
terpart, but offers a power advantage of a factor 4.

7.3.3 Comparison with other designs

In designing a low-power asynchronous 80C51 IC we took the 80C51 instruction
set and its sequential execution scheme as starting point. Comparing the chip with
its synchronous counterpart with the same functionality and implemented in the
same technology, we were able to save a factor 4 in power. However, starting from
scratch one could go even further. The CoolRisc 8-bit microcontroller designed by
Piguet et al. is an example [31]. The instruction set of this RISC microcontroller
was designed from scratch, and allows for efficient pipelining, thereby introducing
parallelism during the execution of instructions. The result is an impressive 3000
MIPS/Watt figure. The CoolRisc’s RISC instruction set is different from the 80C51
CISC instruction set, with less expressive power per instruction, and fewer address-
ing modes. Therefore the MIPS/Watt-figures of the CoolRisc and the 80C51 are
not directly comparable.

Reducing activity in a circuit is a key strategy to save energy dissipation. This
approach was also used in an asynchronous implementation of a 16-bit DSP by
Cogency [39]. The architecture of this DSP consists of several functional units

138 Chapter 7. Low-Power Implementation

(an ALU, a multiplier, etc.). The decoder fetches instructions and translates them
into an intermediate format, adding information about which functional units are
involved in the execution of the instruction. Each unit that is not involved, sends
an acknowledgement immediately, thus dissipating no energy on calculation. The
units that have to do the work send an acknowledge upon completion. The next
instruction is fetched as soon as all units have signalled completion of the previous
instruction. The decoder in this architecture is more complex (i.e. larger in area)
than the synchronous equivalent without clock gating. On the other hand, it saves
energy compared to the synchronous implementation by selectively invoking the
necessary parts of the datapath.

Researchers at the University of Manchester made several asynchronous imple-
mentations of the ARM microprocessor [27, 11, 9, 36]. Amuletl shows that asyn-
chronous logic in a large design is feasible, but it does not demonstrate a power
advantage or speed advantage compared to the ARM6 [27]. The lessons learnt
from Amuletl were incorporated in the design of Amulet2e, which shows a per-
formance and power efficiency comparable to ARM7 and ARMS [9]. The ARM
is a RISC, in which most steps of the instruction execution are useful and neces-
sary for that instruction, i.e., there are not as many redundant actions as in the case
of the synchronous 80C51. However, the advantage of less electromagnetic emis-
sion could be present in the Amulet processors as well, making them attractive for
portable applications.

Martin et al. reported on an asynchronous implementation of the MIPS R3000
RISC microprocessor [24]. Their “MiniMIPS” is laid out using full custom cells,
and the architecture aims for high throughput of instructions. They take the power-
delay product ET? as measure for comparison and claim to be very competitive
in this respect. Compared to Amulet2e the MiniMIPS is an order of magnitude
better, as the ETz—ﬁgures suggest. Measurements from silicon, however, are not
yet available.

At Tokyo Institute of Technology and the University of Tokyo, researchers have de-
signed and implemented a 32-bit asynchronous microprocessor, the TITAC-2 [38,
25]. This processor is based on the MIPS R2000, but the instruction set is modi-
fied. This makes a comparison with a synchronous MIPS R2000 implementation
not straightforward. The TITAC-2 processor uses double-rail encoding of data,
and is based on the so-called Scalable Delay Insensitive delay model. Using this
model, the design is split into small parts, and the design of each part is based on a
more relaxed (and more optimistic) delay model than the QDI (quasi-delay insen-
sitive) model. The interconnection between the various blocks is based on the DI
(delay-insensitive) model.

7.4. Review 139

7.4 Review

One of the main conclusions of this chapter is that it is possible to make a com-
petitive design using Tangram as VLSI-programming language and the Tangram
compiler to map the program to an asynchronous netlist. The tools offer the VLSI-
programmer the possibility to redesign the Tangram program in such a way that
the resulting circuit is better in area, execution time and energy dissipation. The
demonstrator chip was produced in short time, and proved to be functionally cor-
rect.

Making a design and making a competitive design in terms of area, execution time,
and energy dissipation are two different activities. Phrased differently, program-
ming in Tangram is rather straightforward, but VLSI-programming in Tangram is
more difficult. Tangram and the transparent compiler offer a large freedom to inves-
tigate the design space. In a way the 80C51’s instruction set is suitable for research
purposes; its mixture of regular and irregular parts forces the designer to inspect
the design space and to make a compromise between area on the one hand, and
speed and power efficiency on the other. For a good VLSI-program it is necessary
to have insight in the compile function and handshake circuits. It is not necessary,
however, to have detailed knowledge about the low-level netlist implementation.

VLSI-programming in Tangram offers the designer a natural way to use the asyn-
chronous distributed control structure of handshake circuits. This design style is
different from the synchronous design style where there is a centralized control.
Therefore VLSI-programming in Tangram can result in new architectures that ex-
ploit the distributed control to save power.

140 Chapter 7. Low-Power Implementation

Chapter 8

Concluding Remarks

The main targets of the research described in this thesis is to describe guidelines for
VLSI-programming and to illustrate them on a vehicle of industrial relevance: the
80CS51 microcontroller. The process of VLSI-programming has been demonstrated
by an exploration of the design space of a low-power asynchronous version of this
microcontroller.

The approach taken is to partition the microcontroller into a CPU with memories,
peripherals, and a Synchronizer block, as shown in Figure 4.1. The blocks com-
municate with each other using handshake channels and in this way a handshake
CPU is isolated. The partition makes modular design of a microcontroller family
possible, as derivatives differ in the memories and in the peripherals.

The Synchronizer takes care of supplying timing information to the CPU and to the
peripherals, as well as to the environment of the chip. It is the only process that has
a clock as input, and therefore the clock is not distributed over the entire circuit.
The Synchronizer caters for timing-compatibility with an (existing) synchronous
environment. Though timing-compatibility of an asynchronous chip with a syn-
chronous environment is possible in principle, it can also reduce the advantages
of an asynchronous system. Therefore it is important to decide what degree of
compatibility is required. For the asynchronous 80C51, timing-compatibility for
external program memory access has been implemented.

The handshake CPU can be split into a datapath and the control. For the datapath,
it turns out that a combination of a bus with bypasses for frequently used commu-
nication paths, offers the best compromise in area on the one hand, and execution
time and energy dissipation on the other hand. For the control the regularity of
the instruction set has been exploited, reducing the number of actions per instruc-

141

142 Chapter 8. Concluding Remarks

tion compared to the synchronous version. The distributed character of the control
saves on the redundant actions and saves power in the datapath. Furthermore, the
asynchronous character of the control also saves power in the control as only a few
handshake control components are active at a given point in time.

The peripherals are demand-driven (rather than clock-driven) by nature, and this
fits nicely with an asynchronous design style. They dissipate energy only when
necessary. The CPU and the peripherals communicate with each other using the
Special Function Registers. The Special Function Register Interface contains these
registers, and caters for the communication to the CPU and to the peripheral. The
SFRI also decouples the CPU and the peripheral, in such a way that maximum
progress by all components is established.

These techniques result in an asynchronous 80C51 that, compared to its synchronous
counterpart, is slightly slower and has 30% more area, but dissipates four times less
energy.

Philips Semiconductors has implemented the asynchronous 80C51 in a pager chip.
This pager is available on the world market today.

Tangram as a programming language offers the possibility to express microcon-
troller architectures. The tool set allows for quick feedback of the characteristics
of the circuit (a handshake simulation of the 80C51 CPU will simulate around 250
instructions per second CPU time) and enables the designer to do a design space
exploration. The transparent compilation scheme of Tangram to the netlist of a
circuit enables the designer to reason about the circuit on the level of the program-
ming language. However, some circuit characteristics are hidden in Tangram but
visible on the handshake circuit level (e.g. multiplexers). Therefore it is important
for the designer to have knowledge about the structure of handshake circuits, and
of the compilation scheme from Tangram to handshake circuits. It is, however, not
necessary for the designer to have a detailed knowledge of the mapping from a
handshake circuit to the netlist of a gate-level circuit.

8.1 Other processor architectures

This thesis has discussed various alternatives for architectures in the design space
of the 80C51 microcontroller. In this section we consider the applicability of these
alternatives in the context of other processor architectures, in particular RISC ar-
chitectures.

The 80C51 is a typical example of a sequential processor architecture. This keeps

8.1. Other processor architectures 143

the datapath small, but also results in relatively poor performance in terms of ex-
ecution time, compared to other microcontrollers and microprocessors. Introduc-
ing parallelism in instruction execution can significantly improve the processor’s
speed. RISC processors aim at this kind of parallelism by overlapping instruction
execution, i.e. by implementing pipelining. First we show how how this can be
accomplished in Tangram. Then we make some power observations concerning an
asynchronous RISC processor.

8.1.1 Pipelining in Tangram

The execution of an instruction can often be split into several components, that are
more or less of the same kind for all instructions. For example, each instruction
execution can be split into a fetch and an execute part, where the fetch part is the
same for all instructions. When each stage uses a separate part of the datapath of
the circuit, then overlapping the execution of instructions is possible. Pipelining
is described extensively in many books on computer architecture (for example by
Hennessy and Patterson [14, 15, 26]).

From an abstract point of view, pipelining can be seen as function decomposition.
Taking this viewpoint, we can express pipelining in Tangram in the following way.
Suppose we have the Tangram fragment

forever

do a?x

i y:=f(x)

i clg(y)

od

The corresponding handshake circuit is shown in Figure 8.1.

Using the possible overlap in instructions, we can split the calculation of £ (x) and
g(y) and put them in parallel for two consecutive instructions:

(forever do a?x ; b!f(x) od)
|| (forever do b?y ; clg(y) od)
We then obtain the handshake circuit as shown in Figure 8.2, which has the same
structure as the 2-place buffer in Figure 1.4.

In this handshake circuit an extra channel b has been introduced to forward the
data produced by the first “stage”. For synchronization between the stages a pas-
sivator is added (Peeters describes a handshake circuit with the same functionality
in which the synchronization is done in the control [30]). This decoupling of the
calculation of £ and g makes it possible to overlap their execution in time. For

144 Chapter 8. Concluding Remarks

Figure 8.1: Sequential execution.

example, suppose that £ is the fetch-part and g implements the execute-part of an
instruction, then these two actions can be overlapped for two consecutive instruc-
tions. The handshake circuit of the two-stage pipeline shows that pipelining yields
more complex circuits in terms of number of handshake components (i.e. area).
This is a penalty for the higher throughput.

8.1.2 Asynchronous RISC and power

In Chapter 3 we saw four CISC-characteristics of the 80C51 instruction set:

e The various addressing modes;

e the variable length encoding of the instruction set;

e the non-uniform register structure;

e the variable number of clock cycles in which an instruction is executed.
In the design of a RISC processor, the instruction set and the datapath are designed
simultaneously. A RISC instruction set is defined around a register file. There
is only one addressing mode, viz. the one that addresses registers in the register

file. RISC instructions are usually encoded using a fixed length for all instructions,
with redundancy in the encoding. This makes it possible to have separate fields

8.1. Other processor architectures 145

Figure 8.2: Two-stage pipeline with synchronization in the datapath.

in the instruction encoding, for example an opcode field, and fields that specify
registers in the register file. The instructions are executed in a fixed number of
steps. Examples of RISC machines are the ARM®6 [11], the MIPS R3000 [18],
the DLX [15], and the StrongARM [11]. Let us now look at the datapath and the
control of a RISC processor to determine the power-saving options.

The datapath of a RISC is built around a register file. Instructions read values from
this register file, operate on them and store the result in the register file. There is a
limited number of communication paths outside the register file. The multiplexing
in the datapath that we encounter in the 80C51, is hidden in the register file. There-
fore, the discussion of point-to-point communication and the bus-communication
that we encountered in Chapter 5, does not apply to such RISC architectures.

For the control of a RISC machine, we consider the instruction execution scheme
of a RISC. The synchronous 80C51 executes each instruction in six or twelve steps
per instruction, but a RISC instruction takes in general fewer steps to execute. An
example of such an execution scheme is shown in Table 8.1. This table shows
instructions that execute in five steps: first the instruction is fetched, then regis-
ter values are read from the register file, an ALU-operation is performed, the data
memory can be accessed, and finally the result is written back into the register file.
Each instruction in the instruction set fits into this scheme. Five-stage RISC ma-
chines like in Table 8.1 are implemented in the MIPS R3000 [18], the DLX [15],

146 Chapter 8. Concluding Remarks

Step | Name Action

1 IF (Instruction Fetch) Fetch instruction opcode from progr. memory
2 ID (Instruction Decode) | Decode instruction; read register file

3 EX (Execute) ALU-operation

4 MEM (Memory Access) | Read or write data-memory, if necessary

5 WB (Write Back) Write result back into register file

Table 8.1: The instruction execution scheme of the DLX RISC instruction set in
five stages: Instruction Fetch (IF), Instruction Decode (ID), Execute
(EX), Memory access (MEM) and Write-Back(WB) [15].

and the StrongARM [11]. The ARMS6 [11] implements a three-stage execution
scheme: Fetch, Decode and Execute, in which Execute combines the stages 3, 4,
and 5 in Table 8.1. We observe from this scheme that there are not as many redun-
dant actions that can be removed by using a distributed control, as we encounter in
the 80C51.

For the decoding of a RISC instruction, we observe that the decoding per stage
is relatively simple, compared to the 80C51 CISC. The decoding is enhanced by
the fact that instructions are encoded in fixed length using fields; usually a stage
only needs information in a few fields to determine its task. This suggests to use
a decode structure with distributed decoding, as shown in the handshake circuit of
Figure 5.11.

Furthermore, the stages in the execution scheme use separate pieces of datapath.
IF uses channels to the program ROM and uses the program counter; ID contains
the register file; EX contains the ALU; MEM caters for the communication to the
data memory, and WB uses the register file to write the result. The only two stages
that use one resource (the register file) are ID and WB. The use of separate pieces
of datapath per stage enables overlapping the execution of instructions, i.e. intro-
ducing pipelining. Pipelining does not reduce the latency but it does improve the
throughput of instructions. The price is an overhead in area, as information about
the instructions has to be transported along the pipeline. Another problem with
pipelining is the introduction of data hazards, i.e. the situation that one instruction
needs the result of a previous instruction that has not yet been made available. This
problem can be solved by stalling the pipeline, which reduces the performance ad-
vantage, or by forwarding results between the pipeline stages, which costs some
area (extra communication paths and multiplexers). Hennessy and Patterson de-
scribe these issues extensively in [15].

8.2. Typically asynchronous? 147

The goal of pipelining is to reduce the execution time by having the stages being
active at any point in time. Asynchronous and distributed control does not offer an
obvious power advantage, as all parts of the circuit show more activity.

Researchers at Manchester University have developed the AMULET-series asyn-
chronous microprocessors [27, 11, 9, 36]. These processors implement the ARM
RISC instructions set. AMULET takes a different approach to RISC than the
pipelines described in this section; in their implementation micropipelines are used,
as introduced by Sutherland [37]. The AMULET chips show that asynchronous
RISC microprocessors can be designed and implemented with similar power and
speed figures as their synchronous counterparts. They offer, however, another ad-
vantage of asynchronous circuits: the absence of a clock leads to lower electromag-
netic radiation with the additional advantages that the electromagnetic spectrum
does not show the peaks caused by the clock. The asynchronous 80C51 in this
thesis offers the same advantage of reduced electromagnetic emission, compared
to its synchronous counterpart.

In summary, the simplicity of the datapath of an asynchronous RISC machine
does not leave much room for power saving. Also the control of an asynchronous
RISC machine has no particular power advantages: first, there are few redundant
actions, and second, a RISC circuit shows more activity. However, asynchronous
RISC processors do not have a clock, resulting in lower electromagnetic emission
compared to their synchronous counterparts.

8.2 Typically asynchronous?

We have seen various techniques that were implemented to save power in the
80C51 microcontroller. A legitimate question is whether these techniques could
have been applied to a synchronous implementation as well. We take our six low-
power opportunities of Chapter 3 and low-power solutions of Chapter 7 as starting
point.

The bus with bypasses can be implemented synchronously as well. Both in the
synchronous and in the asynchronous case, the penalty will be some overhead in
area for the control.

Using latches instead of master-slave flipflops saves energy in a synchronous so-
Jution as well. The sequential nature of instruction execution makes a straightfor-
ward implementation using latches possible. On the other hand, using master-slave
flipflops instead of latches makes it easier to test the circuit.

148 Chapter 8. Concluding Remarks

Clock-gating can reduce the activity of the clock in the circuit. However, clock-
gating makes a more complicated control necessary, and is not as fine-grained as
the asynchronous control. In asynchronous design, the starting point is to steer
the latches only when and where necessary. Synchronous design starts from the
opposite side: all latches or flip-flops are clocked at all clock cycles. Clock-gating
reduces the clock-activity at a global level: it switches the clock off in a part of the
circuit that needs not to be active. Seelen describes a tool that automatically imple-
ments clock-gating [35]. For the synchronous 80C51 this results in a reduction of
the clock power of 24%.

In connection with this, distributed control makes it possible to reduce the capac-
itance of the state machine. In other words, also in the control circuitry power is
saved. Distributed control makes it possible to remove the redundant actions in
the 80C51 instruction execution. Implementation of distributed control would in
the synchronous case come with an overhead in area, because it is more complex.
This overhead can also be found in the asynchronous solution. However, the asyn-
chronous character of the distributed control also reduces the energy dissipated in
the control as only one path in the handshake control tree shows activity at a given
point in time. This is a typical advantage of an asynchronously operating control
structure.

The operation of peripherals is by nature asynchronous, though clock-gating can
help to reduce the power dissipated in synchronous implementations. But that takes
more design effort than in an asynchronous implementation, where it comes natu-
rally with the design style. Peripherals are by nature demand-driven and not clock-
driven. Take the UART that operates in reception-mode as an example: it waits
for an external start-bit to arrive. Energy is only dissipated in the asynchronous
version once this start-bit has arrived. The synchronous version has to be clocked,
even during the period that it waits for the start-bit to arrive. Thus, in this case,
the combination of immediate response and low-power is harder to accomplish in
synchronous design than in the asynchronous design.

Finally, the synchronous implementation has two power-saving modes: idle mode
and power-down mode. Idle mode stops the clock in the CPU but keeps the pe-
ripherals clocked; power-down mode stops the oscillator, in which case it takes a
few ms to re-start the system. The asynchronous implementation does not make
a distinction between idle mode and power-down mode: there is no activity when
not necessary, and the circuit can respond immediately to resume activity. It is
not possible to implement this combination in a synchronous solution without the
clock running.

Reviewing the six low-power opportunities, we can say that the bus with bypasses

8.3. Remaining issues 149

and the use of latches, can be straightforwardly implemented in a synchronous
design. The cost in terms of area and reduced testability is roughly the same as
for the asynchronous case. The absence of a global clock in connection with the
distributed control results in a fine-grained control structure in the asynchronous
design. This results in reduced power dissipation in both the datapath and the
control that is harder to accomplish in synchronous design at reasonable costs.
Finally, asynchronous design allows for fine-grained behaviour in time of the chip,
which is advantageous in designing low-power peripherals, and in designs where
idle-power is an important part of the total power.

8.3 Remaining issues

Testability is one of the main open fields for research in asynchronous circuits at
the moment. The distributed control makes stopping the circuit during a test more
cumbersome than in globally clocked circuits. Therefore the control of a scan-
chain in the datapath, for example, is more difficult to design. Work in this area
has been done, but a push-button test method in the VLSI-programming context is
not implemented yet [32, 34, 33]. Scan-test in the context of micropipeline-based
asynchronous circuits is discussed in [10].

The stuck-at fault model at the gate-level has been lifted to the handshake circuit
level [48, 49]. A tool gives feedback on the test coverage for a given test at the level
of Tangram. To obtain a higher coverage the VLSI-programmer can then adjust the
test. For the 80C51 this method can be followed to obtain a test, which is discussed
in Appendix A.

The current Tangram compiler delivers circuits that have a relatively large execu-
tion time. This is due to the fact that the compiler was designed to deliver low-
power circuits. In the case of the DCC error decoder, speed was not an issue, as the
synchronous solution did not use a high clock frequency either. In the case of the
80C51 we can make two observations. First, the 80C51 is not a high-performance
machine; the standard version runs below 1 MIPS. Second, removing the redun-
dant actions in the asynchronous 80C51 CPU, we obtain a variable execution time
per instruction. This improves the speed compared to an asynchronous solution in
which we would fully mimic the synchronous slot-scheme. There are opportuni-
ties to improve the speed of the circuits that are produced by the Tangram compiler.
The matching of delays, for example, is done conservatively resulting in very ro-
bust circuits [30]. However, these delays can be tightened when we know more
about the implementation and the layout, improving the speed of the circuit.

150 Chapter 8. Concluding Remarks

Appendix A

Testability

In Chapters 1 and 2 of this thesis we have seen that the parameters of the design
space of an IC are area, execution time, energy dissipation, and testability. This
thesis mainly concentrates on the first three parameters. In this appendix some
aspects of testability are discussed. Testability is an essential requirement for an
IC to be accepted for industrial production.

A.1 Background

Since the resurgence of interest in asynchronous design over the last decade, there
has also been an interest in the testability of asynchronous circuits. An overview
of these activities is given by Hulgaard et. al. [17]. In the Tangram project there
have been two main activities in the area of testing.

The first activity aims at high-level development and evaluation of tests and is de-
scribed in [48]. In this approach the stuck-at fault model as used in synchronous
design is “lifted” to the level of handshake circuits. In this new model, a faulty cir-
cuit can be modeled by replacing a handshake-circuit component by another com-
ponent that shows erroneous behaviour. The one-to-one correspondence between
handshake circuits and the Tangram language makes it possible to reason about the
test on the level of Tangram. Fault-coverage simulation can be done at the hand-
shake level using the handshake fault-model, and a tool views the coverage results
to the VLSI-programmer. The test is described as a Tangram program of the envi-
ronment of the chip. The designer can then adjust the test to achieve a higher fault
coverage. The handshake circuit simulator needs to determine whether a fault in a

151

152 Appendix A. Testability

data-component is observable on an output of the circuit. For the single-rail imple-
mentation of handshake circuits the defined handshake fault model includes stuck-
at-output faults in the control logic and all stuck-at faults in the datapath [48, 49].
With the handshake fault-model it is possible to design a test for a circuit generated
from a Tangram program.

The second testability-activity in the Tangram project aims at improving the testa-
bility of asynchronous Tangram-compiled circuits even further by implementing
Design-for-Testability (DfT) . In this approach extra hardware is added to enhance
the effect of test-methods. One of these methods is scan test in which all register-
elements (latches or flipflops) are in test mode connected into one chain that can
be read and written by the environment. Partial scan was used in the DCC error
corrector chip and offers a trade-off between the cost for testing and the cost associ-
ated with scan-design [32]. The approach taken is to implement the extra hardware
for the test enhancement in Tangram. This gives the designer the opportunity to
implement the test facilities on the level of the VLSI-programming language.

Partial scan was implemented in the double-rail implementation of the DCC error
corrector chip. Observability was for free in this chip, as incorrect functioning
of the IC would manifest itself by deadlock. In the single-rail implementation
of handshake circuits, however, observability is no longer for free as single-rail
circuits are no longer quasi-delay-insensitive with respect to datapath operation.
Put differently, a fault in the datapath needs no longer result in deadlock of the
IC. Asynchronous scan facilities can then be used to take snapshots of the sys-
tem states from time to time and thereby compensate for the lost observability-by-
deadlock [32].

To increase the testability of single-rail handshake circuits further, the applicability
of other existing test-methods for synchronous ICs on asynchronous circuits were
investigated [34]. One of these methods stops the circuit at some points in time
and measures the quiescent supply current Ippg. Stopping a synchronous circuit
is straightforward as one can stop the clock. In asynchronous circuits the situation
is different: there is no global clock and therefore it is more difficult to stop the
operation of the circuit. To control the operation of the asynchronous circuit on
a more fine-grained level to enhance the effect of the Ippg method, extra DT
can be added: the HOLD components as introduced in [34]. HOLD components
make it possible to stop the operation of the circuit during testing to enhance the
observability of the state of the circuit. This approach and its applications are
described in [34].

The development of a test for an IC is a task of the designer. When an IC is
developed using the Tangram design flow, the VLSI-programmer should design a

A.2. Approach 153

test for that IC. Therefore it is important that the VLSI-programmer can design
a test on the level of Tangram, as described in the first testability activity in the
Tangram project [48, 49]. Therefore, in the design of a test for the 80C51 we
concentrate on the first approach, viz. the development of a test on the level of the
Tangram language.

A.2 Approach

Currently there is no automated procedure for generating a test for an asynchronous
Tangram-compiled circuit. Therefore we have to develop the test manually, though
the method described in [48, 49] makes an automatic path possible in principle.

The model used in [48, 49] defines for each handshake component a replacement
set. The elements in this set represent handshake components that show erroneous
behaviour. A replacement component can be restricted: this handshake component
shows a behaviour-trace that is a prefix of the behaviour of the original (non-faulty)
handshake component, causing the circuit to deadlock. Non-restricted replace-
ments show a different (and non-blocking) behaviour and are much harder to test,
as the circuit does not deadlock and faults may not be externally visible.

Because the replacement sets of control components only contain restricted re-
placements, all faults can be tested by doing handshakes on every control channel.
In other words: the test of the circuit should activate all paths on the handshake
circuit control tree.

For the datapath, we distinguish between combinatoric circuitry and registers.
Combinatoric circuitry in asynchronous single-rail circuits is not different from
synchronous implementations, and therefore existing tools for test pattern genera-
tion can be used. For the registers we have to make sure that all register elements
(flipflops or latches in the implementation) have assumed all possible values, 0 and
1, and that this has been made visible on an external output.

The 80C51 is a programmable architecture and therefore the test for an 80C51
can be described in terms of an assembly program containing instructions. The
VLSI-programmer has to design a test in the form of an environment to the circuit,
delivering the test-vectors. The environment of the 80C51 can be modeled as a
memory that contains the test program.

The 80C51 is a modular system that consists of various blocks: CPU with memo-
ries, peripherals, and the synchronizer (Chapter 4). In the same modular fashion, a
test can be designed for each block separately. We can design and implement a test

154 Appendix A. Testability

for the 80C51 blocks in the following way:

e For the control, we have to create a test that generates handshakes on all
paths of the decode tree. For the CPU this implies that the test has to contain
all 80C51 instructions.

e For the combinatoric circuitry test vectors have to be generated. As the struc-
ture of combinatoric circuitry in a synchronous circuit is similar to that of an
asynchronous single-rail circuit, the same tools for generation of the test
vectors can be used.

e For the registers in the datapath we have to make sure that all bits have
assumed 0 and 1 during the test, and that this has been made visible to an
external output. For example, we can “mimic” a scan-chain through the
registers and route values through the “chain”, making the result visible on
an external port (for example Port 1 (P1)). This is expressed by the assembly
program

MOV A,#11111111
MOV REGI1,A
MOV REG2,REG1

MOV REGn,REGnl
MOV P1,REGn

MOV A,#00000000
MOV REG1,A
MOV REG2,REG1

MOV REGn,REGnl
MOV P1l,REGn

In principle, the bus-construct as described in Chapter 5 enhances observability
compared to point-to-point communication as all values pass through the same
variable, viz. bus. This variable can be made observable to the environment using
an external port. Using this approach of high-level test design, a test for the asyn-
chronous 80C51 microcontroller was designed by Philips Semiconductors, with a
coverage of 98% based on the handshake circuit fault model.

A.3. Example: a test for the UART 155

A.3 Example: a test for the UART

This section describes a test for the UART as described in Section 6.3, but it does
not provide a test for the Special Function Register Interface.

For the datapath of the UART we observe that there are a few registers present (i.e.
the shift-registers). There is no combinatoric circuitry present. For the registers we
have to make sure that all bits assume the values 0 and 1 and that these values are
made visible to the environment.

For the control we have to make sure that the test follows all paths of the control
circuitry. There is quite some similarity between modes 1,2, and 3 of the UART:
they only differ in the baud rate and the number of bits that is transmitted and
received. In the Tangram program this is exploited by sharing the procedures for
modes 1,2, and 3. In the test for the UART we can exploit this by taking the test for
modes 1,2, and 3 together into one section. Mode 0 is different: there is a specific
section in the Tangram program that deals transmission and reception in this mode.
Therefore, also the test program for the UART contains a separate section for mode
0.

Transmission and reception follow the same protocol: the start-bit and the stop-bit
are for both actions the same. Therefore we can test transmission and reception
simultaneously, by connecting the serial transmission line TxD directly to the serial
reception line RxD.

The reception part of the UART in modes 1,2, and 3 contains some extra circuitry
to detect a start-bit and a stop-bit. This circuitry also has to be covered by the test.

The following test for the UART contains three parts:

1. Test mode O:

e transmit pattern SBUF=<<10101010>> (the CPU makes the UART to
send this pattern);

e receive pattern <<01010101>> (the environment makes the UART to
receive this pattern).

2. Test mode 1, 2, and 3: output TxD is connected directly to input RxD. Patterns
that are transmitted, are then received simultaneously:

e send (and receive) pattern <<SBUF, TB8>>=<<01010101, 0>>in mode
2 at slow baud rate;

156 Appendix A. Testability

e send (and receive) pattern <<SBUF , TB8>>=<<10101010, 1>>in mode
2 at fast baud rate;

e send (and receive) pattern <<SBUF , TB8>>=<<01010101, 0>> in mode
3 at the baud rate determined by the timer overflow;

e send (and receive) pattern <<SBUF , TB8>>=<<10101010, 1>>in mode
1 at the baud rate determined by the timer overflow; note that in mode
1 the value of bit TB8 does not matter as mode 1 specifies an eight-bit
UART.

3. Finally, the environment generates wrong start bits and stop bits to test the
hardware that detects these faults in serial data communication:

e generate the wrong stop bit, which should be 1, in mode 2 at fast baud
rate;

e generate two wrong start bits in mode 2 at fast baud rate:

— offer bits 0,1,1 at counter states 7, 8, and 9 respectively;
— offer bits 1,0,1 at counter states 7, 8, and 9 respectively.

The simulation of this test on the level of handshake circuit is shown in Figure A.1.
The test yields 100% coverage according to the handshake fault-model. In the
complete handshake simulation we see the parts of the test described above.

A.4 Review

Testability is a problem that can be addressed at the level of the VLSI-programming
language: the test is seen as a Tangram description of the environment of the cir-
cuit. For the datapath of a circuit, test patterns have to be offered by the environ-
ment and the results have to be observable by the environment. As the datapath
of an asynchronous system is comparable to a datapath in a synchronous system,
a synchronous testing approach can be chosen. The control of an asynchronous
system is different from that of a synchronous system. The control of a handshake
circuit takes the structure of a tree, in which each path from root to any leaf must
be activated in the test, to achieve a higher coverage. The VLSI-programmer must
therefore have insight in the structure of the control to design a high-coverage test
for the IC that is compiled from the VLSI-program.

At this moment high-level test generation has to be done by hand: the VLSI-
programmer designs a test and obtains observability data from the test-tool [48, 49].

A.4. Review 157

UART in ALL Modes
TxDOtbit I | ! i :
RxDObit m_ | :
TxDOrbit | | | |
RxDbit :] 1

TxD123bit i fmn i

1 1
I 1
1 1
1 1
1 1
1 1
[1
1 1
1 1
1 !
T

! 1
1 1
T T
i 1
T T
1 1
1)
[[
i 1
1 1
1 I
i 1
1 !
1 |
])
|

|
| i
i | o
mw 40, : i i
30, | I l
no| | : 5
100 : ! ;
0.0+ ! : :;i‘ﬁl ‘:I‘Iﬁl‘ll—ﬂ T I:"l S |
-=70 i 50 100 {150 L2000 250
; | | | I i | us
' Mode 0} Mode?2, Mode 2, Mode 3 |Mode 1! Wrong! Wrong
! tslow baud rate fast baud: ! 'stop bit: start bits

Figure A.1: Handshake simulation results of a test for the UART.

This path can in principle be automated to obtain an automatic generation of test
patterns for a VLSI-design in Tangram. When this test does not yield a high enough
coverage the design-for-test methods as described in [32, 34, 33] have to be applied
to increase the coverage.

158 Appendix A. Testability

Appendix B

80C51 Instruction Set

All mnemonics are copyrighted ©Intel Corporation 1980.

In this table the opcode of the instructions at entry FP; ++Z;, is 4 where ¢ and j
are in hexadecimal format. Columns Z8 through ZF are taken together into one
column, are are columns Z6 and Z7. The specification of the instructions can be
found in the 80C51 Data Handbook (1C20) [4].

159

160

Appendix B. 80C51 Instruction Set

70 | 1 | 72 | Z3
PO NOP AIMP LIMP RR
adll ad16 A
P1 JBC ACALL | LCALL RRC
bit,ad8 adl1 ad16 A
P2 JB AIMP RET RL
bit,ad8 adl1 A
P3 JNB ACALL | RETI RLC
bit,ad8 adll A
P4 IC AIMP ORL ORL
ad8 adl1 dir,A dir,#data
P5 INC ACALL | ANL ANL
ad8 ad11 dir,A dir,#data
P6 IZ AJMP XRL XRL
ad8 ad1l dir,A dir,#data
P7 INZ ACALL | ORL IMP
ad8 adll C,bit @A+DPTR
P8 SIMP AIJMP ANL MOVC
ad8 adll C,bit A,@A+PC
P9 MOV ACALL | MOV MOVC
DPTR, #datal6 adl1 bit,C | A,@A+DPTR
PA ORL AIMP MOV INC
C,-bit adll C,bit DPTR
PB ANL ACALL | CPL CPL
C,-bit adll bit C
PC PUSH AIJMP CLR CLR
dir ad11 bit C
PD POP ACALL | SETB SETB
dir adl1 bit C
PE MOVX AIMP MOVX
A,@DPTR adl1 A,@R;
PF MOVX ACALL MOVX
@DPTR,A ad1l1 @R;,A

161

| z4 75 767 | zs8F
PO INC INC INC INC
A dir @R; Rn
P1 DEC DEC DEC DEC
A dir @R; Rn
P2 ADD ADD ADD ADD
A,#data A,dir A,@R; AR,
P3 ADDC ADDC ADDC ADDC
A#data A,dir A,@R; AR,
P4 ORL ORL ORL ORL
A, #data A,dir A,@R; AR,
P5 ANL ANL ANL ANL
A #data A,dir A,@R; AR,
P6 XRL XRL XRL XRL
A #data Adir A,@R; ARn
P7 MOV MOV MOV MOV
A #data dir,#data @R, #data Ry, #data
P8 DIV MOV MOV MOV
AB dir,dir dir,@R; dir,Ry,
P9 SUBB SUBB SUBB SUBB
A#data A,dir A,@R; AR,
PA MUL MOV MOV
AB @R;,dir Ry, dir
PB CINE CINE CINE CINE
A #data,ad8 | A,dir,ad8 || @R;,#data,ad8 || Ry, #data,ad8
PC SWAP XCH XCH XCH
A A,dir A,@R; AR,
PD DA DINZ XCHD DINZ
A dir,ad8 A,@R; Ry ,ad8
PE CLR MOV MOV MOV
A A, dir A,@R; AR,
PF CPL MOV MOV MOV
A dir,A @R;,A Rn,A

162 Appendix B. 80C51 Instruction Set

Bibliography

[1] Electronic Engineering Times, March 1995.

[2] Diesel User Manual - Version 1.0.1, 1.0.2. Technical report, Philips Elec-
tronic Design & Tools, 1996.

[3] 16-bit 80C51XA (eXtended Architecture) Micrcontrollers Data Handbook
(IC25). Philips Semiconductors, 1997.

[4] 80C51-Based 8-bit Microcontrollers: Data Handbook (IC20). Philips Semi-
conductors, 1997.

[5] G. Birtwistle, Y. Liu, D. Spooner, John Aldwinckle, Ken Stevens, and
Wanzhen Yu. Case Studies in Asynchronous Design. Part 1: AMM Architec-
ture. Technical report, University of Calgary, 1993.

[6] Erik Brunvand. Translating Concurrent Communicating Programs into Asyn-
chronous Circuits. PhD thesis, Carnegie Mellon University, 1991.

[7] Thomas D. Burd and Robert W. Brodersen. Energy Efficient CMOS Micro-
processor Design. In Proceedings of the 28th Annual HICSS Conference,
pages 288-297, January 1995.

[8] Philip B. Endecott. SCALP: A Superscalar Asynchronous Low-Power Mi-
croprocessor. PhD thesis, Department of Computer Science, University of
Manchester, 1995,

[9] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and N.C. Paver.
AMULET?2e: An Asynchronous Embedded Controller. In Proc. International
Symposium on Advanced Research in Asynchronous Circuits and Systems.
IEEE Computer Society Press, April 1997.

[10] S. B<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>