
 

An asynchronous low-power 80C51 microcontroller

Citation for published version (APA):
Gageldonk, van, J. S. H. (1998). An asynchronous low-power 80C51 microcontroller. [Phd Thesis 1 (Research
TU/e / Graduation TU/e), Frits Philips Inst. Quality Management]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR515168

DOI:
10.6100/IR515168

Document status and date:
Published: 01/01/1998

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://doi.org/10.6100/IR515168
https://doi.org/10.6100/IR515168
https://research.tue.nl/en/publications/59f42fa0-6236-46fc-ad44-17ef91965ebb




An Asy11chronous Low-Power 

80C51 Microcontroller 

Hans van Gageldonk 



Copyright© 1998 by Hans van Gageldonk, Eindhoven, The Netherlands. 

All rights reserved. No part of this publication may be reproduced, stored in a re
trieval system, or transmitted, in any form or by any means, electronic, mechanica!, 
photocopying, recording or otherwise, without prior permission of the author. 

Cover: Layout of an asynchronous low-power 80C51 microcontroller. 

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG 

van Gageldonk, Johan Sebastiaan Henri. 

An Asynchronous Low-Power 80C51 Microcontroller I Hans van Gageldonk -

Proefschrift Technische Universiteit Eindhoven. -
Met lit. opg. - Met samenvatting in het Nederlands. 

ISBN 90-74445-42-X 

Trefw.: asynchronous circuits, microcontrollers, low-power, IC-design, VLSI. 



An Asynchronous Low-Power 

80C51 Microcontroller 

PROEFSCHRIFT 

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR 

AAN DE TECHNISCHE UNIVERSITEIT EINDHOVEN, 

OP GEZAG VAN DE RECTOR MAGNIFICUS, 

PROF. DR. M. REM, 

VOOR EEN COMMISSIE AANGEWEZEN 

DOOR HET COLLEGE VOOR PROMOTIES 

IN HET OPENBAAR TE VERDEDIGEN 

OP DINSDAG 1 SEPTEMBER 1998 OM 16.00 UUR 

DOOR 

JOHAN SBBASTlAAN HENRI VAN GAGELDONK 

GEBOREN TE HEERLEN 



Dit proefschrift is goedgekeurd door de promotoren: 

prof. dr. M. Rem 

en 

prof. dr. ir. C. H. van Berkel 

The work described in this thesis has been carried out at Philips Research Lab
oratmies Eindhoven under the auspices of the research school IPA (Institute for 
Programming research and Algorithmics). 



Contents 

Acknowledgements V 

1 Introduetion 1 

1.1 Tangram . ...... 2 

1.2 VLSI-programming . 6 

1.3 Low-power 10 

1.4 Metrics .. 11 

1.5 Challenges . 13 

1.6 Overview and contributions . 14 

2 VLSI-Programming 17 

2.1 Handshake circuits 18 

2.2 The Move Machine 23 

2.3 An initia! VLSI-program 25 

2.4 Implementation issues 28 

2.5 Area .. 29 

2.6 Energy . 33 

2.7 Execution time 35 

2.8 Review .... 36 

3 The 80C51 Microcontroller 37 



ll Contents 

3.1 Characterization . . . . . 38 

3.2 Synchronous architecture 39 

3.3 CISC-nature of 80C51 47 

3.4 Power analysis . .. . 49 

3.5 Low-power opportunities 52 

4 An Asynchronous 80C51 Microcontroller Architecture 55 

4.1 Partition of the 80C51 microcontroller 56 

4.2 Communication . . . . . . . . 58 

4.3 Synchronization: compatibility 59 

4.4 Modular design .... .. 64 

5 An Asynchronous 80C51 CPU 67 

5.1 CPU and instruction set . 67 

5.2 Datapath . 73 

5.3 Control 84 

5.4 Local optimizations 92 

5.5 Exception-handling 103 

5.6 Review ...... 105 

6 Asynchronous 80C51 Peripherals 107 

6.1 Characterization . 107 

6.2 Implementation 109 

6.3 Case study: the UART 115 

6.4 Review • ••• 0 •• 0 124 

7 Low-Power Implementation 125 

7.1 Low-power contributions 126 

7.2 Demonstrator chip ... 131 



Contents lil 

7.3 Evaluation . 134 

7.4 Review .. 139 

8 Concluding Remarks 141 

8.1 Other processor architectmes 142 

8.2 Typically asynchronous? 147 

8.3 Remaining issues 149 

A Testability 151 

Al Background 151 

A2 Approach 153 

A3 Example: a test for the UART 155 

A4 Review ..... . . . . . . . 156 

B 80C51 Instruction Set 159 

Bibliography 163 

Index 168 

Summary 171 

Samenvatting 175 

Curriculum Vitae 179 

lP A 181 



iv Contents 



Acknowledgements 

Over the last four years I had the opportunity to work in an excellent and inspiring 
environment, which eventually resulted in this thesis. I experienced this environ
ment at Philips Research in the first place, as I spent most of my time as a member 
of the Tangram team. I would like to thank Kees van Berkel, the leader of this team, 
for teaching me that I should always try to improve the quality and presentation of 
my work. Together with Joep Kessels, Ad Peeters, Marly Roncken, Frits Schalij , 
and Rik van de Wiel, the Tangram team has been a very exciting team to work in. 
Eric van Otteren and Cees Niessen are gratefully acknowledged for giving me the 
opportunity to work in their group. 

I was in the fortunate position to have another inspiring environment as well: the 
Parallelism group at Eindhoven University. I am especially grateful to Martin Rem 
for always being a souree of inspiration and enthusiasm. Also the members of 
the VLSI-Club are gratefully acknowledged for providing a critica! yet pleasant 
forum. Especially the comments of Peter Hilbers, Johan Lukkien, Tom Verhoeff, 
and Rudolf Mak helped me to improve the presentation of this thesis. 

Steve Furber and Joehen Jess read the first draft of this thesis as members of the 
core committee, for which I would like to thank them. 

The asynchronous 80C51 microcontroller that is described in this thesis became 
the result of a joint project with our colleagues from Philips Semiconductors in 
Zürich. I would specially like to thank Daniel Gloor, Daniel Baumann, Oerhard 
Stegmann, and Andreas Mettler for the lively discussions. Paul Gradenwitz and 
Thomas Meyer are gratefully acknowledged for making the layout that appears on 
the cover of this thesis. 

I would like to thank Peter Klapproth, Pierre de Greef, and Eric Seelen for provid
ing the data of the synchronous 80C51 that we compare the asynchronous version 
with. Furthermore, Victor Zieren and Harry van Herten are gratefully acknowl
edged for providing the pboton emission pictures in Chapter 7 of this thesis. 

V 



Vl Acknowledgements 

ESPRIT Working Group 21949 (ACiD-WG) is gratefully acknowledged for fund
ing my visits to workshops and conferences. 

I am also very grateful to the fellow-PhD students both at Philips and at Eindhoven 
University: Ramon, Rik, Bart, Robert, Bob, Paul, and John: many thanks! 

The support of my parents, family, and friends has always been very important 
to me, both in enjoying my work and my time off, for which I am very grateful 
to them. Finally, and most importantly, I would like to thank Mariken for all her 
support and love. 



Chapter 1 

Introduetion 

The power consumption of consumer-electronic products has become increasingly 
important over the last decade. Especially for products that rely on a limited souree 
of power, for example battery-powered products, it is essential to keep the power 
dissipation to a minimum. This oot only results in a Jonger battery-life but makes 
it also possible to use cheaper and smaller batteries, resulting in more appealing 
products. 

Over recent years, increasingly many consumer products have been designed for 
portable use, and are hence battery powered. Examples of such products are cel
lular phones, pagers, personal digital assistants, and notebook computers. In a 
cellular phone, for example, the batteries run out after, say, 80 hours of standby 
time. The phone cantacts its base station a few times per second to check whether 
a phone call bas come in. This is not visible to the user who only notices the 
batteries running empty. 

In these products the power dissipated by the ICs is a substantial part of the total 
power dissipation. Nowadays many chips are produced using CMOS IC-technology. 
CMOS bas the nice property that no power is dissipated when there is no switching 
activity. Zooming in on digital I Cs we see that much of the power (up to 50%) is 
dissipated by the clock in the chip [21]. The doek is used to drive the operation 
of the IC, and it determines the speed at which the circuit operates. In most ICs 
nowadays the doek is global to all register elements of the chip. This implies that 
the doek signa! is distributed over the entire IC. 

To reduce the power dissipated by the clock one alternative is to get rid of the 
doek in the first place, and use distributed and selective steering of the registers in 
the chip. One then speaks of an asynchronous as opposed to a synchronous (i.e. 

1 



2 Chapter 1. Introduetion 

clocked) IC. 

Asynchronous circuits have for long been believed difficult to design, compared 
to synchronous ICs. lt is especially difficult to design these circuits at the gate
level, where problems like timing of data validity and hazards arise. To solve these 
problems, at Philips Research a high-level programming language, Tangram, was 
defined; a compiler can translate a Tangram program in a syntax-directed fashion 
into the netlist of an asynchronous circuit. This translation is done transparently, 
and this makes it possible to reason about the circuit at the level of the Tangram 
text. The approach of translating a high-level description into an asynchronous 
circuit has also been described by Martin [23] and Brunvand [6]. 

This dissertation takes Tangram and the transparent compilation scheme as a start
ing point, and investigates techniques to reason about the resulting circuits. One 
can write various Tangram programs with the same functionality, but with different 
sizes, performances, and power consumptions. The programming techniques are 
explained using the 8-bit 80C51 microcontroller as example. 

Partsof this work were reported during the 1998 Conference on Asynchronous De
sign Methodologies [52]. At Eindhoven University of Technology, a bibliography 
on asynchronous-related literature is maintained [28]. 

1.1 Tangram 

Philips Research Eindhoven started in 1986 with the project "VLSI Programming 
and Silicon Compilation". In this project the design of a circuit is seen as a pro
gramming activity. To this end a simple, yet expressive programming language 
called Tangram was developed, together with a set of tools. Tangram is a language 
like Pascal or C, but offers extra constructs to express communication, parallelism, 
and reuse (sharing) of hardware. Tangram is basedon Haare's Communicating Se
quentia! Processes CSP [16]. The tools are built around a compiler that translates 
a Tangram VLSI-program into the netlist of a circuit. This translation is done in 
two steps with handshake circuits as the intermediate representation. Handshake 
circuits were introduced by Van Berkel, and form the central part of the Tangram 
system [ 41]. 

A handshake circuit is a connected graph of so-called handshake components. 
Handshake components communicate and synchronize with each other using hand
shake channels. The communication between handshake components is based on a 
handshake (i.e. request-acknowledge) protocol. Each handshake component corre-



-. · ..... 

1.1. Tangram 3 

[ 
Area Tangram Performance 

------- -------

Breakdown Program analyzer 

1 1 
Tangram Timed Traces 
Compiler Fault Coverage 

1 1 
Handshake Circuit Handshake Handshake Circuit 

Analyzer l Circuit Simulator 

i 1 
Handshake Circuit 

Compiler Test Veetors 

1 
0

-----------l----------0 
0 

Circuit Netlist 
0 

Silicon Faundry 0 
0 
0 

•----------------------

Figure 1.1: Tangram toolbox. The boxes denote tools; the ovals denote representa
tions. 

sponcts to a construct in the Tangram language. A handshake circuit is an abstract 
view of a gate-level circuit. The next section introduces handshake circuits in more 
detail. 

Tagether with the compiler various tools were designed and implemented to assist 
the VLSI-programmer in the design process. An overview of these tools is shown 
in Figure 1.1. In this design flow the VLSI-programmer (circuit designer) starts 
with a Tangram program which is first compiled to a handshake circuit. There are 
two tools that give feedback on the handshake circuit conesponding to the Tangram 
program: 

Handshake Circuit Analyzer. This tooi gives information about the area charac-



4 Chapter 1. Introduetion 

teristics of the circuit. Not only the numbers of transistors, cells, or gate
equivalents can be obtained, but also a breakdown into various classes of 
components: control, communication, logic, and memory. This helps the 
designer to get insight into the area characteristics of the circuit, and what to 
pay attention to when reducing the total area. 

Handshake Circuit Simulator. This tooi provides information about the func
tionality but also about the timing and energy dissipation of the circuit. The 
results can be shown to the designer using a viewer. The handshake circuit 
simulator also gives information about the fault coverage of the circuit for a 
given test. The designer generates the test veetors by hand, and the simulator 
shows data on coverage, as well as those parts of the circuit that are not cov
ered by the test vectors. This data is presented to the designer on the level of 
the programming language. The automatic generation of test veetors for the 
circuit is subject of further research and implementation. 

With the information obtained from the handshake circuit analyzer and the simu
lator, the VLSI-programmer can modify the Tangram program to obtain a "better" 
circuit in some respect. For example, the designer may want to reduce the area, 
imprave the operating speed, or lower the power consumption. Compilation to a 
handshake circuit and simulation at this level is fast and allows for rapid feedback 
to the designer. 

As the a next step in the design, VLSI-programmer compiles the handshake circuit 
to a netlist The netlist can be simulated using a gate-level simulator to obtain ac
curate numbers on speed and energy dissipation. The translation of a handshake 
circuit to a netlist, and simulation at the gate-level is more accurate and thus more 
time-consuming than simulation at the handshake-circuit level. Therefore this de
sign cycle is longer. When the VLSI-programmer is satisfied with the circuit, the 
netlist can be used for layout (using commercially available tools, for example) and 
sent to a silicon foundry for fabrication. 

The compilation from a handshake circuit into a netlist is based on component
by-component substitution of handshake components by pieces of circuitry. The 
compilation also contains many optimizations at the gate-level, so-called peephole 
optimizations, as described by Peeters in his thesis [30]. These optimizations re
place combiflations of circuit elements by simpler ones that are smaller, faster, and 
more energy-efficient. 

The translation step from a handshake circuit into a netlist can be done in various 
ways, resulting in circuits with different characteristics. One classification of these 
circuits is based on timing assumptions of the circuit implementation. One of the 



1.1. Tangram 5 

first Tangram compilers assumed only the isochronie fork: this is a branch in a wire 
to inputs of gates of which it is assumed that the difference in delays between the 
branches is less than tbe delays through the gates to which the fork is an input [23]. 
This results in so-called quasi delay insensitive (QDI) circuits. QDI implementa
tion of handshake circuits implies that for the encoding of data, a delay-insensitive 
encoding should be used [53]. This is satisfied by using double-rail encoding of 
data, in which two wires are used for communicating one bit. Communicating a 
"0" involves a signa! on one wire; communicating a "1" is established by a signa! 
on the other wire. The feasibility of this compilation was shown with a working IC 
already in 1987 [40]. A demonstrator of significant complexity is the error decoder 
for the DCC (Digital Compact Cassette) player as reported in [43, 44]. This error 
decoder consumes five times less power than its synchronous counterpart. 

Though some QDI implementations show a remarkable advantage in power com
pared totheir synchronous counterparts, their drawback is two-fold [43, 44]. First, 
the area overhead, typically between 70% and 100%, is in general very large for the 
ICs to go into production. Second, using the double-rail implementation, special 
cells for layout are necessary. Tbis is a major drawback for industrial acceptance 
of the design method. To solve these two problems, a single-rail (bundled data) 
mapping from handshake circuits to asynchronous netlists was designed and im
plemented [29, 30]. The single-rail bundled data implementation uses only one 
wire per bit in the data communication but makes more assumptions on timing 
than the double-rail translation does. For each combinatoric part of the circuit, a 
matching delay path in the control is added. However, the advantage is two-fold: 
the area overhead is reduced considerably, and a generic cell-library can be used 
for layout. The feasibility of the single-rail compiler was demonstrated with a re
irnplementation of the error corrector for the DCC-player [30, 45]. This IC shows 
a power advantage of a factor 6 at the cost of 20% area overhead, compared to a 
synchronous solution. 

The communication between handshake components is based on the handshake 
(request-acknowledge) protocol and therefore an asynchronous implementation of 
handshake circuits is a natura! mapping to an IC. Within these asynchronous imple
mentations there is a lot of freedom, of wbich the choice between double-rail and 
single-rail implementation is an example. There has also been an experiment to 
use one wire insteadof two to establish the request-acknowledge protocol between 
components; one then obtains a single-track implementation [ 42]. The potential 
roerit of this approach is high performance. A disadvantage is that a dedicated 
cell-library is needed to implement single-track. The mapping from handshake cir
cuits to netlists need not result in an asynchronous circuit: one can even think of a 
mapping to synchronous circuits. 



6 Chapter 1. Introduetion 

1.2 VLSI -programming 

This thesis is about VLSI-programming, which is the activity of specifying a VLSI
circuit in a programming language, for example Tangram. The Tangram tooi-set 
makes it possible to reason about circuits at the level of the Tangram-language, 
without knowing much detail of the gate-level implementation. The compiler trans
lates Tangram programs transparently and this is the key notion that makes reason
ing about circuits at the level of Tangram possible. The tools at the handshake
circuit level provide feedback to investigate the design space in terms of area, exe
cution time, energy dissipation, and testability. 

To see how the compilation from Tangram to handshake circuits works, we con
sider the example of a 1-place buffer. In Tangram we can describe this buffer by 
the procedure 

buffer: proc(a?T & b!T) . 
begin x : var T 
I forever do a?x ; b!x od 
end 

The header of this procedure declares two extern al channels (a and b) of a certain 
type T. Channel a is an input channel (denoted by the question mark) and bis an 
output channel (exclamation mark). The begin-end construct contains the body 
of the Tangram procedure. lt tirst declares a variabie x. After the bar (" I ") we 
see the statements of the Tangram program, in this case an endless loop ( forever 
do . . . od). The body of this loop is the sequence of two statements: an input 
along a into x, foliowed by an output of x along channel b. The corresponding 
handshake circuit is shown in Figure 1.2. 

In this tigure we see the various handshake components that correspond to Tan
gram constructs. Each handshake component has passive ports ( denoted by open 
circles), active ports (denoted by a tilled circles), or some combination of the two. 
In handshake circuits, a passive port is always connected to an active port, with 
the exception of one unique external passive port (denoted by "l>"). A handshake 
channel consistsof a request wire, an acknowledge wire, and (possibly zero) data 
wires (Figure 1.3). Handshake channels without data wires (i.e. onJy consisting of 
a request and an acknowledge wire) are called nonput channels. Handshake chan
nels that carry data are denoted by an arrow, indicating the direction of the data 
transport. Components communicate with each other using a handshake protocol. 
An example of such a protocol is shown in Figure 1.3. 

In handshake circuits, the active port takes the initiative and raises the request. The 
passive port will eventually respond by raising the acknowledge wire. In the 2-



1.2. VLSI-programming 7 

Figure 1.2: Handshake circuit for 1-place buffer. 

phase handshake protocol the bandshake is now complete, and the next handshake 
can only be initiated by the active port lowering the request after which the passive 
port will lower the acknowledge. In the 4-phase handshake protocol, however, a 
handshake consists of bath the up-going as well as the down-going of the request 
and the acknowledge wires. Many possible schemes of data validity with respect to 
the handshake-protocol are described by Peeters (30]. The 4-phase protocol allows 
for a wide variety of these schemes with many possible implementations of the 
handshake components. 

For tbe operation of a handshake circuit we take the circuit of the 1-place buffer as 
an example (Figure 1.2). A handshake circuit is activated along its startup channel 
( denoted by the t> ), connected to its single passive extern al port. At the top we 
have the repeater (denoted by "*") connected to the startup channel: activated 
along its passive port it generates handshakes along its active port indefinitely. lt 
corresponds to the Tangram forever do • • . od statement. The sequencer, 
denoted by the ";", corresponds to the semicolon in the Tangram program. When 
activated along its passive port, it performs a complete handshake along its left and 
after that on its right active port. The first active port it performs a handshake on, is 
indicated by the "*". When the "*"is omitted, we assume that the sequencer always 
perfarms the first active handshake along its left handshake port in the diagram. 
When the two handshakes along tbe active ports have completed, tbe sequencer 
completes the handshake along its passive port. 

The repeater and the sequencer are examples of handsbake control components. 
The other components in Figure 1.2 are datapath components. Variabie x corre-



8 Chapter 1. Introduetion 

active side passive side 

request 

acknowledge 

time 

Figure 1.3: Handshake protocol with request and acknowledge wires. The active 
side is denoted by a filled circle and the passive side by an open circle. 
The active side always takes the initiative to start a handshake. The 
timing diagram shows the up-going and the down-going transitions on 
the wires. 

sponcts to the handshake variabie component with two passive ports: one read port 
and one write port. Communication is established by the transferrers ( denoted by 
"--+"). The transferrer, once activated along its passive port, collects data from one 
active port and transports it to the other active port, in the direction of the arrow. 
The left transferrer in Figure 1.2 collects data from channel a and stores it in x; 
then (controlled by the sequencer) the data in x is copied to output channel b by 
the right transferrer. 

Makinga two-place buffer out of one-place buffers is straightforward. Suppose we 
have a Tangram procedure for a one-place buffer. A two-place buffer consists of 
two one-place buffers in parallel: 

buffer(a,b) 11 buffer(b,c) 

As the active port of the output transferrer of the first buffer is to be connected to 
the active port of the input transferrer of the second buffer, there has to be a special 
component in between, the passivator. The passivator in the datapath syncbronizes 
two communications on its passive ports. The resulting handshake circuit is shown 
in Figure 1.4. (Remark: a 2-place buffer with synchronization between control 
components rather than between datapath components is described in [30]). 

In this handshake circuit we see two instantiations of the one-place buffer circuit 



1.2. VLSI-programming 9 

Figure 1.4: A handshake circuit for 2-place buffer. 

of Figure 1.2. They are connected by the passivator in the datapath and the PAR
component in the control, denoted by "11 ". This component corresponds to the 
Tangram " I I "-construct and takes care of parallel activity of pieces of circuitry. 
When activated along its passive port, it simultaneously initiates handshakes along 
its left and right active handshake channel. Once both of these handshakes have 
finished, the PAR-component completes the handshake along its passive port. In 
the case of the two-place buffer, the repeaters will never complete the handshakes 
on their passive ports and therefore the buffer circuits will continue their operation 
indefinitely. 

The programming language Tangram is designed to describe hardware structures. 
A conventional programming Janguage like C or Pascal Jacks three constrocts that 
are necessary to express a circuit design: communication, parallelism, and sharing 
of hardware, which will be described in Chapter 2. Tangram has these constrocts 
available. On the other hand, concepts such as recursion, process creation, and 
dynamic data types are not necessary for hardware design, and therefore they are 
oot present in Tangram. 



10 Chapter 1. Introduetion 

1.3 Low-power 

The total power dissipation of a CMOS circuit can be split into two components: 
the static and the dynamic part [ 54]. Static power dissipation is due to leakage 
current and other current drawn continuously from the power supply. Dynamic 
power dissipation is due to the switching transient current through resistive MOS
transistor channels, and the charging and discharging of load capacitances. 

For a synchronous CMOS circuit in operation the dynamic power dissipation is 
dominant over the static dissipation and can be expressed by the formula [7, 54] 

where Vctct is the supply voltage of the circuit, f elk the frequency of the doek, CL 
the physical capacitance of the circuit, and a the activity factor of the circuit. To 
reduce the power dissipation of a circuit we have the following options. 

First, we can reduce the supply voltage Vctd· Power scales down quadratically with 
the supply voltage, and therefore the supply voltage should be as low as possible 
for a !ow-power circuit. However, the operating speed of the circuit scales down as 
well, linearly with the supply voltage [12]. Introducing parallelism in the circuit's 
operation increases the operating speed, as a result of which the suppl y voltage can 
be lowered, resulting in lower power dissipation. On the other hand, introducing 
parallelism aften leads to a larger area of the circuit. Th is technique is exploited, for 
example, on a superscalar asynchronous microprocessor, SCALP [8]. Superscalar 
processors have more than one execution unit for various types of instructions. 
This makes it possible to execute instructions in parallel. 

Second, we have the clock frequency f elk· Reducing the doek frequency reduces 
the power dissipation (though not the total energy that is dissipated for a given 
task!), but also implies lower performance in terms of execution time. On the other 
hand, it is aften possible to reduce the clock frequency to zero for some parts of 
the circuit during operation. This technique, called clock gating, disconnects the 
doek from (a part of) the circuit that neects not to be active at a given point in 
time. There are two types of doek gating: control dependent and data dependent. 
Control dependent doek gating stops the doek at some part of the circuit when 
it is known that this part neects not be active. For example, in a microcontroller 
the timers can be switched off when they are not needed; in the circuit the doek 
is then switched off in the tirner-block. Data dependent clock-gating occurs on a 
more fine-grained scale. For example, suppose that in a microprocessor an offset 



1.4. Metrics 11 

has to be added to the program counter.· ·when this offset is small, aften only a 
few bits will change while a large part will nat change. This can be exploited by 
nat clocking the registers of the higher-order part of the addition when this is nat 
necessary. The penalty is some extra control to detect whether this kind of clock
gating can be applied. Asynchronous circuits can be seen as an extreme in doek 
gating: only those registers are activated that need to be activated. The distributed 
control of asynchronous circuits makes this possible as we will see in Chapter 5. 

Third, we can reduce the capacitance of the circuit. This can be done by resorting 
to a smaller feature size in the layout. Sealing down the transistor size and the 
wiring capacitance of a circuit reduces its total capacitance. When making a fair 
camparisou between two circuits in terms of power dissipation it is important to 
campare them implemented in the same technology. 

Fourth, and most relevant to VLSI-programming, we have the activity factor a. 
Power in CMOS circuits is only dissipated when there is switching activity, ex
pressed by a. Minimizing activity lowers the power dissipation. The design used 
tbraughout this thesis, the 80C51 microcontroller, shows that there can be plenty 
of opportunity to minimize the activity of the circuit at the architecture level. The 
synchronous implementation of this microcontroller shows many redundant ac
tions that can be filtered out due to the asynchronous distributed controL 

Many of the observations above applied to energy-efficient microprocessor design 
can be found in literature [7, 12, 13]. An example of an asynchronous microproces
sor family designed for low-power is the Amulet series that implement the ARM 
instruction set [27, 11 ]. 

VLSI-programming is about specifying the architecture of a circuit. Tangram and 
the Tangram-taals farm a framework in which a design space exploration can be 
performed. The next section describes the parameters that are of importance in the 
design space, and motivates the choices for metrics for these parameters. 

1.4 Metrics 

There are four parameters that are important for the design space: area, operating 
speed, energy dissipation, and testability of a circuit. 

The area of an IC can be measured in number of transistors, number of standard 
cells in the layout, number of gate-equivalents and die size. All depend on the 
implementation medium: does one map to a cell library ar does one opt for full 
custom layout? Generally, full custom layout will resutt in less area, for it can 



12 Chapter 1. Introduetion 

be optimized for the application that bas to be implemented. Cell libraries allow 
for a quicker and cheaper design trajectory, because each design makes of the same 
standard-celllibrary. To campare one IC toanother one should camparethem when 
implemented in the same technology, using the same layout style. We choose to 
express the area of an IC in the number of transistors, for that is a precise measure 
when using a fixed style of layout. 

The operating speed of an IC can be expressed in various ways. For micropro
cessors and microcontrollers with a fixed instruction set, one aften chooses for 
Millions of !nstructions Per Second (MIPS). This measure is good for camparing 
implementations of the same instruction set in the same technology. Same instruc
tion sets make it possible to express a program in fewer instructions than other 
instruction sets. On the other hand, some instruction sets contain more powertul 
instructions than others. This makes it difficult to campare the MIPS metric for 
one microprocessor to another with a different instruction set. 

The energy dissipation of anICis expressedinJoules dissipated fora specific task. 
In the case of a microprocessor we can take the instruction set again and use the 
measure Joules per instruction. With the present technologies available this is in 
the order of a few nJ per instruction. Again this is a cumbersome metric when 
camparing different instruction sets. In literature one aften encounters the equiva
lent measure MIPS/Watt as camparing metric. For the same reasans as above this 
is a poor measure for straightforward comparison of different microprocessor ar
chitectures. In this thesis, several implementations of the 80C51 microcontroller 
are described. When camparing them, we campare the same instruction set imple
mented differently but in the same technology, assuming camparabie conditions 
(supply voltage, temperature, etc). Therefore we use the metric energy per instruc
tion for comparison. 

For operating speed in combination with energy dissipation one can make another 
observation. When one design is better in bath aspects than another, we can con
sider bath aspects separately. However, when there is a trade-off between the two, 
the situation is different. Suppose we have a design A and a design B that im
plements the same function. B dissipales half of A 's energy but is twice as slow. 
Which design is the better (not considering the area of A and B for the moment)? 
When we would reduce the supply voltage forA with a factor of 2, the operating 
speed would scale down with a factor of 2. However the energy dissipation would, 
since it scales quadraticalJy with the supply voltage, scale down with a factor of 4! 
Here we see clearly that A is the better design. 

To have a combined measure for speed and energy, independent of the supply volt
age, one has to use the energy-delay-delay product ET2 . For example, for the 



1.5. Challenges 13 

above mentioned designs A and B, ET2 is constant for any supply voltage that 
the circuit can operate in. When taking ET2 = m for design A, we would have 
ET2 = 2m for B, immediately demonstr?ting that A is the better design. 

Last but not least, the testability of a circuit is an aspect that should be considered 
when designing a circuit. When a circuit has been fabricated it bas to be tested for 
fabrication faults. The complexity of a circuit demands a thorough thinking of how 
to design a proper test for it. This testing issue is aften considered only after the 
design, wbich makes it more difficult to create a proper test for it. lnvestigating the 
testability can have the beneficia! effect of removing redundancy from the design. 
Redundant hardware is aften not covered by a test, and can therefore be removed 
to reduce the area and imprave the test coverage. This thesis will not deal with 
testability, though we will come back to it in Appendix A 

1.5 Challenges 

At the beginning of this project, much attention had been paid to Tangram and the 
compiler, with the single-rail backend as one of the results. The feasibility of the 
approach was demonstrated by the single-rail asynchronous implementation of the 
DCC error-decoder. 

Also the aspect of VLSI-programming had been paid attention to, in the context 
of the Reed-Soloman decoder for the DCC-player [19]. Otber aspects of VLSI
programming for !ow-power are explained in [46]. As the single-rail compiler pro
duces area-competitive circuits implemented in standard-celllayout it is interesting 
to research other areas of application of asynchronous low-power circuits. 

The transparent compilation of Tangram into silicon enables the designer to reason 
about the circuit at the level of the Tangram-language. In other words, it should 
be possible to describe some techniques for VLSI-programming. As !ow-power is 
believed to be an important benefit of asynchronous circuits, these techniques for 
VLSI-programming should be tailored to abtaio low-power circuits. 

To demonstrate the rules for VLSI-programrning a vehicle of industrial relevanee 
was selected: the 80C51 microcontroller. lts architecture and implementation are 
reasonably old: the instruction set architecture was defined by Intel in 1980. Many 
derivatives have been implemented and for Philips it is a widely used architec
ture [4). Some synchronous implementations are already tailored for !ow-power to 
make them suitable for applications where low power consumption is important. 

The 80C51 instruction set shows a lot of irregularity in its many addressing modes 



14 Chapter 1. Introduetion 

and non-uniform register structure. This makes it not straightforward to choose the 
better solutions in the design spectrum, and therefore a design space exploration is 
interesting. The Tangram VLSI-programming approach makes such an exploration 
possible, benefiting from the quick design cycle. 

The 80C51 microcontroller is widely used in many products, because of its flex
ibility as programmabie device and because it is cheap to produce. It bas a gen
eral programmabie CPU and therefore its application area is large. For the Tan
gram project it is important to demonstrate the feasibility and the advantages of the 
VLSI-programming approach on such vehicles of industrial importance. 

1.6 Overview and contributions 

This thesis is organized as follows. 

Chapter 2 introduces VLSI-programming in more depth, and uses a small pro
cessor, the Move Machine, as an example. Several optimizations, of which 
sharing of hardware is important, are introduced and a small exploration of 
the design space is performed. 

Chapter 3 describes the synchronous 80C51 microcontroller. It is an 8-bit mi
crocontroller and can be considered a CISC (Complex Instruction Set Com
puter). The synchronous implementation is analyzed and six observations 
concerning the energy dissipation are made. 

Chapter 4 outlines an asynchronous implementation of the 80C51. This micro
controller can be divided into three parts: a handshake-CPU, the peripherals 
and a Synchronizer-block. This block takes care of synchronizing the asyn
chronous IC in a synchronous environment. Extemal memory access, where 
there is a timing protocol between the IC and its environment, serves as an 
example. 

Chapter 5 describes the design space for the 80C51 CPU, the part that fetches 
and executes instructions. Various alternative Tangram programs result in 
different datapatbs and control structures for the CPU. Furthermore, some 
local optimizations are discussed. 

Chapter 6 deals with the implementation of the 80C51 peripherals. These addi
tional pieces of hardware give the 80C51 system its ftexibility, and interface 
between the CPU and the environment of the microcontroller. The interface 



1.6. Overview and contributions 15 

between CPU and peripherals is to adhere to certain constraints. A UART 
(Universa! Asynchronous Receiver and Transmitter) serves as case study at 
the end of this chapter. 

Chapter 7 reviews the six low-power observations made at the end of chapter 3, 
and discusses some alternative design methods that save power. A low-power 
asynchronous implementation of the 80C51 was fabricated and in this chap
ter the manufactured IC is analyzed. It is compared with its synchronous 
counterpart as well with other low-power microprocessors and microcon
trollers. 

Chapter 8 reviews and concludes this thesis. 

The aim of this thesis is to leam to reason about circuit properties at the level 
of a programming language, Tangram. The main contributions of the research 
described in this thesis are: 

• Identification of techniques for VLSI-programming; 

• Design space exploration for the design of an asynchronous 80C51 micro
controller architecture; 

• Demonstration ofthe feasibility ofthe Tangram VLSI-programming approach 
to this architecture; 

• A low-power asynchronous implementation of the 80C51 microcontroller, 
showing a power benefit at the cost of some overhead in area. 

The development of the asynchronous low-power 80C51 microcontroller was done 
in cooperation with Philips Semiconductors. The design of the CPU (Chapter 5), 
the interfaces to the environment and to the peripherals (Chapters 4 and 6), and the 
design of the UART as described in this thesis, were carried out by the author. The 
design of the other peripherals, as well as the final layout and the measurements 
of the test chip were done at Philips Semiconductors and Philips Research. The 
pictures of the photon emission, which appear in Chapter 7, were produced and 
interpreted at Philips Research. 



16 Chapter 1. Introduetion 



Chapter 2 

VLSI-Programming 

Conventional programming is the activity of writing a program in some language 
and compiling it to a list of instructions that can be executed on a processor. Impor
tant aspects of the resulting programs are the execution time, the usage of memory, 
and the size of the generated code. In most cases, the program is executed in a se
quentia! fashion, instruction by instruction. lt is often possible to classify various 
programs according to a parameter, for example speed or memory usage. 

VLSI-programming involves the activity of specifying a VLSI-circuit in a pro
gramming language, for example Tangram. Important aspects of VLSI-programs 
are the speed, the power dissipation, the size, and testability of the resulting circuit. 
Also fine-grained timing is an aspect of VLSI-circuits. To express the functional
ity of a circuit it is important that the language has constrocts for parallelism and 
communication. 

It is often the case that a VLSI-program fora specific function results in a smaller 
but, for example, less energy-e:fficient or slower circuit than another VLSI-program. 
Therefore it is difficult to use one parameter to campare VLSI-programs; often a 
trade-off between various VLSI-programs can be made. Therefore it is hard for a 
compiler to decide which translation is the best for a given program; the designer 
has to make these decisions. Thus it is important that the compiler translates trans
parently; only then the designer can reason about the circuit at the level of the pro
gramming language, and rewrite the program in such a way that the requirements 
are met. 

The Tangram compiler translates a VLSI-program into a netlist of a circuit trans
parently. Tools that perfarm simulations at the level of the handshake circuit give 
feedback with reference to the structure of the Tangram program. Handshake cir-

17 



18 Chapter 2. VLSI-Programming 

cuits describe the circuit at a level of abstraction that is low enough to obtain accu
rate data about the resulting circuit; on the other hand this level is high enough to 
allow for fast simulation. 

In the previous chapter we have identified four aspects that are of importance for 
VLSI-programs: area, operating speed, energy dissipation, and testability. Nor
mally, when started from an initia! design, one writes other VLSI-programs that 
are better with respect to all of these aspects, but when pushing one aspect to the 
extreme, another might get worse. lt is then possible to make a trade-off, for ex
ample to choose for lower power dissipation at the cost of a larger area. In this 
chapter some of these aspects are demonstraled on a small example, theMove Ma
chine, which is a smalland easy-to-understand processor. 

The goal of this chapter is to understand some basics of VLSI-programming. To 
this end, we have to understand the translation scheme from Tangram to handshake 
circuits. Therefore we first take a closer look at handshake circuits. 

2.1 Handshake circuits 

A handshake circuit is a conneeled graph that consists of so-called handshake 
components [ 41]. A classification of these handshake components is described 
by Peeters in his thesis [30]. In this classification he only considers handshake 
components with handshake interfaces, both internally and externally. 

In genera!, a handshake circuit has the form as shown in Figure 2.1. First there are 
the control components; these components only have control (i.e. nonput) hand
shake channels. Second, data componentscan be distinguished; these only have 
data handshake channels. In between there are the interface components; these can 
communieale with other components using both nonput and data channels. The 
data components can furthermore be divided into three categories: the pull, the 
push, and the passive components. 

An example of a passive nonput channel ("pn" in Figure 2.1) is the startup channel 
of the handshake circuit. After initialization of the circuit, a handshake initiated on 
this channel will start the circuit's operation. 

Passive components are handshake components that only have passive handshake 
ports. Examples are the variabie and the passivator as shown in Figure 2.2. The 
variabie is used for storing values of some type. In the single-rail implementation 
of handshake circuits, it has one write port and and possibly more than one read 
port [30]. When the variabie is implemented as a latch, then it is not possible to 



2.1. Handshake circuits 19 

Interface 
Components 

ai Pull Push ao 

Components Components 

Passive 
po Components pi 

Figure 2.1: General structure of a handshake circuits [30] . 

read and write the variabie simultaneously. However, multiple simultaneous reads 
are possible. The passivator tbat bas two passive ports; it synchronizes handshakes 
along these ports. 

Figure 2.2: Handshake passive components: the variabie and the passivator. The 
variabie in tbis picture has three read ports and one write port. 

Pull components collect, modify, and output data upon request. An example of 
such a pull component is a binary operator, such as addition. This operator is 
sbown in Figure 2.3. Once activated along its passive handsbake port, it collects 
two operands along the active channels, perfarms the addition, and outputs the 
result along the passive channel. 

Push components take care of the communication of data to the environment of 
the handshake circuit, either via an active output, or indirectly though a passiva
tor via a passive output. The multiplexer, which merges streams of data onto one 



20 Chapter 2. VLSI-Programming 

Figure 2.3: Handshake pull-component: binary addition. 

channel, is an example of a push component (Figure 2.4). Multiplexers have two 
or more passive inputs and one active output. Handshakes on the input channels 
are required to be mutually exclusive. U pon activation along one of the inputs, the 
multiplexer performs a handshake along its active output, after which the hand
shake on the passive input is completed. Multiplexers that carry no data are called 
mixers. Mixers also appear in the control of a handshake circuit. 

Figure 2.4: Handshake push-component: the multiplexer. 

The interface components as shown in Figure 2.5 have both data channels and 
nonput channels as handshake interface to other components. Examples are the 
transferrer, the case-component, and the do-component. The latter two form the 
interface between control and datapath of a handshake circuit. The binary case
component takes a boolean input on its passive port and, depending on the value 
of this input, decides which active port to activate. The do-component also takes a 
boolean input on its passive port and activates its active port until the boolean input 
is false. The transferrer collects data from one active port and transfers it to the 
other active port. The direction of the transport of data is indicated by the arrow. 

Control components are used to steer the interface components. They decide in 
what order the various other components are activated. Examples are the se
quencer, the PAR-component, and the repeater (Figure 2.6) . The sequencer, once 
activated along its passive channel, completes handshakes first along its left (in-



2.1. Handshake circuits 21 

Figure 2.5: Handshake interface components: transferrer, case, and do. 

dicated by "*") and then along its right active channel. lt then completes the 
handshake along its passive channel. lt thus sequences the handshakes along its 
active channels. When the "*" is omitted in the symbol of the sequencer we as
sume that the first handshake will take place along the left handshake channel. The 
PAR-component perfarms handshakes along its active channels simultaneously, and 
completes the handshake along its passive channel only when bath handshakes 
along the active channels have finished. The repeater, once activated along its pas
sive port, continues generating handshakes on its active port forever. 

Figure 2.6: Handshake control components: the sequencer, the PAR-component, 
and the repeater. 

In microprocessor design there is the distinction between the control and the data
path. The datapath is the part of the circuit that contains all registers and com
binatorics to do calculations on the values stared in these registers. Furthermore, 
all communication paths including multiplexers and demultiplexers are part of the 
datapath. The control literally controls the datapath; it takes care of the proper 
steering of all elements in the datapath. 

In what follows we adopt this view for handshake circuits. In order to make the 
conneetion with the "microprocessor" control and datapath more explicit, we make 
a slightly different, somewhat more abstract classification than the one above. 

The datapath of a handshake circuit contains the following components: 



22 Chapter 2. VLSI-Programming 

• all passive components (the variables, conesponding to the registers, the pas
sivators used for synchronization, but also register files and memories); 

• the pull components, such as all arithmetic operations; 

• the push components, such as the data multiplexers; 

• the transfeners. 

The control of a handshake circuit consists of 

• the control components (the sequencer, the PAR-component, and the repeater); 

• all interface components except the transfener, such as the do and the case
component. 

The only handshake components whose functionality is data-dependent, are the 
do and the case-component, which reside in the controL The processing of this 
data takes place in the datapath, and therefore there has to be some communication 
between datapath and controL 

The channels that are the interface to the datapath are 

• the active (ai) and passive (pi) inputs from the environment; 

• the active (ao) and passive (po) outputs to the environment; 

• the activation (nonput) channels from all transfeners in the datapath; 

• the inputs for the conditional control components (i.e. the case and the do
components). 

Using this classification we obtain the general view of a handshake circuit as shown 
in Figure 2.7. 

Now that we have introduced the handshake components, it is time to look at some 
design issues. Area, speed, power dissipation, and testability are important param
eters for a circuit. For the first three aspects, the next sections explain how we can 
reason about them at the level of the VLSI-programming language and on the level 
of handshake circuits. To this end, we use a small processor, the Move Machine, as 
running example. 



2.2. The Move Machine 23 

pn ~ Control an 

., , • ., 
') ( 

ai .. - ao 
Datapath 

r po pi 

Figure 2.7: General structure of microprocessor handshake circuits. 

2.2 The Move Machine 

The Move Machine is a small processor with a limited instruction set. lt was 
proposed by Sutherland in the 1970's [5]. Sutherland observed that in a computer 
system the main processor spends most of its time rnaving data back and forth in 
memory, while nat doing any "useful" tasks it was designed for. The task of the 
Move Machine is to assist the main processor by rnaving blocks of data around in 
memory. 

Birtwistle et.al. reported on a specification and an implementation of the Move 
Machine [5]. An extension of its instruction set can be found in [50]. This is the 
instruction set that is going to be used as running example tbraughout this chapter. 
This work was also reported on in [51 ]. 

A processor is made to execute instructions from a given instruction set. The design 
of the instruction set determines the flexibility and purpose of tbe processor. Since 
the Move Machine is meant for rnaving blocks of data, its instruction set is tailored 
for that task. 

The Move Machine is built around a register file of 16 eight-bit wide registers, and 
can access an extemal memory M. Bath the program and the data are stared in 
the same memory. The instruction set contains ten instructions and is shown in 
Table 2.1. The operands for the various instructions are indices in the register file 
(r1, r2 and r3 in Table 2.1 ). 

We distinguish several classes of instructions in this set: 



24 Chapter 2. VLSI-Programming 

Code Acronym Arguments Action Description 
0 LOD TI, T2 T2 := M[TI] laad 
1 STO T1, T2 Mh] :=T2 store 
2 LOl T1,T2,T3 T2 := M[T1 + T3] laad with offset 
3 STI T1,T2,T3 Mh +T3] := T2 store with offset 
4 MOV TI, T2 TI:= T2 move 
5 sec TI,T2 cc:= (TI = T2) set condition code 
6 INC TI TI:= T1 + 1 increment 
7 ADD TI,T2 TI:= TI+ T2 addition 
8 JCC Tl if cc then pc := TI fi jump condition code 
9 NOP no operation 

Table 2.1: Move Machine instruction set. 

• instructions for loading and storing values in memory (LOD, LOl, STO, and 
STI); 

• instructions for manipulating values in the register file (MOV, INC, and 
ADD); 

• instructions to control the program flow: SCC (Set Condition Code) and JCC 
(Jump on Condition Code); 

• A miscellaneous instruction: NOP (No OPeration). 

~--o_p_c __ ~ ___ r_l __ ~l IL-__ r_2 __ ~L_ __ r_3 __ ~ 
4 4 4 4 

Figure 2.8: Instruction encoding. 

The length of theencoding of instructions (Figure 2.8) is fixed: each instruction is 
encoded using two bytes. The first byte contains the opcode ( 4-bits) and register 
file index TI (also 4 bits); the second byte contains indices T2 and T3. Since not 
all instructions use all these register-file indices, there is some redundancy in this 
encoding, which (as we will see later on) can be used to our advantage in the 
implementation of the Move Machine. 



2.3. An initia] VLSI-program 25 

The Move Machine is to operate with an environment that contains the memory. 
This memory contains both the program to execute and the data to operate on. 
Schematically the interface between tbe Move Machine and its environment is 
shown in Figure 2.9. 

address ( B) 

rw (1) 

Move Machine Environment 
dataout (8) 

datain (B) 

Figure 2.9: The Move Machine and its environment. The numbers denote the 
widths of the channels, in terms of number of bits. 

The Move Machine can read and write data in memory by actbering to the following 
protocol: 

• First, the Move Machine sencts an address to the environment (along address ), 
tagether with a signa! along channel rw indicating whether it wants to read 
data from, or write data to the memory; 

• then, the Move Machine either 

- reacts data from memory (along datain), 

- or writes data to memory (along dataout). 

2.3 An initia) VLSI-program 

With the instruction set and the interface to the outside world as starting points, the 
main structure of a Tangram program for the Move Machine can be designed. This 
main part is given in Figure 2.10. 

The Tangram program starts with the definitions of types. The interface to the 
outside world is described in the header of the Tangram program, in whicb the 
input ("?") and output ("! ") channels and their types are specified. The header 
clearly follows tbe structure as shown in Figure 2.9. 



26 Chapter 2. VLSI-Programming 

int8 = type[0 .. 255] 
& intl = type[O .. l] 
I address!int8 

& rw!intl 
& dataout!int8 
& datain?int8 

begin /* Declarations of variables and procedures */ 
I main() 
end 

Figure 2.10: Structure of the Tangram program for the Move Machine. 

Procedure main ( ) contains the sequence of statements that constitute the VLSI
program: it describes the implementation of the Move Machine. The processor 
executes an endless loop in which it fetches an instruction and then executes the 
appropriate statements. For reasons of simplicity we choose to fetch and execute 
the instructions sequentially, which can be expressed by the semicolon ("; ") in 
Tangram. Thus we obtain the following program forma in ( ) : 

main : prae(). forever 
do Fe te hOp ( ) 

Execute() 
od 

Fetching an instruction involves sending an address to memory, together with a 
read-signal (which is coded as a boolean value ); tb en the Move Machine collects 
the opcode of the corresponding instruction and increments the program counter 
pc. Each Move Machine instruction is coded in two bytes, so we have to do two 
memory accesses per instruction: 

FetchOp : prae(). dataout!pc I I rwlread 
datain?<<opc,rl>> I I pc:=pc+l 
dataout!pc I I rw!read 
datain?<<r2,r3>> I I pc:=pc+l 

Here we see the u se of parallelism between statements by the Tangram " I I "
construct. Statements put in parallel are executed simultaneously. 

Having received the opcode of the instruction, procedure Execute ( ) executes 
the necessary statements that implement the instruction. The opcode is simply a 
number between 0 and 9 (Table 2.1); decoding can be done using the Tangram 
case-statement, which selects tbe right instruction: 



2.3. An initial VLSI-program 27 

Execute : proc () . 
case opc 
is 0 then I* LOD *I lod() 
or 1 then I* STO *I sto() 
or 2 then I* LDI *I ldi() 

or 9 then I* NOP *I nop{) 
si 

The implementation of the various instructions is implemented in procedures lod ( ) , 
s to ( ) , ... , nop ( ) . In fa ct, they implement the actions as given in Table 2.1. For 
example, instructien inc ( ) can be implemented by 

inc: proc() . RF[rl]:=RF[rl]+l 

Similarly, we can implement the ADD instructien by the procedure 

add: proc() • RF[rl]:=RF[rl] + RF[r2] 

Some of the instructions in the Move Machine access the memory and therefore 
have to communicate with the environment. Note that there is only one memory 
that contains both program code and data. The protocol for access is the same for 
both for the environment does not make any difference between program and data 
memory. Take instructien LOD as an example. This instructien collects a value 
from memory and stores it intheregister file . Tangram procedure lod ( ) reads 

lod : proc() . address!RF[rl] I I rw!read 
; datain?RF[r2] 

First the address of the data sent along address tagether with the read-signal. 
Next, following the data-access protocol, the data is collected from memory and 
stared in the register file. Instructien STO stores a data value in memory and is 
implemented by procedure sto (): 

sto: proc() . address!RF[rl] I I rw!write 
; dataout!RF[r2] 

The instructions that control the flow of the program are also straightforwardly 
encoded in Tangram. The sec instruction, for example, sets a condition code: 

sec : proc() . cc:=(RF[rl]=RF[r2]) 

Instructien JCC tests the condition code to see whether a jump bas to be made: 

jee : proc() . if cc then pc:=RF[rl] fi 

Finally, the NOP instructien does nothing useful: 

nop : proc() . skip 

As we have seen, all instructions take a few steps to be executed. Generally, an 



28 Chapter 2. VLSI-Programming 

instruction is implemented using a sequence of statements 

S 1 ; S2 ; • • • ; Sn 

where the statements Si are assignments, communications, or conditional state
ments. 

2.4 lntplementation issues 

Some implementation issues of a silicon compiler that translates transparently, can 
be reflected in the programming language. The Tangram compiler, for example, 
uses latehes to implement Tangram variables. Because latehes cannot be written 
and read simultaneously, the compiler demands that the statements that are in par
allel do not read and write tbe same variabie (though more than one simultaneous 
read-action is permitted). A special case is found in in the FetchOp ( ) procedure 
of the Move Machine, where we encounter the assignment pc: =pc+ 1. For these 
so-called auto-assignments the compiler will introduce an auxiliary variabie in the 
handshake circuit. Making this variabie explicit in Tangram results in the same 
handshake circuit: 

pcaux:=pc+l ; pc:=pcaux 

The same goes for the implementation of the register file. When this file is imple
mented using latches, the auto-assignments are resolved by doing the assignments 
in two steps, as is shown in the procedure of the INC instruction: 

inc : proc() . x:=RF[rl]+l ; RF[rl]:=x 

The programroer can make the auxiliary variabie explicit and share it amongst other 
(auto-)assignments, as we will see later on. 

lt depends on the number of read ports and write ports of the register file whether 
the addition in the ADD instruction can be implemented as a single statement. 
When, for example, the register file has only one read port and one write port, 
auxiliary variables x and y have to be used and the addition is done in three steps: 

add : proc() x:=RF[rl] 
; y:=RF[r2] 
; RF[rl]:=x+y 

The same arguments go for the accesses to the register file in instruction sec. 

In the next sections we will demonstrate the impact of altering the Tangram pro
gram on the characteristics of the resulting circuit. We take three parameters as 
identified in the previous chapter, viz. area, speed and energy dissipation, as clas-



2.5. Area 29 

sification. Testability is left outside the scope of this chapter. 

2.5 Area 

In general, a smaller chip is cheaper to produce. Therefore, reducing the area of a 
chip is very important. One metbod to reduce area is to reuse hardware for similar 
tasks when possibie. Th is is what we refer to as sharing of hardware. 

In Tangram we can express sharing of hardware by sharing of statements in proce
dures. Each time the piece of hardware is to be used, tbe corresponding procedure 
is invoked. We can distinguish two ldnds of sharing: sharing in the datapath and 
sharing in the control. First the principle bebind both is expiained and then an 
exampie is given that combines both. 

Sharing in the datapath can be applied when there are two occurrences of an as
signment x : =y in the Tangram program text: 

x:=y 

x:=y 

In the handshake circuit this will introduce two paths from variabie y to x, and a 
multipiexer on the write port of x. This muitipiexer bas the width of variabie x. 
The resuiting datapath is shown on top in Figure 2.11. To create just one path from 
y to x in the circuit, we introduce a procedure 

xy : proc() . x:=y 

and repiace all occurrences of the assignment x: =y in the main Tangram text by 
invocations of this procedure: 

xy() 

xy() 

This will resuit in the handshake circuit as shown in the lower half of Figure 2.11. 
In the datapath there is now only one path from y to x, saving one transferrer and 
the multiplexer. However, an extra mixer in the control is added to take care of the 
two invocations of procedure xy ( ) . The mixer is a multiplexer that carries no data, 
and is therefore cheaper to imptement than the data-multiplexer. In effect we have 
lifted the expensive multiplexer in the datapath to a cheaper mixer in the controL 



30 Chapter 2. VLSI-Programming 

8-bit multiplexer 

nonput mixer 

Figure 2.11: Sharing in the datapath. 

Sharing of common statements can also be applied to communication statements, 
which occur aften in our Move Machine program. For example, in the lod ( ) and 
sto ( ) procedures we have the common statement 

address!RF[rl] 

that can be shared in a procedure. lt is straightforward to find the other common 
statements in the datapath. Generally speaking, sharing in the datapath results in 
smaller circuits. 

Sharing of hardware is not restricted to the datapath; also control structures can be 
shared. Semicolons in the program text (i.e. sequencers in the handshake circuit) 
are an example. Suppose we have a Tangram program that contains the fragment 

Sl ; S2 

Sl ; S2 



2.5. Area 31 

) 

Figure 2.12: Sharing in the controL 

where s 1 and S2 are Tangram statements. The corresponding handshake circuit is 
shown at the left of Figure 2.12. By introducing a procedure 

S 1 S 2 : prae ( ) . S 1 ; S 2 

and replacing of the above fragment by 

S1S2() 

S1S2 () 

the handshake circuit on the right of Figure 2.12 is obtained. This circuit contains 
one sequencer instead of two, and also saves one mixer. 

Sharing in the control is not restricted to reducing the number of semicolons in 
the Tangram program. In our Move Machine, for example, we see in procedure 
FetchOp ( ) two occurrences of 

dataout!pc I I rw!read 

that can easily be shared saving one PAR component and one mixer. 

An interesting case where sharing of datapath and control structures go together is 
shown by the two occurrences of the auto-assignment 

pc: =pc+1 



32 Chapter 2. VLSI-Programming 

As auto-assignments cannot be impiemented straightforwardiy in the Tangram com
piler, it introduces for each of these two statements a separate auxiliary variable. 
This resuits in the same handshake circuit as when we would have written the Tan
gram fragment 

pc2:=pc+l pc:=pc2 

pc3:=pc+l pc:=pc3 

Figure 2.13: Two increments on the samevariabie pc. 

This handshake circuit is shown in Figure 2.13. By expiicitly introducing an aux
iliary variabie in the Tangram text we can share it among these assignments. We 
can then write 
pcaux:=pc+l pc:=pcaux 

pcaux:=pc+l pc:=pcaux 

and aiso share the semicolons between the now identicai statements. The resuiting 
handshake circuit is shown in Figure 2.14. lt saves one variable, one adder, one 
constant, one muitiplexer, two transferrers, and one sequencer, at the cost of an 
extra mixer in the controL We wouid obtain the same handshake circuit when first 
sharing the auto-assignments pc: =pc+ 1 into one procedure. 



2.6. Energy 33 

Figure 2.14: Making the auxiliary variabie explicit and sharing hardware. 

2.6 Energy 

In CMOS circuits no energy is dissipated when there is no switching. For low 
power consumption it is therefore important to keep the switching activity of the 
circuit to a minimum. lt is important to be aware of the switching activity of a 
circuit at the architecture level (i.e. at the Tangram level) to exploit the potential 
advantages of a distributed and asynchronous controL The control of a circuit 
determines the activity of the datapath by steering the appropriate transferrers in 
the handshake circuit. Thus we have to investigate where actions take place in the 
datapath and where activity can be reduced. 

The Move Machine eneodes instructions in two bytes. Though for most instruc
tions these two bytes are necessary, for some only one byte will suffice. For exam
ple, the second byte in the code for the INC instruction is superftuous. lt makes the 
control simple if we fetch two bytes in all cases. However, for the INC instruction 
fetching the second byte is wasting energy; we can instead just increment the pro
gram counter. This will complicate the control a bit: after fetching the first byte we 
have to check whether we have to fetch a second byte or not. Here we can trade 
larger area for lower energy dissipation. 

When we wish to minimize the area even further, we can try to reduce the number 
of variables. lt is often possible to communicate values by using existing commu
nication paths in the datapath. When introducing some extra variables, i.e. extra 
communication paths, it is often possible to reduce the number of communication 



34 Chapter 2. VLSI-Programming 

steps during the execution of an instruction. This saves energy, for there is less 
activity in the datapath. 

500 

450 
·ma . 

ml 

>=;' 
400 0 

'-' 
;>-. 
bl) ... 
<l) 

350 0 
U.l 

300 
·m2 . 

m3 

250 
0.25 0.27 0.29 0.31 0.33 

Area (mm2) 

Figure 2.15: Handshake simulation: area vs energy. 

Por the Move Machine, these two aspects of reducing energy dissipation are illus
trated using a small benchmark program. This program copies blocks of data in 
memory, and uses all instructions in the instruction set. Using the techniques as 
described in the previous section, we obtain Move Machine mO that reduces the 
area by keeping the control and datapath small. Figure 2.15 shows that mO accu
pies 0.26 mm2 dissipates approximately 470 nJ to execute the benchmark program. 
Move Machine ml reduces the number of memory fetches for the instructions: it is 
slightly larger but also more energy efficient. 

Taking mO as starting point, Move Machine m2 bas more variables and communi
cation paths in its datapath. lt is larger but significantly more energy-efficient than 
mO. Reducing the number of memory fetches in m2 results in m3, which is larger 
and only marginally more energy-efficient. 

Pictures like in Figure 2.15 visualize the trade-off between area and energy dissi
pation. The same can be done for area versus execution time, as illustrated in the 
next section. 



2. 7. Execution time 35 

2. 7 Execution time 

To increase the operating speed of a circuit there are two things that cao cao done 
at the Tangram level: reducing the number of actions and introducing parallelism. 

First, reducing the number of steps that the chip has to do to perfarm its task, 
makes the chip faster. For the Move Machine, the actions taken to lower the energy 
dissipation, also lower the number of steps taken. Therefore they are also good for 
speed. Figure 2.16 takes the same designs of the Move Machine as in the previous 
section and shows a similar picture as for the energy dissipation. One cao now 
trade area for operating speed. 

170 

160 . 
,....... 

150 mO 
<Jl 
;::3 . 
'-' m1 0,) 140 . .§ 
s:: 130 
.9 
;:; 120 u 
(].) 
>:: 110 . 

ll.l m2 . 
100 m3 

90 
0.25 0.27 0.29 0.31 0.33 

Area (mm2) 

Figure 2.16: Handshake simulation: area vs execution time. 

Second, there is parallelism. Executing actions in parallel clearly reduces the time 
necessary to complete a given task. In the Move Machine, we already did so in 
the FetchOp ( ) instruction by putting the collection of a byte from memory and 
iocrementing the program counter in parallel. When one wants to introduce more 
processes running in parallel one aften has to introduce extra registers (variables) 
and some overhead in the control of the circuit. Pipelining is a typical example 
of introducing parallelism in instruction execution. lt overlaps the execution of 
several consecutive instructions. By doing so, one has to transport information 
from one stage to another; this information would be global to the design in a non
pipelined version. For example, the program counter and instruction opcode have 
to be transported along the stages. This casts extra registers and communication 



36 Chapter 2. VLSI-Programming 

paths, and thus area and energy. 

Increasing the operating speed of a chip is also interesting for energy dissipation. 
When a chip is faster than demanded by the specification, one can lower the supply 
voltage. An asynchronous circuit runs freely and as fast as possible (i.e. nat ham
pered by a doek): therefore it will have a certain speed at a given supply voltage. 
By reducing the supply voltage, the speed will go down as well, but the energy 
dissipation will even go down quadratically with respect to the supply voltage. 

2.8 Review 

The transparent compilation from Tangram into handshake circuits, and then into 
netlists, implies that what is expressed in Tangram, is implemented exactly in the 
circuit. When there are two adders in the Tangram program, for example, also two 
adders will be implemented in the circuit. For small examples, like the sharing of 
hardware in Figures 2.13 and 2.14, the compiler could be constructed in such a way 
that the parallel transfer paths (the two paths from pc to itselt) are automatically 
shared into one path. There are also transformations that result in a smaller but 
slower circuit, or in a circuit that is larger but consumes less energy. The compiler 
cannot choose the better design; this is a task of the designer. Therefore, it is 
important that the designer can reasou about the resulting circuit at the level of 
the programming language. This property can be used to the full extent when the 
compiler translates a VLSI-program completely transparently into a circuit. 

Sharing of small and local Tangram constrocts can be done in any design. Same 
optimizations are good for area, speed, and energy dissipation; obviously, these op
timizations result in a better circuit in any respect and should therefore be applied. 
The interesting parts of the design space are those areas where a trade-off between 
area, speed, and energy can be made. The Move Machines in Figures 2.15 and 2.16 
show this part of the design space. 

All aspects of optimizing VLSI-programs discussed in this chapter have a local 
character; they involve small Tangram constrocts in datapath and controL The 
global structure of the circuit is determined by the way the Tangram program is 
written. The remainder of this thesis deals with the design of datapatbs and con
trols for a sequentia[ processor architecture (i.e. without pipelining): the 80C51 
microcontroller. The next chapter introduces this microcontroller and analyzes the 
power aspects of the synchronous architecture. 



Chapter 3 

The 80C51 Microcontroller 

Microcontrollers are used in various products, like VCRs, television sets, and 
portable telephones, because of their flexibility as programmabie devices. They 
are often based on somewhat older architectures, having the advantage that exist
ing software and software development environments can be used. With the aid 
of some extra hardware, microcontrollers can be used in many applications where 
there bas to be some central unit to keep control of the system. Their programma
bility and therefore their flexibility makes them often more popular than a dedicated 
hardware solution. 

Microcontrollers are often used in hand-held and battery-powered applications like 
portable CD-players, mobile phones, and pagers. Power consumption of the chips 
in these products is often a considerable part of the total power dissipation of the 
product; reducing the power has the product survive Jonger on one battery charge. 
For some applications that involve radio transmission and reception (like pagers 
and mobile phones) the electro-magnetic emission of the I Cs is also of importance, 
as it can interfere with the radio. 

In this chapter we first characterize a microcontroller. Then we zoom in on one 
microcontroller architecture, the 80C51. Analyzing the synchronous architecture 
we observe what the characteristics of this implementation are and where the bulk 
of the power is dissipated. These observations are the basis for the next chapters 
where a low-power asynchronous version of the 80C51 and its design aspects are 
discussed. 

37 



38 Chapter 3. The 80C51 Microcontroller 

3.1 Characterization 

A microcontroller consists of a general-purpose programmabie CPU ( Central Pro
cessing Unit) witb program memory and data memory, and a number ofperipher
als connecting the CPU to the environment. The CPU executes instructions from 
a fixed instruction set; therefore the CPU is fixed. The peripherals make the dif
ference in the microcontroller world. By actding peripherals the system obtains the 
functionality that is needed for the environment where the microcontroller works 
in. Microcontrollers are aften used in embedded applications, integrated with other 
blocks of hardware. These other blocks can be other processors (a digital signa! 
processor, DSP, for example) or blocks of dedicated hardware. 

A microprocessor is a stand-alone chip that is aften tuned for high-performance. 
Microprocessors are used in computer systems like PCs and workstations. In a 
system the microprocessor is visible to the user, and in principle, programmabie 
by the user. Microprocessors do usually not contain large blocks of memory other 
than caches that help the processor to imprave its performance. They commu
nicate with the main memory and other chips in the system using, for example, a 
bus. A microcontroller is aften used in embedded systems with blocks of hardware 
such as timers and an interrupt controller, integrated onto one chip. An embedded 
program memory contains the program that is executed by the microcontroller. Mi
crocontrollers are also available as stand-alone devices for manufacturers that do 
nat have the facilities to produce their own ICs. These manufacturers can inte
grate the microcontroller into their ( embedded) systems using their own software. 
Microcontrollers that are embedded in a system are not visible or programmabie 
by the user. The use of microcontrollers is as widespread as the use of embedded 
systems: from a simple remote control unit for a television to the complicated ICs 
in a cellular phone. 

In the world microcontroller market, the 8-bit microcontrollers take a substantial 
part: in 1995 worldwide more than 1200 million units of 8-bit microcontrollers 
per year were produced [1]. Predictions say that this amount will certainly not 
decrease over the next few years. Even 4-bit microcontrollers take a substantial part 
in the microcontroller world market Same bicycle-computers, which keep track 
of average speed, time, and distance, contain a 4-bit microcontroller, for example. 
Microcontrollers can be made cheap to produce, when produced in quantity (some 
derivatives sell for less than US$1 per packaged device). 

The 80C51 is one ofthe most widely produced 8-bit microcontroller in the world [22]. 
The 80C51 instruction set originates from Intel (1980). Philips uses the 80C51 for 
embedding in many of its products, and produces many derivatives of the standard 



3.2. Synchronous architecture 39 

80C51. In 1995 a 16-bit extension extension (the 80C51 XA, eXtended Architec
ture) was introduced to comply with the market needs for 16-bit architectmes [3]. 

For this thesis, we concentrate on the standard 8-bit 80C51 microcontroller. An 
analysis of the synchronous architecture shows wbere tbe bulk of the power is 
dissipated. In the next few chapters the design spectrum of the 80C51 architecture 
will be explored with a !ow-power 80C51 implementation as a goal. 

3.2 Synchronous architecture 

Most of the material of this section is based on the Philips 80C51 Data Band
book [4]. This book contains about 100 pages of general architecture description; 
the other 1250 pages (!) contain information about the numerous derivatives of the 
80C51. We focus on the general architecture description. 

3.2.1 80C51 system 

The 80C51 microcontroller consists of several parts; the CPU witb its memories, 
and various peripheral blocks. The CPU fetches, decades, and executes instruc
tions. The peripherals cómprise blocks as timers and counters, the interrupt con
troller, and the port logic. An overview of the 80C51 "system" is shown in Fig
ure 3.1. 

The CPU and the peripberals run in parallel and communicate with each other 
where and when necessary. The 80C51 derivatives are allbasedon the same CPU
architecture but they differ in the sizes and the implementation of the memories 
(ROM, OTP, Flash, etc), and in the peripherals. A derivative can have more func
tionality implemented in its peripherals, for example an extra timer or an interrupt 
controller that can handle more interrupts. But it is also possible that a derivative 
has extra peripherals, likeaUART (Universa! Asynchronous Receiver and Trans
mitter). For this chapter we first zoom in on the 80C51 CPU and then we take a 
look at some peripherals. 

3.2.2 80C51 CPU 

The CPU is the part of the microcontroller tbat fetches, decades, and executes 
instructions. Instruction memory and data memory are separated: the 80C51 is a 
Harvard architecture. The program memory (usually implemented as ROM) can 



40 

External Interrupts 

Chapter 3. The 80C51 Microcontroller 

Four 1!0 Ports 

PO P2 Pl P3 

Address/Data 

Figure 3.1: 80C51 block diagram. 

be split into an internal and an external part. External memory is accessed using the 
1/0-ports: first a 16-bit address is sent along ports 0 and 2, and then the external 
memory puts the data on port 0. Most embedded 80C51 microcontrollers wil! 
only fetch from the internal program memory. The data memory (implemented 
as RAM) can also be split into an internal and an external part. The internal data 
RAM contains four register banks of eight registers each. Furthermore, a small 
part of the data memory is reserved as bit-addressable space. A special part of the 
memory is known asthespace for the Special Function Registers (SFRs). These 
registers are readable and writable by the CPU, and interface between the CPU and 
the peripherals. 

The 80C51 instruction set contains 255 instructions, of which the opcode is en
coded in eight bits. An instruction can carry addresses of souree and destination 
registers, making the instruction length encoding variabie (1, 2, or 3 bytes). The 
complete 80C51 instruction set can be found in the table in Appendix B. In this 
table the format of the instruction opcode is Pi +t-Zj (i and j in hexadecimal 
notation). Note that columns 8 to F are taken together; the last three bits of the 
instruction code specify a register (0 .. 7) in a register bank. The same goes for 
columns 6 and 7 that involve the instructions using indirect addressing: the last 



3.2. Synchronous architecture 41 

bit represents the register (0 or 1) that contains the address of the register to be 
operated on. The instruction set can be partitioned into five classes: 

Arithmetic instructions: ADD (addition), ADDC (add with carry), INC (incre
ment), DEC (decrement), MUL (multiply), DIV (divide), and DA (Decimal 
Adjust); 

Logica) instructions: ANL (logic AND on bit pattems), ORL (logic OR), XRL 
(logic exclusive OR), CLR (clear), CPL (complement), SWAP and several 
instructions that rotate bit patterns; 

Data transfer: rnaving data from and to internat (MOV) as well as external data 
memory (MOVX, MOVC); 

Boolean instructions: instructions that operate on individual bits of registers; 

Jump instructions: instructions that can conditionally or unconditionally change 
the contents of the program counter. 

The 80C51 instruction set supports six addressing modes: 

Direct addressing: the operand is specified by an 8-bit address field in the instruc
tion code. Only internat data RAM and SFRs (special function registers) can 
be directly addressed. Example: INC eüh (operation: A:= A+ 1, eOh is the 
direct address of the accumulator A); 

Indirect addressing: the instruction specifies a register that contains the address 
of the operand. Both internat and external RAM can be indirectly addressed. 
Example: INC @Ro (operation: (Ro) := (Ro) + 1); 

Register instructions: the register banks, containing registers Ro ... R1 can be 
accessed by instructions that carry a 3-bit register specification within the 
opcode of the instruction. Example: DEC R3 ( operation: R3 := R3 - 1 ); 

Register-specific instructions: some instructions operate on specific registers. Ex
ample: RR A, which rotates the bit pattem in the accumulator A; 

Immediate constants: the value of a constant is part of the instruction code. Ex
ample: MOV A,#100 (operation: A:= 100); 

Indexed addressing: only program memory can be accessed with indexed ad
dressing, and it can only be read. This addressing mode is intended for 
reading look-up tables in the program memory where the address of in the 
table is formed by adding the accumulator to a base pointer. 



42 

FFH:-------------
I 

: Accessible by 
: indirect 
: actdressing 

only 
I 

Chapter 3. The 80C51 Microcontroller 

Accessible by 
direct 

actdressing 

FFH 

80H ~f-------+----.---_j 80H 

\ 7FH 
Accessible by 

direct and 
indirect 

actdressing 

OOH '--------

Special Function Registers 

Figure 3.2: lntemal data memory. 

The memory structure of the 80C51 is not uniform. This goes for the registers first; 
the system is not built around a uniform register file. All registers have separate 
addresses that can be part of the instruction encoding. Also the structure of the 
internal data RAM is not uniform; it is even so that some addresses are shared 
with the space for the Special Function Registers (SFRs), as shown in Figure 3.2. 
The SFRs are the registers that interface between the CPU and the peripherals; 
tbey contain both control information as well as data, as described in the next 
section. The SFRs are accessible only by direct addressing. The upper half of 
the internat data memory has the same address-space, but is only addressable by 
indirect addressing. In the standard 80C51 the SFR-space is not completely filled: 
the data handbook shows that this standard version has only 21 of the 128 available 
places in the address space occupied by SFRs [4]. 

The synchronous architecture that implements the instruction set is shown in Fig
ure 3.3. lt is built around the internat bus IB, to which all registers can write and 
from which all registers can read. In the picture we see all registers, an ALU, the 
SFR-space, and the four bidirectional ports. A separate bus ("B" in Figure 3.3) is 
used for modifying the program counter PC. 

All communications between registers use the IB-bus, except the communications 
for modifying the program counter PC. Having only one bus for these commu
nications makes a compact implementation of the datapath possible. However, it 
also implies sequentia[ execution of instructions. These executions take place in a 
number of steps, each of which communicates a value from one register toanother 
or does some calculation. As all communications use the bus, the steps in each in-



3.2. Synchronous architecture 

Peripheral 

psen -----f--1 

ale ---1Timing 
& 

ea Control 
rst ---;1---l 

SFR Space 

Figure 3.3: 80C51 synchronous architecture. 

43 



44 Chapter 3. The 80C51 Microcontroller 

~: : -1-[ ---.s1 _ _,____s2 _ _._\ _s3 _ _,___-.s~ _ _.___ss _ _,__s6---+[: 
L Read opcode L Read 2nd byte 

·· machine cycle · ················ ······ ' ··· · -~ 

Figure 3.4: Clocking scheme for instruction MOV A,#data. 

struction execution have to be done sequentially. When one would want to overlap 
the execution of instructions (i.e. implement pipelining) then one would have to 
separate pieces of datapath for each stage in the pipeline. Therefore it is difficult 
to implement pipelining using this architecture. (Remark: The 80C51XA (eX
tended Architecture) 16-bit microcontrollers are implemented using a three-stage 
pipeline [3]). In the 80C51 we see that there are two separate pieces of datapath: 
the internal bus IB and the program-counter bus B. Therefore we can do two steps 
in parallel per step in the instruction execution: one communication using bus IB 
and one communication using bus B. It is, for example, possible to fetch a byte 
from the program ROM while iocrementing the program counter PC. 

The 80C51 instructions require a number of steps to execute, and therefore it is 
important to look for a scheme in which all executions fit. The instructions are 
executed with respect to a clocking scheme. Each instruction takes one, two or 
four machine cycles to execute. Each machine cycle consists of six slots, and each 
slot takes a clock cycle. Only the divide (orv) and the multiply (MUL) instructions 
take four machine cycles; the other instructions take one or two machine cycles. 
(Remark: the 80C51 Data Handbook specifies that each slot in the instruction ex
ecution takes two clock cycles [4]. Recent synchronous 80C51 implementations, 
however, use internally only one clock cycle per slot.) 

The clocking scheme of instruction MOV A,#data, which is a 2-byte 1-cycle in
struction, is shown in Figure 3.4. The execution steps that take place in the six 
slots are listed in Table 3.1. In this table we see the required control signals and the 
data transfer actions that take place in the synchronous implementation to execute 
this instruction. Note that the IB-bus is used in all slots except slot 5. When we 
consider all 80C51 instructions we see that the IB-bus is used in ~ of all slots. The 
actions in upper case letters in Table 3.1 denote required actions for this instruc-



3.2. Synchronous architecture 4S 

Sl S2 S3 S4 ss S6 
ROM--+IB acc--+ib ram--+ib ROM--+IB QA=OOO ALU--+IB 

IB--+IR ib--+t2 ib--+ buffer IB--+T2 (ADD) IB--+ACC 
0 -+Tl 

INCR PC INCR PC 

Table 3.1: Instruction execution scheme of MOV A,# data. 

Sl S2 S3 S4 ss S6 
Cl ROM ACC--+ RAM ROM OP-+ ALU--+ 

access T2 access access Tl!f2 destination 

Sl S2 I S3 S4 ss S6 
C2 ROM calculate PC OP-+ ALU--+ 

access jump address incr. Tl!T2 destination 

Table 3.2: General 80CS1 instruction execution scheme. 

tion; the lower case letters denote redundant actions. Execution of these redundant 
actions simplify the implementation of the CPU, but they have no impact on the 
state of the controller after completion. In the above instruction, for example, the 
instruction code consists of two bytes that are fetched from the program ROM in 
slots 1 and 4. In these slots also the program counter is incremented. In slot 6 data 
is transferred to the accumulator. In slots 2 and 3 redundant actions take place: the 
contents from the accumulator is copied into T2 and an item from the data RAM is 
placed in the Buffer. 

The general execution scheme in which all 80CS1 instructions except the divide 
and multiply instructions (DIV and MUL) fit is shown in Table 3.2. The DIV and 
MUL instructions are implemented using tbe shift-and-add algorithm as described 
in [lS, 20]. An instruction consists of one, two, or three bytes; an opcode and two 
bytes containing operand addresses or immediate data. These bytes are fetched in 
the first and fourth slot of tbe first machine cycle and the first slot of the second 
machine cycle. Slot 2 of the first machine cycle copies the contents of the accumu
lator into register T2. Por many instructions this is a redundant action. Slot 3 does 
a RAM access (which also includes access to one of the four register banks). Slots 
S and 6 of the machine first cycle take care of the ALU operation to be performed 



46 Chapter 3. The 80C51 Microcontroller 

and the write-back to the destination register. Machine cycle 2 starts with another 
ROM-fetch, after which the jump instructions calculate their offset (slots 2 and 3). 
For 2-cycle non-jump instructions, the actions in these slots are redundant. The 
fourth slot increments the program counter, and the 5th and 6th slot take care of 
an ALU operation. It tums out that approximately ~ of all slots contain redundant 
actions. 

When drawinga complete instruction execution scheme of the 2-cycle instructions 
it tums out that in the second cycle not much "useful" workis done. This is one of 
the major aspects of the synchronous implementation where we can save on power 
and on execution time; leave out the redundant actions and execute only those 
statements that are required for that instruction. In terms of the power equation 
P = VJd * f elk* C * ~a, reduce the activity factorato save power. 

3.2.3 80C51 peripherals 

Peripherals assist the CPU in its task and take care of the communication between 
the CPU and the outside world. Examples of peripherals are timers, the interrupt 
control, the input/output block, and the UART. 

Timers and counters provide for timing references; they can be contigured to 
either count multiples of clock-ticks (in timer mode) or events on external pins 
(in counter mode). In all of these events the timers or counters are incremented. 
Their values can be inspected and they generate an interrupt when they overflow. 
Timers and counters can serve as a timing reference to either the CPU or to another 
peripheral. 

The Interrupt controller takes care of the proper dealing with (possibly extemal) 
interrupts. lt decides which interrupt has priority over another and it supplies the 
CPU with an interrupt address vector. This vector points to the piece of program 
code (the interrupt service routine) that the CPU executes upon occurrence of an 
interrupt. 

The Input/Output (IlO) peripheral takes care of the communication between the 
CPU and the outside world. It is involved in executing the proper protocol when 
external memory access is required. The protocol is an agreement between the mi
crocontroller and the environment on the validity of data on external ports. In order 
for a new design to work in an existing environment, it is essential that the new de
sign implements these protocols. An example of this issue of timing compatibility 
with an existing environment is discussed in Chapter 4 of this thesis. 

The UART (Universa! Asynchronous Receiver and Transmitter) is a peripheral 



3.3. CISC-nature of 80C51 47 

that takes care of bit-serial transmission an9 reception of bit-patterns. A standard 
80C51 UART can be contigured infourmodes with various baud-rates that depend 
either on the clock or on a timer-overflow. The contiguration of tbe UART is done 
in software, by the program running on the 80C51 CPU that reads and writes the 
SFRs for the UART. An asynchronous implementation ofthe UARTfor the 80C51 
is discussed as a case-study at the end of Chapter 6. 

The bridge between CPU and peripherals is formed by the Special FuncHon Regis
ters. These registers are readable and writable by the CPU and by the peripherals. 
They can be divided in control registers and data registers. The control registers 
specify the contiguration of the peripherals and contain the interrupt bits. The 
data registers are used for communication between the CPU and the environment. 
Chapter 6 describes an implementation of the peripherals and their communication 
with the CPU, as wellas with the environment. 

3.3 CISC-oature of 80C51 

The literature of microprocessor design makes a distinction between two classes 
of processors: RISC (Reduced Instructions Set Computer) and C/SC (Complex In
struction Set Computer) [15, 11]. These classes differ in the complexity of the 
functionality of the instructions, the style of encoding of the instructions, and the 
uniformity of the register structure in the implementation. The 80C51 microcon
troller can be considered a C/SC because of the following characteristics. 

1. There are various addressing modes: direct addressing, indirect addressing, 
register bank addressing, and so on. lt is even the case that the same ad
dresses are mapped onto different register spaces, as was shown for the SFRs 
and the data RAM. 

2. The instructions are encoded in variabie length, either in one, two, or three 
bytes, of which the tirst byte contains the opcode of the instruction. 

3. The register structure is not uniform. There are four register banks that reside 
in memory. Furthermore, there is the SFR-space that is only partially filled. 

4. lt takes a variabie number of clock cycles to execute an instruction. We have 
seen that each instruction execution fits into the execution scheme as shown 
in Table 3.2. Each instruction takes either one, two, or even four machine 
cycles (i.e. 6, 12, or 24 clock cycles) to execute. 



48 Chapter 3. The 80C51 Microcontroller 

In contrast, the basis of a RISC (Reduced Instruction Set Computer) processor 
is its uniform register structure. For example, a load-store architecture like the 
DLX [15] is built around a register file. All instructions access registers in this file 
and perfarm operations on them. Therefore there is only one actdressing mode in a 
RISC machine: the one that addresses a register in the register file by its index. 

In a RISC instruction set the instructions have a fixed length. For example, the DLX 
has 32-bit wide instructions, as have the MIPS R3000 [18] and the ARM6 [11 ]. In 
these machines the instruction opcode can be split into several fields, for example 
an opcode field, three indices for registers (two souree registers and one destina
tion), and an immediate field. The main advantage of fixed-length instruction en
coding is the simplicity of the decading in the processor, which is good for speed 
and power dissipation. Furthermore, for each instruction only one access to the 
program memory is needed. On the other hand, fixed-length instruction encoding 
implies redundancy; the instruction words are larger (in number of bits) than is 
strictly necessary. In contrast, the 80C51 instruction set contains 255 instruction 
opcodes encoded in 8 bits, which keeps redundancy to a minimum. However, as 
instructions may carry immediate values or addresses of registers, several accesses 
to program memory are needed in the execution of some 80C51 instructions. 

Instructions in a RISC instruction set tend to be simpler in functionality than in a 
CISC instruction set. This is a result of the uniform register space and uniform ad
dressing. Therefore, a RISC instruction can in general be executed in fewer steps 
than a CISC instruction. These steps are called "stages" in a RISC instruction ex
ecution. A DLX instruction, for example, can be executed in only 5 stages: an 
instruction fetch; the instruction decode and register file access; an ALU opera
tion; a memory access; and finally a write-back into the register file. The ARM6 
and ARM7 instructions can be executed in only three stages (fetch, decode and 
execute) [11]. 

In a RISC machine the datapath of the processor and the execution schemes of 
the instructions are designed simultaneously. Each stage in the execution scheme 
is designed in such a way that it uses a separate part of the processor's datapath. 
AJso, each stage can generally be executed in one doek cycle. This makes it pos
sibie to overlap execution of consecutive instructions, which is implemented by 
pipelining. Pipelining makes it possible complete one instruction execution per 
clock cycle, i.e. achieve a CPI close to 1 (CPI = Clock Cycles per Instruction). The 
80C51, however, is a sequentia! machine in which each slot (stage) of the instruc
tion execution uses the bus in the datapath. Therefore, instruction execution cannot 
be overlapped unless a stage does not use the bus (i.e. when there is a communiea
tion path that bypasses the bus). When a slot takes one doek cycle, the CPI of the 



... : ~ ... :. 

3.4. Power analysis 49 

80C51 is approximately 9, depending on the program that the CPU runs. This is a 
higher number than the CPI of a many RISC machines. 

On the other hand, an instruction in a CISC-machine is more powerful and does 
more work, in general, than a RISC instruction. Indirect addressing, for example, is 
possible in various instructions in the 80C51, but it would take at least two separate 
instructions in a RISC ( one for fetching the address, the second for collecting the 
data). Another example is the 80C51 instruction DJNZ (Decrement and Jump if 
Not Zero). This instruction executes the following steps: 

• First, the value of a register is decremented; 

• Then, if the result is not equal to zero, the jump is taken. 

In a RISC instruction set the functionality of the DJNZ instruction would take at 
least two instructions: one for decrementing the register, and the second to take 
the jump when the result would oot equal zero. In general, when we compile the 
same program to RISC instructions and to CISC instructions, the CISC program 
will contain fewer instructions. 

3.4 Power analysis 

In this section we describe a model of the power dissipation of a synchronous 
80C51 to gain insight in where the power is dissipated. This model is used only 
for getting a feel of where we should pay attention to when reducing the power 
dissipation. 

We take a netlist of a synchronous 80C51 including peripherals, as starting point. 
This 80C51 is a recent VHDL-synthesized implementation by Philips [35]. The 
netlist is used for simulation in which we can find activities of the nets. The beneh
mark for simulation is a program that contains all instructions of the 80C51 in
struction set. 

The synchronous 80C51 implementation can be partitioned into the control and the 
datapath, as shown in Figure 3.5. An important part of the datapath is the bus. Bath 
the control and the datapath consist of flipflops and combinatorics. The flipflops 
are steered by the clock. The flipflops that are connected to the bus are multiplexed, 
so that they keep their value when they are oot addressed in a bus-communication. 

For the power we take the formula as given inSection 1.3: 



50 Chapter 3. The 80C51 Microcontroller 

contmll Flipflops 

Combinatmies 

Flipflops 
data pat{ Combinatmies 

bus 

8 

Figure 3.5: Model of a synchronous 80C51 implementation. 

1 2 
p = 2a * c * f elk * vdd 

f elk and VJd are constants in a simulation. The variabie components in this for
mula are a and C. Fora we take aclock = 2, implying that a gate has a = 1 
when the output of that gate switches once at each doek cyele. 

• For the flipflops, we distinguish between the datapath and the control of the 
circuit, as they show a different activity a . Simulation shows that for the 
datapath we have a = 0.06, and for the control we have a = 0.2, which is 
due to the compact encoding of the state space. For the capacitance Cff of 
the flipflops, we take the following: 

cff,clock = cclock, intemal + cclock, input 

Cff,data = Cdata, internal + Cdata, input+ Cwire 



3.4. Power analysis 51 

For the wire capacity of the data part we multiply the average fanout with a 

standard capacity number: cfanout * fanoutaverage· 

• We take the combinatode circuitry of the control and the datapath together. 
We adopt the following model: we count the number of gate equivalents 
(NAND-2) and abserve from simulation that the average activity a = 0.06. 
For the capacitance we take 

C co mb = C co mb, input + C co mb, internal + Cwire 

For the wire capacity we take the same formula as used for the wire capacity 

of the flipflops: Cfanout * fanoutaverage. 

• For the bus, we observe that a = 0.43 from simulation. This is also ex
plained by the fact that the bus is used in approxirnately 75% of all slots for 
communicating uncorrelated data, which means that on average half of the 
wires will switch per bus communication. For the capacitance we take 

cbus = cwire + c driver 

For the wires we estimate the length of the wires in the layout, which is 1.5 
by 1.5 mm. A bus wire bas 30 flipflops connected to it. We estimate that 
the length of a bus wire is approxirnately 12 mm. This number is multiplied 
with a capacity per mm, which is known from the technology in which the 
synchronous chip was produced. The load capacitance is counted with the 
the flipflops. 

• For the doek, we observe that a = 2. The capacitance is estirnated in the 
same way as for the bus: 

C doek = Cwire + C driver 

For the length of a doek wire, we abserve that there are in total 732 flipflops 
to be controlled. Suppose that these are distributed in a matrix of 27 by 27 
flipflops, then we have a doek wire length of approximately 41 mm. The 
load capacitance is counted with the flipflops. 

For the bus we have to make a correction. A number of flipflops in the control 
steer the bus communication; the energy dissipated by these flipflops is added to 
the bus-energy. Furthermore, the multiplexer to the bus consists of complex gates 



52 

Bus 
13% 

Clock 
15% 

Combinatorics 
25% 

Chapter 3. The 80C51 Microcontroller 

ff ( datapath) 
34% 

Figure 3.6: Distribution of the energy dissipation in the synchronous 80C51. A 
considerable part of the energy dissipated by the flipflops is due to 
clocking. This makes the total clock energy about 50%. 

in the netlist implementation; for this combinatoric part of the circuit we estimate 
the energy dissipation and add it to the bus-energy. We then obtain the energy
dissipation distribution as shown in Figure 3.6. 

From this distribution we see two main sourees of energy dissipation. First we 
have the control of the circuit: when the clock energy dissipated in the flipflops is 
added to the total clock energy, then this part contributes about 50% to the total 
dissipation. This coincides with numbers in literature (21] . Second, the bus energy 
is a souree of possible savings. 

3.5 Low-power opportunities 

Taking the architecture of the synchronous implementation and the analysis of the 
previous section in mind we observe the following low-power opportunities. 

1. The centralized control with a compact encoding of the state space implies 
a high switching activity in the control of the synchronous implementation. 
A more redundant encoding of the state space would result in a larger con
trol structure, but the changes between states could be encoded more locally. 
This would result in less activity in the controL However, it would require 
more flipflops for the state encoding, and therefore more clock power. The 



3.5. Low-power opportunities 53 

centralized control fits nicely with the sequentia! execution of instructions 
using the slot-structure. In each slot some action (i.e. communication in the 
datapath) is taken, whether that is necessary or nat. For the instruction exe
cution scheme of the 80C51 it turns out that approximately Î of the actions 
in the slots are redundant. Distributed control enables the designer to leave 
out a communication when it is redundant. This will cast some extra area for 
the contra!, but it can also save activity in the datapath and in the controL 

2. The clock enables all registers (flipflops) in the synchronous implementa
tion. Same implementations have auxiliary clocks running at one tick per 
machine cycle, e.g. to support ROM access in the first slot, or to reduce the 
activity in the timer-peripheral. However, for the CPU, the sequentiality of 
instruction execution makes it necessary for the clock togenerateat least six 
and sametimes twelve ticks per instruction. lt tums out that less than 10% 
of all registers is updated in a slot. When all registers are clocked, many of 
these clock cycles are thus nat necessary for the majority of the registers. 

3. The IB-bus stands central in the synchronous architecture. All registers are 
connected to this bus, making its wires in the circuit layout relatively long, 
resulting in a high switching capacitance. Furthermore, it turns out that the 
IB-bus is used in approximately i of all slots for communicating uncor
related data. Therefore, in each slot of an execution of an instruction, on 
average half of the wires of the bus will switch, implying a high switching 
activity on the bus. 

4. The datapathof somerecent synchronous implementations is basedon master
siave flipflops for each bit in a register. lt is aften possible to re-arrange the 
structure of communication in the chip in such a way that latehes can be used 
instead of flipflops. 

5. For the peripherals we can make the observation that their switching activity 
is generally lower than the clock frequency to the CPU. Furthermore, the 
activity can be quite irregular. An interrupt controller is a good example; it 
only needs to be activated when interrupts occur, which can be rare events 
that are not evenly spread in time. Making the peripherals clock-driven burns 
power unnecessarily. Even when there is some regularity in the activity of a 
peripheral, it is hardly necessary to keep up with the pace of the clock. An 
example of this is a timer which counts the number of executed instructions: 
it needs not to be triggered with the frequency of the clock to the CPU. 

6. The synchronous 80C51 bas two power-saving modes: /die mode and power
down mode. Idle mode gates the clock off the CPU but keeps the peripherals 



54 Chapter 3. The 80C51 Microcontroller 

clocked, to make immediate response to an interrupt possible. This interrupt 
controller is then clock-driven, burning power unnecessarily. Power-down 
mode stops the oscillator from running with the disadvantage that it takes 
time (a few ms) torestart the system. 

There are jive !ow-power opportunities of asynchronous circuits described in [47]. 
These opportunities are: reduced clock power, distributed control, architectural 
freedom, elimination of standby power, and adaptive sealing of the supply volt
age. This artiele shows two applications where these !ow-power opportunities of 
asynchronous circuits are exploited: the DCC error corrector and standby circuits 
for pagers. The six !ow-power opportunities for the 80C51 coincide with the first 
four opportunities in [47]. Adaptive sealing ofthe supply voltage is left outside the 
scope of this thesis. 

With the six !ow-power opportunities for the 80C51 in mind, we develop a Tangram 
program of the 80C51 microcontroller in the next chapters. First a global overview 
of an asynchronous 80C51 is given, and the design decisions and their implications 
at this globallevel are discussed. 



Chapter 4 

An Asynchronous 80C51 
Microcontroller Architecture 

This chapter gives a global overview of the asynchronous 80C51 microcontroller 
that we will describe in detail in the next chapters. The synchronous implementa
tion is divided into several blocks, viz. the CPU and the peripherals. In principle, 
we wish to make an asynchronous implementation of the 80C51 that is compatible 
with the synchronous inrplementation. The situation we then aim for is that the 
asynchronous version is a plug-and-play substitute for the synchronous one, i.e. 
showing the same extemal behaviour. The issue of compatibility is explained in 
more detail in Section 4.3. 

Asynchronous ICs have no clock, i.e. there is no global timing reference to the 
system. The synchronous 80C51 implementation has the notion of a global timing 
reference, which is used for correct functioning. An asynchronous implementation 
of the microcontroller should therefore have facilities to mimic the synchronous 
timing behaviour when and where necessary, without burdening the potential ad
vantages of asynchronous implementation, i.e. low-power, average case execution 
time, and low electro-magnetic emission. 

This chapter explains the partition of the various blocks and their interfaces in the 
asynchronous 80C51 microcontroller. Furthermore, the issue of compatibility is 
discussed. 

55 



56 Chapter 4. An Asynchronous 80C51 Microcontroller Architecture 

4.1 Partition of the 80C51 microcontroller 

In the previous chapter we have seen that the synchronous 80C51 microcontroller is 
divided into the CPU with embedded memories, and the peripherals (Figure 3.1). 
They communicate with each other using the IB-bus, which is controlled by the 
global doek signal. 

The CPU is the part of the microcontroller that fetches and executes instructions. 
To this end, it makes use of two memories: one for the program code and one for 
the data. The specification of the CPU is the instruction set, which is fixed. The 
instruction set specifies the registers in the CPU, the various actdressing modes, 
and the operations that the CPU can perform. For most derivatives of the micro
controller, the CPU is fixed (as the instruction set is fixed), but the sizes and kinds 
of the memories ((E)PROM, FLASH, OTP etc.) may differ. 

A peripheral is a small block of hardware that can perfarm a specialized and usu
ally well-defined task. An example of a peripheral is the timer block that contains 
a number of timers to be contigured to count events or units of time. Peripherals 
also form the boundary of the chip to the environment. For example, the port logic 
can be considered to be a peripheral. Peripherals communicate with the CPU using 
shared memory, viz. the Special Function Registers. These registers contain the 
control and data information for the peripheral. 

Peripherals make the difference in functionality between the derivatives of a mi
crocontroller. For example, a derivative may contain an extra timer, which is then 
an extension of the timer-peripheral. But a derivative may also contain a complete 
new peripherallike a UART, which takes care of serial transmission and reception 
of data. The operation of peripherals is aften demand-driven as opposed to clock
driven. For example, the interrupt controller checks if an interrupt has occurred. 
An interrupt is an asynchronous event: it is nat known on befarehand when an 
interrupt will occur. An asynchronous circuit is demand-driven by nature: a piece 
of circuitry only starts operating when there has been a request to do so. There
fore the demand-driven operation of peripherals fits nicely with the demand-driven 
operation of an asynchronous circuit. 

To allow for fast generation of a new derivative of a microcontroller it is impor
tant that new peripherals can be added to an existing microcontroller. Therefore 
we choose to design the microcontroller in a modular fashion, cantairring a CPU 
and peripherals. Furthermore we have a Synchronizer unit that deals with the im
plementation of timing compatibility, as we wiJl discuss later on this chapter. The 
asynchronous 80C51 is shown in Figure 4.1. 



. . .. : ' 

4.1. Partition ofthe 80C51 microcontroller 

Re set 

er-on Pow 
Re set 

Program I I Data 
ROM RAM 

Handshake 
CPU 

Synchronizer 

Clock 

57 

.--9 Peripheral 1 I 

H Peripheral 2 I 

rJ 
Peripheral n 1--r- rl_ r------.. ~ Port 0 .. 3 I 

I 

()() 
psen 

ale 

Figure 4.1: Global structure of an asynchronous 80C51 microcontroller. The mi
crocontroller consists of a handshake CPU, a number of peripherals 
and the Synchronizer-unit, which serves as a timing reference to some 
peripherals and to the environment. This chapter discusses the compat
ibility issues and the Synchronizer. Chapter 5 of this thesis deals with 
the handshake CPU, and Chapter 6 discusses the peripherals and their 
interfaces to the CPU and to the environment. 



58 Chapter 4. An Asynchronous 80C51 Microcontroller Architecture 

4.2 Communication 

For the internal communication between CPU and peripherals on the asynchronous 
80C51 we choose handshake communication. This has the advantage that it is pos
sibie to communicate between CPU and peripherals only when and wbere neces
sary, which potentially keeps the energy dissipation to a minimum. Also, hand
shake communication between the various blocks makes it possible to design the 
system within the Tangram framework. 

The 80C51 uses the Special Function Registers as communication medium be
tween the CPU and the peripherals. The SFRs are part of the register space as 
specified by the instruction set. Therefore we adopt the same space for the SFRs in 
the asynchronous 80C51. We also would like to exploit the advantages affered by 
the asynchronous implementation as much as possible. For example, none of the 
components, CPU and peripherals, should be blocked from operating when that is 
not necessary. Bath the CPU and the peripherals should be able to instantly access 
and modify the SFRs whenever necessary. In other words, we would like to de
couple their operation and communicate between them only when and where nec
essary. Furthermore, no component should dissipate energy unnecessarily. These 
constraints make it necessary to locate the SFRs in between in the CPU and the 
peripherals, using aso-called SER-interface. This interface implements the above 
mentioned constraints. The design of the peripherals and their interfaces is dis
cussed in detail in Chapter 6. 

The handshake CPU communicates with its memories using handshake interfaces. 
The functionality of the program memory can be described in Tangram by receiv
ing the address and sending the data at that address in the program ROM: 

ROM : proc() • forever 
do ROMaddr?addr 

ROMdata!ROM[addr] 
od 

The data RAM is different from the program ROM in that it can be read and written. 
The difference between the two is encoded by an extra bit that is supplied with the 
address (as we have seen in Chapter 2 with the Move Machine): 

RAM : proc() . forever 
do RAMaddr?<<rw,addr>> 

if rw 

od 

then /* Read */ RAMdataoutlRAM[addr] 
else /* Write */ RAMdatain?RAM[addr] 
fi 



4.3. Synchronization: compatibility 59 

The only interface channels to the CPU that are not handshake channels, are the 
Reset and Power-On-Reset lines. A transition on these lines forces the microcon
troller to stop its current activity and replace the state by the initia) state. This 
so-called special condition, together with the handling of interrupts is discussed in 
Chapter 5 about the design of the CPU. 

4.3 Synchronization: compatibility 

A chip is fully compatible with another chip when their packages are replaceable 
without making any adjustments to the environment. Put differently, two ICs are 
fully compatible when the environment cannot distinguish between the two. Com
patibility can be divided into two classes: 

• Bit-compatibility: two ICs are bit-compatible when they can execute the 
same program code and produce the same data; 

• Timing-compatibility: both ICs implement the same assumptions on timing. 
For example, when the 80C51 accesses extemal memory using two extemal 
ports, there is a prescribed protocol where signals denote the validity of data 
on these ports. The environment inspects these signals and acts accordingly. 

Pin-compatibility combines both bit and timing-compatibility and demands that a 
pin on one chip has the same functionality as the pin at the same location on the 
other chip. Therefore, also the pins for power and ground on both chips have to be 
at the same location. Two chips are pin-compatible when their pins show the same 
bit and timing behaviour when communicating with the same environment. 

Bit-compatibility is ensured by taking the same instruction set and the same encod
ing as starting point. That is what we will do with the asynchronous 80C51: it will 
run the same program code as its synchronous counterpart. 

The issue of timing-compatibility has to be paid special attention to. Asynchronous 
circuits have the property that they runfreely, i.e. as quickly as possible and with
out a global clock to control their operation. Asynchronous circuits therefore show 
average-case execution time: some tasks take a short time and some take a longer 
time. An asynchronous CPU executes some instructions in shorter time than oth
ers. A simple MOV-instruction, for example, is finished earlier than a complicated 
multiply (MUL) instruction. In the execution schemes of the synchronous 80C51 
instructions we also see varianee in the instruction execution time: an instruction 



60 Chapter 4. An Asynchronous 80C51 Microcontroller Architecture 

may take one, two, or four machine cydes to complete. However, an asynchronous 
CPU shows a more fine-grained variation in instruction execution times. 

lt is possible, in principle, to execute instructions in an asynchronous chip at the 
same pace as in a synchronous chip. The asynchronous chip would then have to 
synchronize with a timing reference (i.e. a doek) to mimic the synchronous timing 
behaviour. Suppose that all timing requirements are met, i.e. all actions between 
two doek ticks in the synchronous chip can also take place between two doek ticks 
in the asynchronous chip. Then the asynchronous chip would implement worst
case execution time, just as the synchronous chip. Therefore the asynchronous 
IC would nat show the potential advantage of average-case execution time any
more. Therefore we choose to synchronize the asynchronous chip with a doek 
only when necessary. We want to exploit the advantage of average-case execution 
time and choose nat to synchronize the CPU with the doek during the execution 
of each instruction. Instead we choose to start the execution of the next instruction 
immediately after finishing the previous one. Therefore our implementation of 
the asynchronous 80C51 will not be fully timing compatible with its synchronous 
counterpart. 

In the 80C51, various peripherals need a timing reference to perfarm their tasks. 
A timer, for example, can be contigured in such a way that it counts machine 
cydes (i.e. blocks of 6 doek ticks) for which it neects a timing reference. Another 
example is the UART as introduced in the previous chapter. lt operates at a certain 
baud-rate, which can be derived from a doek signa!, for example. 

Therefore we need a timing reference (i.e. a doek) to the asynchronous 80C51 
to be able to make it timing-compatible with its synchronous counterpart where 
necessary. However, we want to distribute this doek signa! ( or a derivative of 
the doek) only to those blocks of the circuit that need it, avoiding unnecessary 
energy dissipation. The various blocks should run as autonomously as possible, 
only synchronizing with each other and with the doek when necessary. 

To this end, we have a separate block in the asynchronous microcontroller: the 
Synchronizer (Figure 4.1). This block takes an external doek signa! as input and 
communicates with peripherals that need a timing reference signa!. These commu
nications can in principle be implemented using handshakes, but that would result 
in the use of arbiters in the peripherals to choose between a communication from 
the CPU or from the Synchronizer [30]. Another possibility is to use intemal direct 
channels. These channels are implemented using a single wire without handshake 
protocol. In Tangram, a direct channel d can be inspected for its value (by the 
statement sample(d)), for up-going (edge(d/)), down-going (edge(d\)), or 
any transition ( edge ( d) ). The u se of direct channels saves the implementation of 



4.3. Synchronization: · coinpaiibility 61 

arbiters, which is good for area, speed, and execution time. On the other hand, 
the use of direct channels also implies that the designer has to verify that timing 
constraints are met in the implementation. 

The Synchronizer also takes care of external timing signals that are also imple
mented as direct channels. Consider the external memory access mode of the 
80C51 [4]. External memory access takes place in two steps: 

• first, a 16-bit address is sent along ports 0 and 2; 

• then, the environment provides the microcontroller with the 8-bit data (the 
instructien byte) along port 0. 

The environment has to determine whether the microcontroller wants to access 
the external memory, when the data on ports 0 and 2 (the address) is valid, and 
when the data from the environment has to be valid on port 0. To this end, the 
microcontroller provides two extra signals, psen and ale, to determine the data
validity. These signals depend on the global clock signa!, and the protocol is shown 
in Figure 4.2 [4]. 

The protocol is as follows. Halfway through slot 1, bath psen and ale go high. At 
the beginning of slot 2, ~he microcontroller puts the 16-bit address on port 0 (the 
!ow-order eight bits) and port 2 (the high-order eight bits). Halfway through slot 
2 ale goes low, to indicate that the environment can latch the the data on port 0 
in an extemallatch (address latch enable). At the beginning of slot 3, psen goes 
low, indicating that port 0 is now free to put data on. The environment now gets 
the time to put the data on port 0. At the beginning of slot 4 this data is supposed 
to be valid on this port in such a way that the microcontroller can read it. 

The dotted arrows indicate that the transitions on the wires psen and ale and the 
data-validity on port 0 and 2 are dictated by the clock. In Tangram, we can mimic 
the protocol by using direct channels. The Synchronizer inspects transitions on the 
clock, and synchronizes with the CPU, which takes care of the data on the ports. 
The two corresponding pieces of Tangram text for the Synchronizer and for the 
CPU are shown in Figure 4.3. At slot 4, 5, and 6 of the machine cycle the same 
protocol can be repeated. In this way it is possible to do two external memory 
accesses per machine cycle, viz. in slot 1 and 4 of the synchronous instruction 
execution scheme (Table 3.2). 

This implementation imposes some timing requirements on the implementation of 
the Synchronizer and the CPU. For example, signa! ale going low indicates to the 
environment that the data on Port 0 (and Port 2) is valid . The CPU is signaled one 



62 Chapter 4. An Asynchronous 80C51 Microcontroller Architecture 

Sl I S2 I S3 I S4 

clk __ l A § A § §----· 
;:~j 

Synchronizer ale î .. 
.. 

psen 'j .. \. î 
--

\. ~ ) ((([~r~ i~n-~0 Instr in ) pel 
CPU --

-

·~ P2 pch pch 
-

Figure 4.2: Extemal access protocol in the synchronous 80C51: external signals 
psen and ale denote the validity of the data on ports 0 and 2. 

Synchronizer CPU-fragment 
forever 

do sync"" ~ sync"" 

edge(clk) 11 ale:=l 11 psen:=l 

edge(clk) sync"" --7 sync"" 

edge(clk) ale:=O pOout!pcl 

edge(clk) psen:=O 11 p2out!pch 

edge(clk) ) 

edge(clk) sync"" --7 sync"" 

; pOin?data 

od 

Figure 4.3: Tangram program for the Synchronizer (left) and the corresponding 
Tangram program fragment for the CPU (right), implementing the tim
ing protocol of Figure 4.2. The arrows indicate how to read through 
the combined program. 



4.3. Synchronization: compatibility 63 

elk _j :t f: f. l ___ 
Synchronizer ale J ··+· .. 

pse~·j 
: ·.\ r· 

' 
~ 

lpO --] pel r (((((( Instr in 
CPU -

p2 peh ~ peh 
-

Figure 4.4: When the completion of the output of pel along pO is used to signal 
the 1-to-0 transition on ale, one clock tick can be saved (five instead 
of six clock ticks) to implement the protocol (cf. Figure 4.2). 

Synchronizer CPU - fragment 
forever 
do sync"' ~ sync"' 

edge(clk) 11 ale:=l 11 psen:=l 
; edge(clk) ; sync"' -t sync"' 

pOout!pcl 

11 p2out!pch 
) 

sync"" ~ ; sync"" 
ale:=O 
edge(clk) psen:=O 
edge(clk) 
edge(clk) sync"' -t syne"' 

pOin?data 
od 

Figure 4.5: Tangram program for the Synchronizer (left) and the corresponding 
Tangram program fragment for the CPU (right), imptementing the tim
ing protocol of Figure 4.4. 



64 Chapter 4. An Asynchronous 80C51 Microcontroller Architecture 

doek transition earlier to put this data on these ports. Therefore, the timing interval 
between the two doek edges must be large enough for the Synchronizer and the 
CPU to synchronize and output the data along the ports. 

We can do with a slightly slower doek in this case by noticing that ale may go 
low when the !ow-order part of the address is sent along Port 0. We then derive 
this fact from these actions being completed, rather than from the doek signa!. We 
can then do the protocol with one doek tick less (i.e. five ticks instead of six), as 
shown in Figures 4.4 and 4.5. In an asynchronous implementation we can derive 
the timing of an event (1-to-0 transition of ale) from the completion of another 
event (pOout! pel), as opposed to deriving it from the doek. This protocol can be 
repeated, but the difference with tbe protocol in Figure 4.2 is that the new execution 
of tbe protocol starts with a down-going edge instead of an up-going edge of tbe 
doek. 

This scheme imposes another timing requirement on the implementation. The in
terval between the second and the third doek edge of the protocol must be large 
enough to synchronize between the Synchronizer and the CPU, put the data on the 
ports, establish a 1-to-0 transition on ale, and release the data on port 0. 

In this way we can, in principle, build an interface between an asynchronous IC 
and a synchronous environment within the Tangram framework. This is possible 
under the assumption that the synchronization between the handshake modules and 
the actions these modules have to take, take place fast enough to meet the timing 
constraints. 

In the asynchronous implementation of the 80C51 that we will develop over the 
next chapters, we make the chip bit-compatible in that it can run the same program 
code as its synchronous counterpart. For timing compatibility we imptement the 
above scheme for external memory access. 

4.4 Modular design 

In terms of Tangram, the modular design as shown in Figure 4.1 can be expressed 
by writing procedures for the CPU, the Synchronizer, and the peripherals. These 
procedures imptement both the functionality of the blocks as well as their inter
faces. The procedures run in parallel and constitute the microcontroller system: 



4.4. Modular design 

microcontroller 
: proc () . 

11 

11 

11 

CPU() 

Synchronizer() 
peripheral_l () 

11 peripheral_n() 

65 

The CPU is the most complex of these blocks, and the most interesting part of the 
microcontroller for an exploration of the design space. Furthermore, simulations of 
a synchronous implementation of the 80C51 show that in normal operation mode 
the CPU accounts for 50-60% of the total power dissipation. Therefore we first 
concentrate on the design of a !ow-power CPU in the next chapter. Chapter 6 
discusses the design of the peripherals. 



66 Chapter 4. An Asynchronous 80C51 Microcontroller Architecture 



Chapter 5 

An Asynchronous 80C51 CPU 

This chapter addresses the design of a 80C51 handshake-CPU in Tangram. The 
CPU fetches and executes instructions, and is specified by the instruction set. 
Therefore we first focus on the instruction set and show what resources we need to 
implement the CPU. lt turns out that the CPU can be split into two parts: the data
path and the control. The datapath contains the registers, communication paths and 
arithmetic circuitry; the control decodes the instructions and steers the datapath to 
execute them. For both parts we have various design alternatives that we discuss in 
this chapter. It turns out that both for the datapath and the control, the best design 
in terms of area, energy dissipation, and execution time, uses a mixture of these 
various design alternatives. 

5.1 CPU and instruction set 

The specification of the functionality of the CPU is given by the instruction set of 
the processor. An instruction set takes a set of registers and a set of values that the 
registers can assume. The state can then be viewed as a set of pairs, of which each 
pair represents a register and an associated value. Formally, when the instruction 
set assumes N registers, we have the following formula: 

STATE: {(Rï,vi)IO:::; i< N}. 

An instruction can be seen as a mapping from states to states: 

instr : ST AT E --t ST AT E 

67 



68 Chapter 5. An Asynchronous 80C51 CPV 

Instruction Class Specification 

ALU, Logical, Boolean PC:= PC+ c 

Data transfer 

Jump and Branch 

Rctest := ALU(Rsrcl• Rsrc2• opc) 

PC:= PC+c 
Rctest := Rsrc 

PC:= PC+c 
if ALU(Rsrcl' Rsrc2• opc) 
then PC:= ALU(PC, offset, add) 
else skip 
fi 

Table 5.1: Instruction classes and their specification. Rdest denotes a destination 
register, and Rsrcl, Rsrc2' and Rsrc denote souree registers. ALU is a 
function of which the functionality is determined by opcode opc. PC is 
a special register, viz. the Program Counter, to which in each instruction 
class (usually small) constant c is added. The offset can be a positive or 
a negative value. 

There is one special register, the Program Counter PC. The program counter is 
used to point to an instruction opcode. When an instruction is executed, the Pro
gram Counter is adjusted in such a way that it points at the next instruction. An 
instruction specifies which registers it operates on and which register values are 
changed by the instruction. This specification can be expressed by assignments. In 
the 80C51 we have various classes of instructions, as discussed in Chapter 3. The 
associated assignments that specify the instructions are shown in Table 5.1. 

From Table 5.1 we see that weneed two kinds of resources to implement instruc
tions: 

• Registers and communication paths between them; 

• Arithmetic to perfarm operations on the values in registers (as denoted by 
the ALU function). 



5.1. CPU and instruction set 69 

These two components constitute the datapath of the CPU. A datapath is capable 
of performing operations on register values and communicating these values. A 
control structure uses these resources and determines what parts of the datapath 
are used in what order in time. The control of a CPU has the following tasks: 

• fetch an instruction from memory and add the constant c to the program 
counter; 

• decode the instruction and determine the actions that the datapath has to take; 

• control the datapath in such a way that the specification of the instruction is 
satisfied. 

It depends on the structure of the datapath how a suitable control structure can 
be implemented. The control steers the various parts of the datapath, and deter
mines what actions are taken in what order. Thus, the control also determines the 
concurrency and sequentiality in the operation of the circuit. 

In the CPU we can implcment a separate piece of datapath for each instruction, 
implying that we do nat need to reuse pieces of hardware for different instructions. 
However, when we look at the specification of the various instructions in an instruc
tion set, we can think of splitting each instruction execution into various steps: we 
then have an instruction execution scheme. We can look for overlap between the 
schemes for all instructions and try to reuse hardware for these steps. The circuits 
can then be produced cheaper because they implcment fewer transistors. 

Take the ALU-instructions in Table 5.1 as an example. Once the instruction is 
fetched and the program counter is incremented, the remainder of its specification 
is the assignment 

Rdest := ALU(Rsrcl' Rsrc2 1 opc). 

We wish to implcment the ALU -function independent of the souree and destination 
registers, and therefore we introduce auxiliary registers X, Y, and Z. We canthen 
satisfy the specification by three steps as shown in Table 5.2. 

Step a and step c deal with the communication of values between registers. In step 
b the ALU-function is performed on the two dedicated registers X and Y , and the 
result is stared in dedicated register Z. In hardware, this execution scheme makes 
it possible toshare the ALO-Junetion among all ALU-instructions. 



70 Chapter 5. An Asynchronous 80C51 CPU 

X, Y := Rsrcl•Rsrc2 
Z := ALU(X, Y, opc) 

Rdest := Z 

(step a) 
(step b) 
(step c) 

Table 5.2: Execution scheme of an ALU instruction in three steps. 

X, Y := Rsrcl' Rsrc2 
Z := ALU(X, Y, opc) 
cc:= Z 
if cc then 

X, Y := PC, offset 
Z := ALU(X, Y, add) 
PC:=Z 

else skip 
fi 

(step la) 
(step lb) 
(step lc) 

(step 2a) 
(step 2b) 
(step 2c) 

Table 5.3: Execution scheme of a jump instruction. 

The same can be done to find similarity in the execution of, for example, ALU
instructions and jump-instructions. A jump instruction, after increment of the pro
gram counter, is specified in Table 5.1 by 

if ALU(Rsrcl• Rsrc2• opc) tben PC:= ALU(PC, offset, add) else skip fi. 

This ( conditional) assignment can be split into 

cc:= ALU(Rsrcl, Rsrc2, opc) I (step 1) 
if cc then PC := ALU (PC, offset, add) else skip fi (step 2). 

Step 1 can now be split into three new steps, as can be done with step 2. We then 
obtain the execution scheme as shown in Table 5.3. Steps la, lb, and lc as shown 
in this table are similar to the three steps in Table 5.2, as are steps 2a, 2b, and 2c. 
In terms of hardware it is possible to share pieces of datapath between the various 
instructions. 

Parallel execution of instructions or steps in an instruction execution is a metbod to 
reduce the execution time of instructions. However, for parallel execution it is often 



5.1. CPU and instruction set 71 

necessary to have separate pieces of datapath. In the jump-instruction in Table 5.3, 
for example, we could want to execute the two ALU-functions in parallel, when the 
jump is taken. In hardware this is only possible when there are two ALU circuits 
insteadof one. This wil! reduce the execution time, but it wil! cost area. 

Instructions are executed sequentially when an instructien is fetched only after 
the execution of the previous instructien bas finished. When all instructions are 
executed sequentially, we speak of sequentia[ instructien execution. Sequentia! 
execution allows for the reuse of pieces of hardware in the datapath for each step. 
In the synchronous 80C51 all instructions are executed sequentially. Each step 
in the instructien execution uses the bus IB for communication between registers. 
This makes a compact implementation of the datapath possible, as we have seen in 
Chapter 3. 

Building an asynchronous datapath is not necessarily much different from building 
a synchronous datapath. We still need the registers, the communication paths, and 
the arithmetic circuitry to perfarm the operations. As in the synchronous case, we 
still have freedom in how to establish the communication between registers, as we 
shall see in the next section about datapath design. 

However, the control of an asynchronous circuit is different from the centralized 
control in a synchronous circuit. Synchronous control is global: all registers are 
clocked by a global doek signa!. Asynchronous control using handshake circuits, 
on the other hand, is distributed and makes selective steering of the elements of the 
datapath possible. 

In Chapter 3 we have seen that the execution schemes of the synchronous 80C51 
CPU show many redundant actions. The instructions show that there is a wide 
variety in the number of necessary, i.e. non-redundant actions that have to take 
place during execution. Take three instructions in the synchronous 80C51 as ex
ample. Their non-redundant actions are shown in Table 5.4. This table shows three 
instructions, that take 4, 8, and 10 actions to complete, taking the datapath of the 
synchronous irnplementation as starting point (Figure 3.3). The synchronous con
trol makes worst-case assumptions: take the instructien that takes the most steps to 
complete, and take this number for all instructien executions to complete. In case 
of the three instructions in Table 5.4 we would let all instructions take 10 steps 
to complete. For the complete 80C51 instructien set we then obtain a scheme as 
shown in Table 3.2. This approach keeps the control simple, which is beneficia! for 
the area of the circuit. The resulting redundant actions are not good for execution 
time and energy dissipation. 

A distributed control structure can filter the redundant actions and control the data-



72 Chapter 5. An Asynchronous 80C51 CPU 

MOV A,#data ADD A,#data ADD A, @Ri 

ROM--+ IB ROM--+ IB ROM--+ IB 
IB--+ IR IB--+ IR IB--+ IR 
ROM--+ IB ACC--+ IB ACC--+ IB 
IB--+ ACC IB--+ T2 IB--+ T2 

ROM--+ IB RAM--+ IB 
IB--+ Tl IB--+ RAR 
Tl+T2--+ IB RAM--+ IB 
IB--+ ACC IB--+ Tl 

Tl+T2--+ IB 
IB--+ ACC 

Table 5.4: Non-redundant actions for three 80C51 instructions, taking the syn
chronous datapath as starting point. Instructions MOV A, #data, ADD 

A,#data, and ADD A, @Ri need 4, 8, and 10 communications in the 
datapath, respectively. 

path in such a way that only the non-redundant actions are performed. In case of 
the instructions as shown in Table 5.4, the three instructions would take 4, 8, and 
10 actions respectively, instead of 10 for each instruction. This saves energy and 
reduces the execution time, as instructions are executed with average speed and 
power. The drawback is that the control is more complicated than the synchronous 
control, which is disadvantageous for the area of the circuit. 

The synchronous 80C51 CPU implementation implements sequentia! execution 
of instructions, making the area for both the datapath and the control small. We 
wish to make an asynchronous version of the 80C51 microcontroller by VLSI
programming in Tangram, and aim to save power where possible. On the other 
hand, we also wish to keep the area of the circuit small. Therefore we decide to 
assume sequentia! execution of the instructions, making it possible to reuse the 
pieces of the datapath. 

Sequentia! execution of an instruction can be expressed in Tangram by 

FetchOp() ; Execute() 

Fetching an instruction is straightforward, using the handshake model of the mem
ories as introduced in the previous chapter: sending an address (the program counter 
PC) to the program memory and waiting for the data to arrive. The program counter 



5.2. Datapath 73 

value PC can be incremented in parallel with the arrival of the data ( cf. the state
ment PC:= PC+ c in Table 5.1): 

ROMaddr!PC 
ROMdata?ir I I IncPc() 

For the Tangram procedure Execute ( ) we have various possibilities for imple
mentation. We make a distinction between the datapath and the control of the 
CPU, as we have done for handshake circuits in Figure 2.7. 

5.2 Datapath 

The datapath of a processor contains all registers, communication paths between 
them, and arithmetic circuits. lt constitutes the part of the processor where the 
actual computations take place and where the data is stared and moved. In the 
80C51 the variety of addressing modes and the non-uniform address space demand 
a wide flexibility in data traffic, as it is possible to move data from any register to 
any other. To implement this flexibility of data traffic there are two "extremes" in 
the design spectrum. First we can choose to introduce channels between any two 
registers; we then implement so-called point-to-point communication. The other 
extreme miniruizes the number of communication patbs by introducing the notion 
of a bus. In this datapath, communication between two registers always takes place 
in two steps via the bus: first the souree register is copied to the bus; then the value 
of the bus is transferred to the destination register. 

5.2.1 Point-to-point communication 

Registers in a microcontroller CPU can be implemented with variables in Tangram. 
A variabie is implemented by a component VAR in the handshake circuit. Each 
variabie has one or more read ports but exactly one write port. In the single-rail im
plementation of a datapath, the number of read ports of a variabie is unbounded; no 
extra de-multiplexer is needed [30]. However, this is not the case for the write-port; 
all paths to the variabie are multiplexed to the write port. The number of inputs to 
this multiplexer is equal to the number of textual assignments to the variabie in the 
Tangram text. For example, if the Tangram program contains two assignments to a 
variabie x: 



74 Chapter 5. An Asynchronous 80C51 CPU 

x:=y 

x:=z 

then a 2-way multiplexer on the write port of x is introduced, as shown in Fig
ure 5.1. 

Figure 5.1: A multiplexer provides two alternative access paths to variabie x . 

When starting the design of a VLSI-program for a microprocessor's datapath, 
point-to-point communication is quite an intuitive thing to do. Suppose we have 
n registers, xl to xn, and we wish to establish a communication path between all 
pairs of registers apart from auto-assignments (i.e. communication from xi to xi). 
This can be described in Tangram by 

& xlx2 pree () xl:=x2 
& 

& xlxn pree () xl:=xn 
& 

& xnxl pree () xn:=xl 
& 

& xnxnl pree () xn: =xnl 

In the corresponding handshake circuit there are n(n - 1) communication paths 
between registers (i.e. there are n(n - 1) transferrers); each register cao be as
signed values from n- 1 souree registers. In the handshake circuit this introduces 
a multiplexer with n - 1 inputs on the write port of each variable, as shown in 
Figure 5.2. 



5.2. Datapath 75 

ch12 
ch21 

chnl 
chln 

chnl 
chln 

ch(n-l)n 
chn(n-1) 

Figure 5.2: Datapath with point-to-point structure. 

The introduetion of multiplexers in the datapath is implicit in the Tangram text. For 
dense communication networks the multiplexing can have a considerable impact on 
the area, execution time, and energy dissipation of the resulting circuit. Therefore 
it can be worthwhile to reduce the number of multiplexers. 

5.2.2 Bus structure 

To reduce the number of multiplexers we split each communication Xi := X j into 
two parts: first the value of Xj is assigned to a new variabie bus; then the value 
in bus is assigned to Xi. Thus, in the Tangram text for the point-to-point structure 
each occurrence of 

xi:=xj 

is replaced by 

bus:=xj ; xi:=bus 

In this way we obtain the Tangram text 



76 Chapter 5. An Asynchronous 80C51 CPU 

& xlx2 proc () bus:=x2 xl :=bus 
& 

& xlxn proc () bus:=xn xl :=bus 
& x2xl proc () bus:=xl x2:=bus 
& x2x3 proc () bus:=x3 x2:=bus 
& 

& x2xn proc () bus:=xn x2:=bus 
& 

& xnxl proc () bus:=xl xn:=bus 
& 

& xnxnl proc () bus:=xnl xn:=bus 

In order to avoid unnecessary multiplexing on write ports of variables we can share 
common assignments in procedures. The resulting handshake circuit is shown in 
Figure 5.3. 

Figure 5.3: Datapath with bus structure. 

This datapath is cheaper in area, in that it implements n + 1 variables, only one 
n-input multiplexer and 2n transferrers (i.e. communication paths). As described 
in [30] a multiplexer consists of a control part and a data part. lt is beneficia! to 
replace a tree of binary multiplexers by one multi-input multiplexer. Extending the 
number of inputs of a multiplexer involves extending the data part while the control 
part stays more or less the same. Therefore extending a multiplexer with an extra 
input is cheaper than introducing a new multiplexer. 



5.2. Datapath 

V AR (Variables) 
MUX (Multiplexers) 

TRF (Transferrers) 
SEQ (Sequencers) 
MIX (Mixers) 

Point-ta-Point 
n 

n(n-1)-input 
n2 -n 

Bus 
n+1 

1n-input 
2n 
n 

2n(n-1)-input 

77 

Table 5.5: Number of handshake components for point-to-point network and bus
stmeture with n registers, assuming a full network without auto
assignments. 

For a complete network, the costs of the point-to-point network and of the bus
implementation in termsof handshake components are compared in Table 5.5. The 
bus-stmeture is the cheaper in number of handshake components for the datapath, 
for we have only one multiplexer in front of bus. The drawback is that the control 
of the datapath becomes more complex. In the case of point-ta-point communi
cation only one transfereer per assignment has to be steered, whereas using the 
bus-stmeture two transferrees per assignment are controlled, by a sequencer. For 
a full network, assignments bus :=x i and x i: =bus occur more than once and 
therefore extra mixers in the control are introduced. 

This sequencer-mixer control stmcture maps the n(n- 1) steering channels (i.e. 
the number of communication pa tbs) to the 2n steering channels of the transferrees 
in the bus-network. Each sequencer has two active ports, and therefore the mixers 
have to combine 2n( n - 1) handshake channels into 2n channels; each mixer thus 
bas n - 1 inputs. The control overhead for the 3-variable bus-network is shown in 
Figure 5.4. In this figure channels cij establish communication from register xi 

to xj. Similarly, channels cib steer the transfereer from x i to bus; channels cbj 

steer the communication from bus to xj. 

It is interesting to see where the overhead in the control for the bus-stmeture starts 
to dominate the gain in the area for the datapath. For a full network of 8-bit wide 
variables, without auto-assignments, this is shown in Figure 5.5. For these net
works, a point-to-point implementation is smaller for fewer than four variables; 
when more than four variables are implemented, the bus-network is smaller. 

For various numbers of variables (of various widths) in tbe circuit we can generate 
Tangram programs that implement bath point-to-point and bus networks. To cam
pare them, we calculate the difference in transistor count between the two. The 



78 Chapter 5. An Asynchronous 80C51 CPU 

c12 c13 c21 c23 c31 c32 

clb c2b c3b cbl cb2 cb3 

Figure 5.4: Control overhead for bus-structure. 

results are shown in Figure 5.6. There is only a small area where point-ta-point is 
smaller than the bus, viz. the light-gray area in the lefi-bottorn corner in the figure. 
As soon as the number of variables and their width increase the bus-network is 
smaller than point-ta-point. 

For execution time and energy dissipation we can simulate the Tangram designs at 
handshake level. lt appears that, disregarding the width and number of variables, 
energy dissipation of the bus-stroeture is about twice as high as the dissipation of 
the point-ta-point network. This is explained by the fact that for each communi
cation we need two assignments instead of one. For the complete network, one of 
these assignments goes through a multiplexer. For execution time we see a similar 
result; the bus is roughly twice as slow as the point-ta-point communication. 

In practice one hardly ever encounters a microprocessor datapath in which the 
graph of communication paths is full. lt depends on the "fullness" of this graph 
whether the gain in area in the datapath wiJl compensate for the overhead in con
trol. 

5.2.3 An SOCSl CPU datapath 

Having seen two possibilities for the design of a datapath we consider the datapath 
of the 80C51. With its non-uniform register structure we can nicely exploit the 
design space and see what is the best salution in terms of area, execution time, and 
energy dissipation. 

Many of the 80C51 's registers are Special Function Registers. Therefore, we first 



5.2. Datapath 79 

'+-< 
0 

1200 .-------.----,.--------..-----,----..------. 

1000 

800 

600 

400 

"bus" --
"p2p" -+--- / 

,,"'' 
/ 

/// 

0 L---~---~---~---L---~---~ 
2 3 4 5 6 7 8 

Number of variables 

Figure 5.5: Comparison in area (in number of gate-equivalents) between a point
ta-point network and a bus-network for 8-bit wide variables. The num
bers are for a 0.5p, generic cell-library. The bus-network is smaller for 
networks with more than 4 variables. 

discuss the implementation of the SFR space. The SFRs all have addresses, and 
they can be accessed by instructions by means of direct addressing. The address 
space of the SFRs is shown in Figure 3.2, and one possibility is to deelare a register 
file for them. Actdressing of a SFR is then straightforward: we access the register 
file by using the address of the SFR. It is also possible not to use a register file, 
but to deelare the registers as separate variables. Decading the address of the SFR 
bas then to be programmed explicitly (by means of a Tangram case-statement). 
Actding new SFRs to a microcontroller is straightforward in case of a register file: 
the register is already present and bas the appropriate address. In case of separate 
variables, we must add a line to the case-statement that takes care of the address 
decoding. 



80 Chapter 5. An Asynchronous 80C51 CPU 

Figure 5.6: Area comparison between point-to-point and bus. 

In the definition of the standard 80C51, the SFR memory map is sparse: only 21 
of the 128 addresses are in use for SFRs [ 4]. Declaring a register file for the SFRs 
implies that the majority of the registerspace is not used. In other words, declaring 
separate variables for the registers and dealing with the decoding of the addresses 
explicitly, will result in a smaller solution. 

The datapatbs shown in the previous sections can all just copy values from one 
variabie into another. Of course this is not the total picture of a useful datapath; in 
fact we left all combinatorics out. For the 80C51 we mimic the synchronous archi
tecture and introduce an ALU with associated input registers Tl and T2. Operands 
to the ALU are first assigned to these registers, after which the ALU can perform 
an operation. The result is written back to the destination register. Registers Tl 

and T2 implement the registers X and Y as used in Tables 5.2 and 5.3. 

In case of a point-to-point datapath, there have to be communication paths between 
any register to Tl and T2, for any register can contain a souree operand. Further
more, the result of the ALU can be written back to any register (all registers can 
be destination). In the datapath this results in large multiplexers on the write ports 
of Tl and T2, and extra inputs on the write-port-multiplexers of the destination 



5.2. Datapath 81 

registers. 

In Tangram this is easy to implement. Suppose we have instruction ADD A,R5 
which actcts the value of register R5 in a register bank to the accumulator. When we 
implement a point-to-point ctatapath we simply write 

Tl := R5 
T2 := A 
A := Tl + T2 

Beeause the eommunieation paths from R5 to Tl, and formA to T2 are separate, 
the first two eommunieations ean be done in parallel: 

Tl := R5 I I T2 := A 
A := Tl+T2 

whieh rectuees the exeeution time. 

When we actopt the bus-stmeture in the ctatapath, we see that eaeh communication 
between registers passes through variabie bus. Therefore this variabie is an obvi
ous place to react values intovariables Tl anct T2. The result of the ALU ean be 
communicatect to bus, whieh then has the same funetion as register Z in Tables 5.2 
and 5.3. We thus obtain the datapath as shown in Figure 5.7. 

How ean we implement instruetion ADD A, R5 in Tangram in sueh a way that we 
obtain this ctatapath? Using the bus will take more steps in the program exeeution 
than in the point-to-point datapath: 

bus := A 

Tl := bus 
bus := R5 
T2 := bus 
bus := Tl + T2 
A := bus 

The datapath with bus-stmeture is smaller, but the penalty is clear from this ex
ample: it takes more steps to exeeute the instruetion and tbe control is more eom
plicated, as there are more semicolons in the program text. There are no parallel 
paths anymore from the souree registers to Tl and T2, and therefore the two com-



82 Chapter 5. An Asynchronous 80C51 CPU 

Figure 5.7: Handshake circuit of datapath with bus structure. 

munications have to be done in sequentia! order, resulting in a langer execution 
time. 

For the 80C51 CPU we have implemented the two datapaths, each using the same 
control structure. The results are shown in Table 5.6. The bus-datapath turns out 
to be smaller than the point-to-point datapath, but it is also a lot slower and less 
energy-efficient. 

We wish to combine the advantages of both the bus scheme (small area), and 
the point-to-point scheme (low energy dissipation, low execution time). In other 
words, we want direct communication paths that are used frequently, and a bus
netwerk for communications that are oot used frequently. The direct communiea
tions paths then bypass the bus and are therefore called bypasses. An example of 
such a hybrid datapath is shown in Figure 5.8: this datapath contains one bypass, 
from register x2 to xl. Compared to a pure bus-datapath, this handshake circuit 
contains one more multiplexer (on xl) and an extra transferrer. 



5.2. Datapath 83 

Figure 5.8: Datapath with bus structure and one bypass from x2 to x l. 

To investigate what paths in the 80C51 are used frequently, we take a benchmark 
program, and count the number of uses of eight communication paths. The results 
are shown in Figure 5.9. Note that the assignment T2: =SFR is nota single assign
ment: it stands for all assignments from special function registerstoregister T2. In 
this benchmark, the special function registers are not read frequently into register 
T2. 

We have implemented bypasses for the top-4 of frequently-used communications 
paths. A comparison between point-to-point implementation, a full bus-network, 
a bus where the program counter is bypassed to the program ROM, and a bus 
with four bypasses is shown in Table 5.6. The design with the full bus is the 
smallest, but also the slowest and the least energy-efficient of the four. In fact, in 
the synchronous implementation there is also a path from the PC to the program 
ROM that bypasses the bus (Figure 3.3). Introducing a few bypasses results in a 
circuit that is only marginally larger, but because of the frequency with which the 
bypasses are used, it also results in the fastest and most energy-efficient circuit of 
the four. 



84 Chapter 5. An Asynchronous 80C51 CPU 

IR:=ROM[PC] 824 

Tl :=ACC 194 

T2:=ACC 62 

T2:=RAR 43 

RAR:=T2 43 

T2:=SFR 48 

Tl :=BREG 25 

RAR:=SP 22 

50 100 150 200 

Figure 5.9: The number of times that certain communication paths are used in the 
80C51. The benchmark used for these numbers is a program in which 
almost all 80C51 instructions are executed. lt turns out that only a few 
communication paths are used very frequently. 

5.3 Control 

When we have designed a datapath for a processor, we see that the main task of a 
control structure for this datapath is the steering of the various transferrers in the 
datapath. These transferrers control the communications that take place along the 
communication paths in the datapath. In this section we consider various control 
structures, assuming sequentia! execution of instructions. 

The global step of executing an instruction is first fetching it from program memory 

Area Speed E/instr 
(trans.) (MIPS) (nJ) 

Point-to-point 31374 1.92 1.28 
Full bus-network 27306 1.86 1.81 
Bus with PC-bypass 27320 1.95 1.31 
Bus with 4 bypasses 27482 2.10 1.06 

Table 5.6: Comparison between various datapath implementations. 



5.3. Control 85 

and then executing it. The global semicolon for the separation of fetch and execute 
appears in the Tangram fragment 

FetchOp() ; Execute() 

Executing an instruction consists of two major steps: decading and execution of 
the decoded instruction. As with the design of a datapath we can distinguish two 
"extremes" in designing a control structure. Tbe first decodes instructions com
pletely, after which the proper actions in the datapath are taken; the other approach 
decodes instructions while executing them, thereby attempting to share camman 
actions between various instruction executions. lt is also possible to implement a 
combination of these two schemes. 

5.3.1 Centralized decoding 

The first approach of executing an instruction starts with completely decading the 
instruction. Once we have decoded an instruction opcode we know exactly which 
actions have to be taken (i.e. which statements in the Tangram program have to be 
executed). Decading in a handshake circuit can be done by using the case com
ponent with the instruction opcode as input. This is established by the following 
Tangram fragment, in which we assume that variabie ir, the instruction register, 
contains an 8-bit instruction opcode: 

case ir 
is 0 then instrO() 
or 1 then instrl() 
or 2 then instr2() 

or 255 then instr255() 
si 

The various procedures instri ( ) contain the statements that control the datapath. 
Usually, an instruction takes several steps to be executed, for example fetching two 
operands from registers, then actding the two, and finally storing the result in a 
register. As we consider only sequentia! execution in this section, these steps can 
be described by the Tangram fragment 

instri: prae() . SO ; Sl S2 



86 Chapter 5. An Asynchronous 80C51 CPU 

As we have seen in the previous section, the communications in the statements so, 
s 1, S2, ... determine the structure of the datapath. We obtain a control structure 
as depicted in Figure 5.10. 

Data Path 

Figure 5.10: Handshake circuit of control structure with centralized decoding. 

In this tigure we view the program ROM as a handshake component that (after 
sending an address) delivers an opcode of an instruction. This opcode is copied 
into instruction register ir. In Execute ( ) the opcode is input to the central case 

component that first determines which instruction is to be executed. lt steers the 
corresponding multi-sequencer that controls the datapath. U pon completion of the 
execution of the instruction, the handshake protocol between the various control 
components is completed. Finally, upon request, the sequencer on top will start 
fetching the next instruction. 

5.3.2 Distributed decoding 

The second approach looks for overlap in execution schemes of all instructions, as 
was demonstrated in Section 5.1. For example, when we have two instructions 



5.3. Control 

ADD R3, Rl , R2 
SUB R3,Rl,R2 

R3:=Rl+R2 
R3:=Rl-R2 

the corresponding instruction execution schemes might look like 

ADD 
SUB 

Tl:=Rl 
Tl:=Rl 

T2:=R2 
T2:=R2 

bus:=Tl+T2 
bus:=Tl-T2 

R3:=bus 
R3:=bus 

87 

We see a lot of overlap in instruction execution steps; in fact only the third step 
(addition or subtraction) differs. Therefore we can use simpledecode steps for the 
first, the second and the last assignment (i.e. we do nat have to distinguish between 
ADD and SUB) and have a more complex decading for the third step (in which we 
do have to distinguish between the two ). 

Following this scheme we first try to fit all instructions into one execution scheme, 
in such a way that for one stage in this scheme most instructions demand the same 
action. This keeps the decading per stage simple. Thus, in Tangram we have for 
the stages he fragment 

stagel () ; stage2 () stagen() 

where the stages are programmed as 

stagei : proc(). case exprO(ir) 
is 1 then SO 
or 0 then case exprl(ir) 

is 1 then Sl 
or 0 then •.. 
si 

si 

The corresponding handshake circuit is depicted in Figure 5.11. 

Fetching the instruction is done in exactly the same manner as with centralized 
decoding. The decode step is different: there are various stages, each with its own 
(small) decading done by a case component. Instruction register ir is input to 
the various case components and the complete structure is controlled by a multi
sequencer. After completion of the instructien execution the handshake protocol 
between the various control components is finished and the next instruction can be 
fetched. 

In the scheme with distributed decoding, the actual decading for a stage takes place 
in two steps: 



88 Chapter 5. An Asynchronous 80C51 CPU 

Figure 5.11: Handshake circuit of control structure with distributed decoding. 

• first, the expressions are evaluated; 

• then their value is inspected in the case-statement for that stage. 

This introduces an overhead in the area of the handshake circuit. The expressions 
contain the information what transferrers in the datapath for a stage have to be 
steered. The case-statement decodes this binary value: either the expression is 
true, or false. If it is true then the associated transferrer is activated, otherwise not. 
In other words, the case-statement translates a boolean value into a handshake. In 
the handshake circuit, one would want to "skip" the case component, and conneet 
the result of an expression directly to the passive handshake channel of a transferrer. 
Though this is in principle possible at the handshake level, it is not possible to 
express this construction in Tangram. Therefore, an automatic translation from 
Tangram into such a handshake circuit is not possible. Tangram demands to use the 
case-statement in this case, resulting in a larger, slower and less energy-efficient 



5.3. Control 89 

0 
0 

Instruction 

Regu/ar 

Table 5.7: Regular (Right) and Irregular (Left) part of the 80C51 instruction set. 

circuit than necessary. 

5.3.3 An 80C51 control structure 

For the 80C51 we can apply all of the above schemes. In fact, it turns out that 
the cheapest solution is the hybrid scheme of centralized and distributed decoding. 
To this end, we split the instruction set into two parts: regular() and irregular(). 
To see where the split can be made, we go back to the table of the instruction set 
(Appendix B). The regularity shows itself best in the rows on the instruction set 
table. For each row, only one type of instruction occupies the largest part. For ex
ample, we see the INC instruction in row 0, the DEC instruction in row 1, etc. The 
difference per row is in the various actdressing modes that are encoded in columns: 
columns 8 to F access registers, columns 6 and 7 access registers indirectly, col
umn 5 implements direct addressing, etc. Taking all the same instructions per row 
together, we obtain the partition as shown in Table 5.7. 



90 Chapter 5. An Asynchronous 80C51 CPU 

The instructions located at the right of the split belang to the regu/ar part of the 
instructien set; the instructions at the left constitute the irregular part. The regular 
part can be implemented by the Tangram text 

ReadOperands() ; Operation() ; WriteOperands() 

where ReadOperands () and WriteOperands () decode in columns and pro
cedure Operation () decodes in rows. In this fragment we have a three-way 
sequencer on top and (small) decading steps at the leaves of the sequencer. For 
example, operation ( ) can be implemented by 

case row 
is 0 then INC(T2) 
or 1 then DEC(T2) 
or 2 then ADD(Tl,T2) 

si 

One can separate regular and irregular in various ways. In this implementation we 
have chosen to draw the separation such that the regular part is as large as possible 
to exploit the regularity in instructien execution as much as possible. As can be 
seen from Table 5.7 the separation is not a straight line and one could investigate 
whether rnaving the separation line has an impact on the performance and area of 
the resulting circuit. 

A boolean tunetion f, expressed in the bits of the instructien opcode, determines 
whether an instructien opcode belongs to the regular or the irregular part of the 
instructien set: 

if f(ir) 
then regular() 
else irregular() 
fi 

The resulting handshake circuit for the control of the 80C51 is shown in Fig
ure 5.12. 

The irregular part of the instructien set contains clusters of similar instructions. 
For example, all AJMP and ACALL instructien are clustered in column 1, the jump 
instructions appear in column 0 (rows 1 to 7), and the rotate instructions are in 
column 3 (rows 0 to 3). Each of these clusters of instructions shows regularity 
in the execution scheme. Por example, the jump-instructions follow the scheme 



5.3. Control 91 

Execute() 

ReadOperands() Operation() WriteOperands() 

Datapath 

Figure 5.12: Handshake circuit for 80C51 control: hybrid scheme with both cen
tralized and distributed decoding. 



92 Chapter 5. An Asynchronous 80C51 CPU 

in Table 5.3. The jump-instructions differ in their calculation of the condition to 
jump; the second step (adjusting the PC if necessary) is for all jump-instructions 
the same. The rotate-instructions follow the scheme 

bus:=ACC 
Tl :=bus 
bus:=ROTATE(Tl,CARRY) 
ACC:=bus 

when using a bus-datapath. The calculation of the ROTA TE tunetion is different for 
rotate instructions; the other communications are identical. 

In other words, the irregular part of the instruction set shows clusters of regu
lar instructions. For procedure irregular ( ) we can therefore first decode into 
these clusters, and then exploit the regularity in the same way as was done for 
the first instruction-decode step. In the handshake circuit of Figure 5.12 the case

component on top of irregular ( ) decodes into these clusters and the sequencers 
beneath control the regular parts in the clusters. 

Note that regular ( ) is implemented in such a way that the instructions are ex
ecuted in a minimal number of steps. Therefore this implementation filters the 
redundant actions as implemented by the synchronous 80C51. The distributed con
trol of handshake circuits makes such an implementation an attractive salution in 
terms of energy dissipation. Furthermore, the asynchronous character of the con
trol saves energy in the control as well, because only one path from the root of the 
control tree to a leaf (i.e. a transferrer in the datapath) is active during the execution 
of an instruction. 

5.4 Local optimizations 

The previous sections describe global approaches to the design of datapath and 
control of a sequentia! architecture. Zooming in on smaller pieces of Tangram 
text one can often identify local constructs that can be optimized. Some of these 
optimizations are discussed in this section. 

Some straightforward optimizations that apply to any kind of circuit are the ones 
mentioned in Chapter 2: sharing of statements in the datapath and sharing of con
trol structures. Sharing of common statements in the datapath results in rnaving 
expensive multiplexers in the datapath to cheaper mixers in the controL This not 
only saves area, but is also better for energy dissipation. Sharing in the control 



5.4. Local optimizations 93 

saves area, but it often results in a circuit that is slightly slower and less energy
efficient. 

The optimizations in this section go further than sharing of identical structures; 
the goal is to optimize by sharing nearly identical structures in the datapath. For 
the control it is often possible to rewrite the program text in such a way that the 
compiled circuit is cheaper in some sense (area, energy, or execution time). We 
first consicter the datapath and then look at the controL 

5.4.1 Datapath 

We distinguish two kinds of optimizations in the datapath: the ones that reduce the 
execution time and the ones that reduce the area. 

Execution time: faster adders 

An adder is an example of a combinatoric circuit. For each occurrence of a "+" 
in the Tangram text a separate adder is implemented in the circuit. These adders 
are implemented using ripple-carry adder circuits. For large additions this is not 
the best salution for performance; it takes quite some time for the carry to ripple 
through all full-adder cells. Other schemes result in faster, but less area-efficient 
and energy-efficient circuits. An example of such a scheme is the carry-select 
adder [20, 15], which is shown schematically in Figure 5.13. It splits the actdition 
into separate parts, for example the ]ow-order half and the high-order half. Separate 
additions are calculated for both parts. For the high-order part in fact two additions 
are done, one assuming the carry-out of the ]ow-order part is 0 and one actdition 
using a carry-out of 1. All three additions are done parallel and can be implemented 
using ordinary ripple-carry actdition or any other scheme. The carry-out of the 
low-order part then selects the correct value of the high-order part. This can be 
expressedinTangram by the function shown in Figure 5.14 [30]. 

Th is technique is easily generalized toa carry-select adder that splits the arguments 
into more than two parts. The carry-select adder saves time, because the additions 
are done in parallel. On the other hand it is larger and less energy-efficient because 
for the high-order part two additions are done instead of one. 



94 Chapter 5. An Asynchronous 80C51 CPU 

Figure 5.13: Carry-select adder scheme. Three addüions are performed in paral
lel: one for the !ow-order sum, and two for the high-order sum: one 
assuming the carry-out of the !ow-order addition is 0, and one assum
ing that the carry-out is 1. The carry-out of the !ow-order addition, c, 
determines which high-order sum is chosen for the result (Note: this 
figure assumes the Tangram notation, in which the least significant bit 
is written on the Ie ft hand si de). 

Reducing area: sharing functions 

Suppose we have three functions f, g, and h, that all take variables x and y as 
input, and produce output in variabie z. Examples of such functions are addition, 
subtraction, and boolean bit-wise operations like logica) AND and logica! OR. A 
straightforward implementation of these function is represented by the following 
three Tangram procedures: 

ealef 
& ealeg 
& ealeh 

prae () 
prae () 
prae () 

z:=f(x,y) 
z:=g(x,y) 
z:=h(x,y) 

The corresponding handshake circuit is shown in Figure 5.15. 

Suppose we can construct a function F that generalizes f, g, and h: this function 
uses x and y, and an opcode ape as input, and produces output in z. The opcode 
determines whether the result of F will betheresult of f, g, or h. The correspond
ing handshake circuit is shown in Figure 5.16. This handshake circuit saves on the 



5.4. Local optimizations 95 

I* carry-select implementation of z := x+y *I 
<<z,cout>> := 

begin 
sumlow 

& sumhighO 
& sumhighl 

& sgn 
& sumhigh 

val (x.O + y.O) cast <<int8,bool>> 
val (x. 1 + y. 1) 
val ( <<l,x.l>> + <<l,y.l>> 

cast <<bool,int8>>.1 
val sumlow. 1 
val MUX(sumhighO,sumhighl,sgn) 

<<sumlow.O,sumhigh >> 
end 

end 

Figure 5.14: Sketch of a Tangram program for a 16-bit carry-select addition, as
suming a multiplexer function MUX. 

multiplexer on the write port on z, and saves on the capacitive load on the vari
ables x and y by reducing their number of read ports. The corresponding Tangram 
program fragment is 

F 

& alu 

func(x,y : Tl & opc : T2) 
I* function text *I 
prae() . z:=F(x,y,opc) 

Tl • 

The circuit for function F implements the ALU (Arithmetic Logic Unit) function in 
Table 5.2. To generate the circuitry for F in the circuit only once, it is essential that 
the function is invoked only once in the program text. This is possible when the 
function uses only one souree per input and one destination per output, as expressed 
by the rule of invocation: 

Rule of invocation: Reduce the number of invocations of functions to one. 

In a CPU that executes instructions, it is best to express the opcode for the function, 
opc, in terms of bits of the instruction opcode. This saves the introduetion of an 
extra variabie for opc and an extra assignment to this variable. 

We consider a few examples of functions F that combine increment and decrement, 
combine addition and subtraction, and combine bitwise boolean operations. 

Example: Iocrement and decrement 



96 Chapter 5. An Asynchronous 80C51 CPU 

Figure 5.15: Three functions take input x and y and produce output in z. The 
handshake circuit contains a3-input multiplexerin the datapath. 

Figure 5.16: Function F combines the function f, g, and h. F takes an opcode opc 
to determine the result. 



5.4. Local optimizations 97 

It is possible to take the increment and the decrement tunctions tagether into one 
new tunetion that uses an extra parameter. This parameter determines the tunetion 
to be calculated. Using that 

x-1=x+(- 1) 

one can write a tunetion that optionally negates "1" and perfarms the addition. 
This saves one subtracter. The tunetion that implements this technique in shown 
in Figure 5.17. Negative values are represented in Tangram using 2's complement 
notation: negating the value of a register is done by inverting all bits and adding 1 
to the result. 

incdec = func( b : bool & x : int8 ) : int9 
begin /* if b=O then x+1 else x-1 fi */ 

end 

w = val <<true,b,b,b,b,b,b,b>> cast int8 
<< x + w >> cast int9 

Figure 5.17: Function for increment and decrement. 

Example: Addition and subtraction 

In a more general sense we can write a tunetion in Tangram that combines sub
traction and actdition using only one adder. This tunetion is based on the following 
observation. 

x- y =x+ (-y) 

The tunetion optionally negates the value of y and perfarms the addition, using 
only one adder. The Tangram text is shown in Figure 5.18. In the addsub tunetion 
in Figure 5.18 the inversion of all bits is done by tunetion inv; adding 1 can be 
done by tunetion f 1 by invoking this tunetion with value 1 for parameter c that 
represents the carry-in. The parameters used in this tunetion can be derived from 
the instruction opcode in the 80C51; in this way it is possible to invoke the tunetion 
only once in the program text. 

Example: Boolean operations 

Another example merges bitwise logica! tunctions into one new parameterized 
function . The functions to combine are logica) AND ( * ), OR ( + ), and XOR (#) 
(exclusive OR). For this, we abserve that 



98 Chapter 5. An Asynchronous 80C51 CPU 

addsub : 
func( f : bool & c bool 

& x : int8 & y int8 
) int9 . 

begin /* case <<f,c>> 

& 

& 

*I 
bib 
inv 

f1 

is <<0,0>> then x+y 
or <<0,1>> then x+y+1 
or <<1,0>> then x-y 
or <<1,1>> then x-y-1 
si 

type <<bool,int8,bool>> 
func( f : bool & y : byte ) : int8 
<< f#y.O , f#y.1 , f#y.2 , f#y.3 , 

f#y.4 , f#y.S , f#y.6 , f#y.7 
>> 
func( c : bool 

& x : intB & y int8 
: bib . 

(( <<c,x>> cast int9 
+ <<c,y>> cast int9 

) ) cast bib 
& v val f1( f#c , x , inv(f,y cast byte) ) 

<<v.1 , v.2 # f>> cast int9 
end 

Figure 5.18: Tangram function for actdition and subtraction, with or without carry. 

x#y = (x + y) * - (x * y) 

This formula expresses the exclusive OR in terms of the logica! AND and logica! 
OR. By parameterizing this formula to 

E = (p +(x+ y)) * -(q *x* y) 

we obtain the following table: 



5.4. Local optimizations 99 

p q E 
0 0 x+y 
0 1 x#y 
1 0 true 
1 1 -(x* y) 

In the 80C51 we can use this function for taking bitwise logica! functions (in the 
ANL, ORL, and XRL instructions) together. The parameters (p and q in the pre
vious formula) can be expressed in terms of the bits of the instruction opcode, for 
the logica! instructions appear in separate rows in the instruction set table (Ap
pendix B). 

When expressing the three bitwise operations AND, ORL, and XRL separately, 
the resulting handshake circuit wiJl contain a 3-input multiplexer on the result reg
ister. This multiplexer is saved by using formula E as introduced above. On the 
other hand, formula E uses three AND-operations, two OR-operations, and one in
verter per bit, instead of one AND, one OR, and one XOR-operation. Furthermore, 
formula E bas the disadvantage that when (p, q) = (1, 1), -(X*Y) is calculated in
stead of (x * y). Therefore we need another function to invert all the bits. Suppose 
we have this function already available (for example function inv in the addsub 
function in Figure 5.18!), then we obtain Table 5.8 from handshake simulation. 
This table shows that the combined function ("blu") is smaller but also slower and 
more energy consuming than the three separate functions. 

5.4.2 Control 

The second class of local optimizations concentrates on the control circuitry. Here 
we show two examples. 

Multiply and Divide 

This example involves the 80C51 instructions DIV and MUL. Bath use the classic 
shift-and-add approach as described by Koren [20], Hennessy and Patterson [15], 
and other textbooks on computer arithmetic. The algorithms for division and mul
tiplication have similarities and they can be combined into one algorithm as ex
pressed in the Tangram fragment in Figure 5.19. 



100 Chapter 5. An Asynchronous 80C51 CPU 

Width of variables Type Area E/operation T/operation 
(bits) (transistors) (nJ) (ns) 
4 blu 598 0.35 40 

separate 726 0.15 22 
8 blu 1030 0.62 44 

separate 1174 0.25 24 
16 bi u 1894 1.15 44 

separate 2070 0.45 24 
32 bi u 3622 2.22 45 

separate 3862 0.85 24 

Table 5.8: Implementation of separate boolean functions ("separate") vs one 
boolean function ("blu") combining these functions, for various widths 
of the variables. The combined function results in a smaller, but also 
slower and more energy-consuming circuit. The numbers are obtained 
from handshake circuit simulation, assuming a 0.8f..L generic Standard
eeli library. 

Semicolon-sweeping 

The second example is called semicolon-sweeping: reduce the number of semi
colons in the Tangram text (i.e. sequencers in the control of the handshake circuit) 
by rewriting pieces of Tangram text. Suppose we have the Tangram fragment 

case <<bO,b1>> 
is <<0,0>> then so PO S1 
or <<0,1>> then so P1 S1 
or <<1,0>> then S2 P2 S3 
or <<1,1>> then S2 P3 S3 
si 

In the 80C51 we encounter such fragments, for example in the decading of instruc
tions: in the above Tangram case-statement, s 0 and s 1 address registers directly, 
and s2 and S3 address registers indirectly; PO ... P3 stand for operations like INC, 
DEC, etc. A part of the corresponding handshake circuit is shownon the lefi-hand 
side of Figure 5.20. This tigure shows one half of the complete handshake circuit, 
only for two alternatives of the case-statement; the other half is identical. The 
handshake circuit contains in total eight sequencers and four mixers, for statements 
so ... S3 are each invoked twice in the Tangram text. 



5.4. Local optimizations 

I* A 
B 
p 

*I 

ace 
breg 

carry:=O 
for 8 do if 

if 

fi 

<<A.7, ••• ,A.O>> and 
<<B.7, •.• ,B.O>> and 
<< Q 1 • • • 1 Q >> 

DIV then shiftleft ( ) 
A.O then p := p + B 

el se if DIV then 
el se 

fi 

fi 

p := p 

I* MUL 
carry 

if DIV then A.O := -carry 
el se I* MUL *I 

shiftright() 

od 
if DIV 

fi 
carry := 

then if (P<O) then P:=P+B fi 
fi 

0 

101 

- B 
*I 

:= 0 

Figure 5.19: Tangram text for multiply and division, assuming procedures 
shiftleft ( ) and shiftright ( ) that shift bit patterns. 

By replacing the Tangram fragment by 

case bO 
is 0 then so 

case b1 
is 0 then PO 
or 1 then P1 
si 
S1 

or 1 then S2 
case b1 
is 0 then P2 
or 1 then P3 
si 
S3 

si 



102 Chapter 5. An Asynchronous 80C51 CPU 

<<bO,bl>> bO 

Figure 5.20: Handshake circuits for case-statements: optimizations by rewriting 
the Tangram program. 

we obtain the handshake circuit as shown on the right-hand side of Figure 5.20. 
This handshake circuit saves four semicolons and the mixers on the invocations of 
so ... S3, because these statements are invoked only once. The case components 
in the two handshake circuits are slightly different; in the left circuit decading on 
two booleans is done, whereas in the right circuit decodes on only one boolean, 
twice. The right-hand side handshake circuit results in a smaller butalsofaster and 
less energy-consuming circuit than the circuit on the left. 



5.5. Exception-handling 103 

5.5 Exception-handling 

The previous sections describe the part of the CPU that fetches and executes in
structions. The microcontroller system also bas to handle so-called exceptions. An 
exception can be either 

• an interrupt, 

• or a special condition. 

An interrupt is an internal or external event which causes the CPU to postpone 
execution of the next instruction until some interrupt service routine bas been ex
ecuted. In general an internal interrupt can be generated in the CPU itself (for 
example when an actdition of two numbers causes an overflow) or by another block 
connected to the CPU (for example when a timer bas overflowed). An external in
terrupt is generated by the environment of the microcontroller. In the 80C51 some 
lines of Port 3 are reserved as external interrupt lines. In all of these cases the CPU 
adjusts the program counter to point to the first instruction of the interrupt service 
routine (which is part of the program that runs on the 80C51). Mter completion 
of this routine, and when no other interrupt or special condition has occurred, the 
CPU will fetch and execute the next instruction of the normal program flow. 

A special condition forces the CPU to stop the execution of the program and turn 
into some special mode. An example of such a mode is the reset mode which 
forces the microcontroller to initialize the complete 80C51 system and start fetch
ing the first instruction of the program. Other examples of special conditions are 
the idle and power-down modes. In the synchronous implementation, in idle mode 
the clock is disconnected from the CPU, but timers, interrupt controller, and these
rial port functions are still clocked. In power-down mode the on-chip oscillator is 
stopped and all blocks stop executing. The only exit from this mode is a hardware 
reset; this resets the contentsof all registers in the 80C51 while the contents of the 
internal data RAM is maintained. Table 5.9 shows the exceptions that occur in the 
80C51, and describes how the exceptions are dealt with. 

The synchronous 80C51 checks for an exception at the end of each machine cycle, 
but an exception is serviced only after the instruction bas been executed. As we 
have seen in Chapter 3, all instructions except DIV and MUL execute in one or 
two machine cycles. The asynchronous CPU does not have the notion of machine 
cycles. Therefore we choose to check for an exception at the beginning of the 
execution of each instruction. The frequency at which exceptions are then checked 
is not exactly the same compared to the synchronous implementation. lt is possible 



104 Chapter 5. An Asynchronous 80C51 CPU 

Exception Name 
Interrupt 
(internal or 
extern al) 

Power-on-reset 

Reset 

Idle 

Power-down 

Function 
Postpone execution of the next instruction 
until an interrupt service routine 
has been executed 

Resets the circuit when the power is turned on 

Resets and initializes the microcontroller 
while tbe system is running 

The doek is disconnected from the CPU; 
timers, interrupt controller, and serial 
port functions are still clocked 

All blocks stop executing 

Table 5.9: Exceptions in the 80C51 microcontroller. 

Escape 

interrupt 
or reset 

Hardware 
reset 

to design the Synchronizer-block in Chapter 4 in such a way that it synchronizes 
with the CPU at the beginning of each "machine cycle", but this would make the 
CPU more complicated, because of tbe extra synchronization. 

If neither an interrupt nor a special condition bas occurred, the 80C51 can safely 
fetch the next instruction and execute it. The order in which the exceptions are 
checked has to do with their priority. A reset reptaces the current state of the 
processor by the initia! state, and has therefore the highest priority. ldle mode 
and power-down mode stop the CPU's activity, but the state of the CPU is kept. 
An interrupt saves the current state of the processor, executes an interrupt service 
routine, and restores the saved state. The order of priority is reftected by the nesting 
of the if-statement in the Tangram program for the main loop of CPU ( ) : 

forever 
do Checkinterrupt() I I CheckSpecialCondition() 

if -Interrupt * -SpecialCondition 
then FetchOp() ; Execute() 
else if PORline 

then PowerOnReset() I* special condition 
el se if ResetLine 

then Reset() I* special condition 
el se if IdleBit 

*I 

*I 



5.6. Review 

fi 
fi 

fi 
od 

5.6 Review 

105 

then Idle() /*special condition *I 
else if PowerDownBit 

fi 

then /* special condition */ 
PowerDown ( ) 

else /* interrupt */ 
JumpTointerruptVector() 

fi 

This chapter has presented a design space exploration for a sequentia! bandshake 
80C51 CPU that was isolated in Chapter 4. It can be split into the datapathand the 
con trol. 

For the datapath we observed that it is best for power to have a bus-stroeture for 
rarely-used communication paths, while having a direct path for tbe frequently 
used communications. The bus-stroeture reduces the area, and the point-to-point 
communication is better for execution time and energy dissipation when tbere is 
not rnuch rnultiplexing involved. In the 80C51 only a few communication paths 
are used very frequently, and this makes it possible to combine the advantages of 
both the bus-stroeture and the point-to-point communication into one datapath. 

For the control we observed that a distributed control structure enables the designer 
to reduce the number of redundant actions in the execution of instructions. This 
saves execution time, and energy dissipated in the datapath. Furthermore, an asyn
chronous distributed control makes it possible to save power in the control as well, 
because only those parts of the control are active that do useful work, at a given 
point in time. 



106 Chapter 5. An Asynchronous 80C51 CPU 



Chapter 6 

Asynchronous 80C51 Peripherals 

Thus far we have concentrated on the CPU of the 80C51: the part that fetches and 
executes instructions of the program. However, there are other blocks, such as the 
timer block and the interrupt controller, that make the 80C51 a microcontroller: the 
peripherals. 

The derivatives of a microcontroller use the same CPU, for the instruction set is 
fixed. The derivatives differ in the sizes and the implementation of the memo
ries and in the number and functionality of the peripherals. Peripherals make the 
microcontroller a modular system. 

In this chapter we describe an interface between the CPU and the peripherals. Tbis 
description abstracts from tbe functionality of a peripheral; it solely describes tbe 
communication protocol between CPU and peripheral. The interface implements 
some constraints that we first identify. At tbe end of this chapter we discuss the 
UART as an example of a peripheral for the 80C51 microcontroller. 

6.1 Characterization 

6.1.1 What is a peripheral? 

A peripheral is a piece of hardware that is capable of performing a specialized 
(and usually small) task. It assists tbe CPU in doing its job. They communicate 
when necessary, but run as autonomously as possible. Some peripherals take care 
of the communication between the CPU and the outside world, the environment. A 
peripheral and the CPU operate concurrently. Section 3.2.3 gives some examples 

107 



108 Chapter 6. Asynchronous 80C51 Peripherals 

forever 
do wait(start_condition) 

execute_task() 
set_interrupt() 

od 

Figure 6.1: General Tangram program for the operation of a peripheral. 

of peripherals: timers and counters, the interrupt controller, the Input-Output (110) 
peripheral, and the UART. 

6.1.2 Peripherals and power 

A peripheral is capable of doing a specific task upon request. lts general function
ality can be described by the pseudo-Tangram fragment in Figure 6.1. 

After enabling, the peripheral perfarms its task; an interrupt to the CPU is set 
upon completion. It then starts the cycle again. From the program fragment in 
Figure 6.1 we abserve that the peripheral works demand-driven. The CPU sets the 
start condition, and the peripheral starts executing its task only when this condition 
is set. 

The activity of a peripheral occurs generally 

• less frequent than the clock frequency of the CPU; 

• not evenly spread in time. 

A timer that counts machine cycles in the 80C51, for example, does so only at 
1/6th of the clock frequency to the CPU and is therefore less active than the CPU. 
The interrupt controller, waiting for an extemal interrupt, is waiting for an event of 
which it cannot be predicted when it wil! happen. Even so, it might never happen. 

Synchronous implementations of the 80C51 keep the peripherals clocked at the 
clock frequency to the CPU, or a division of that frequency (for example, a timer 
that counts machine cycles can be clocked at l/6th of the clock frequency). All 
registers in the peripheral are clocked, even when the peripheral is nat enabled, 
in which case energy is dissipated unnecessarily. One can say that the peripher
als in the synchronous implementation are clock-driven while the nature of their 
operation is demand-driven. 



6.2. lmplementation 109 

Asynchronous systems are demand-driven by nature; only the piece of circuitry 
that neects to be active is doing useful work upon request, while the inactive parts 
of the circuit are not dissipating energy. Asynchronous circuits are demand-driven 
by nature, and therefore an asynchronous design style fits nicely with the demand
driven operation of peripherals. 

6.1.3 Constraints on the implementation 

Befare embarking on design issues of peripherals we first compile some constraints 
that an implementation must adhere to. 

1. To ensure maximum progress of program execution by the CPU, the periph
eral should run as autonomously as possible. It should synchronize with the 
CPU only when necessary. 

2. In actdition to this, a request from the CPU should be granted by tbe periph
eral instantly, to enable maximum progress by the CPU. In other words, a 
CPU that is waiting is not acceptable in the implementation. 

3. As some peripherals cater for the communication between the CPU and the 
outside world they should comply with the environment's protocols. In other 
words, they must ensure bit-compatibility as well as timing-compatibility as 
discussed in Chapter 4. Tbis is of importance when a redesign of an existing 
microcontroller is made; it must fit in any existing environment that works 
correctly with tbe old design. In the asynchronous version, this means that 
we have to build an interface between an asynchronous system and a syn
chronous environment. For timing compatibility of external memory access 
this was shown in Chapter 4. For the UART, the timing-compatibility issue 
is discussed at the end of this cbapter. 

4. Power consumption must be kept to a minimum. 

5. The microcontroller system should be modular to make it possible to add 
extra peripherals to extend the system's functionality. To enable testability 
of the microcontroller system, peripherals as blocks should be made testable. 

6.2 Implementation 

In this section we specify an interface between the CPU and any peripheral. This 
interface must satisfy the constraints as described in the previous section. 



110 Chapter 6. Asynchronous 80C51 Peripherals 

6.2.1 General architecture 

In the 80C51, the CPU and the peripherals communicate with each other using the 
Special Function Registers (SFRs). These registers are either control or data reg
isters. For example, for the timer-peripheral we have two control registers: TMOD 
(the Timer/Counter Mode Control) and TCON (Timer/Counter Control Register). 
Furthermore, there are the data registers TLO, TLl, THO, and THl that contain the 
counted values. 

Both the CPU and the peripherals are able to access these SFRs; therefore we have 
to dec i de where (i.e. in which Tangram procedure) to locate them. Suppose we 
have a sequentia! implementation of the peripheral as shown in Figure 6.1. One 
possibility is to locate the SFRs in the CPU. This makes reading and writing the 
SFRs by the CPU straightforward, for they arelocalto the CPU. On the other hand, 
what happens when the peripheral wants to access an SFR? lt then has to issue 
a communication to the CPU with the proper request. The CPU bas to monitor 
the communication channels between itself and the peripherals regularly, say each 
instruction execution. This violates constraint 1, viz. maximum progress of the 
CPU and of the peripherals. 

Another possibility is to position the SFRs in the peripheral itself. This makes it 
possible for the peripheral to access the SFRs at any time, i.e. the peripheral needs 
not to wait. With some communication channels the CPU can request access to the 
SFRs for reading and writing, and the initiative for communication lies with the 
CPU. But when the peripheral is implemented as a sequentia! process, and busy 
performing its task, it is notready for answering any request from the CPU, which 
blocks the CPU in its progress. This form of waiting by the CPU is not acceptable 
( constraint 2). 

Therefore we opt for another solution: we put the SFRs in a separate process in 
between the CPU and the peripheral, i.e. we create a Special Function Register 
Interface (SFRI), as shown in Figure 6.2. 

6.2.2 SFR-interface 

The SFR-interface1 implements the constraints mentioned in Section 6.1.3. The 
SFRI decouples the operation of the CPU and of the peripheral, and takes care of 

1Coined by Joep Kessels 



6.2. Implementation 111 

CPU SFRI Peripheral 

Figure 6.2: SFRI as interface between CPU and peripheral. 

1. autonomy of execution: both the CPU and the peripheral must be able to 
make progress reducing delay (constraint 1) and waiting (constraint 2); 

2. the shared-data problem: the SFRs are shared between CPU and peripherals. 
When both want to access an SFR at the same time, access must take place 
in mutual exclusion. 

In addition to this, the SFRI should 

1. make sure that no process overwrites important information that another pro
cessor has written in an SFR. We will explain this below, by means of the 
Read-Modify-Write problem; 

2. be a generic design, in such a way that it is possible to instantiate this de
scription and have an SFRI for a new peripheral. 

We will now explain what read-and-write actions in the 80C51 are to be imple
menled as atomie actions. When the CPU wants to change a bit in an SFR, by 
executing a bit-instruction, it first reads the complete SFR, then modities the sin
gle bit, and writes the value of the SFR. Suppose that CPU has read the SFR but 
not yet written the modified SFR. Furthermore, suppose that the peripheral has 
just finished its task and wants to set an interrupt, which happens to be a bit in 
the same SFR. The peripheral then accesses the SFRI and changes the bit. Just 
after that, the CPU overwrites the same SFR, replacing the interrupt bit with the 
old value. The interrupt is then lost, and the CPU will not be notified that the pe
ripheral has completed its task. This is called the Read-Modify-Write problem: the 
peripheral should never write a SFR when the CPU has initiated but not yet fin
isbed its Read-Modify-Write cycle. Put differently, the Read-Modify-Write cycle 
is to implemented as an atomie action. 



112 Chapter 6. Asynchronous 80C51 Peripherals 

In the 80C51 instruction set all instructions that potentially alter the contentsof an 
SFR are "RMW-dangerous". All instructions that have a directly addressed regis
ter as destination are RMW-dangerous, for this register might be an SFR. Further
more, SFRs can be bit-addressable; therefore also bit-instructions that alter a bit 
are RMW-dangerous. An overview of RMW-dangerous instructions in the 80C51 
is shown in Table 6.1. 

11 zo I Zl I Z2 I Z3 I Z4 I Z5 11 Z67 11 Z8F 

PO INC 
dir 

PI JBC DEC 
bit,ad8 dir 

P2 

P3 

P4 ORL ORL 
dir,A dir,#data 

P4 ANL ANL 
dir,A dir,#data 

P4 XRL XRL 
dir,A dir,#data 

P7 

PS 

P9 MOV 
bit,C 

PA 

PB CPL 
bit 

PB CLR XCH 
bit A,dir 

PC CLR OJNZ 
bit dir,ad8 

PE 

PF 

Table 6.1: Read-modify-write instructions in the 80C51 instruction set. 

6.2.3 Communication between CPU, SFRI, and peripheral 

Let us take a look at the communication interface between the CPU, the SFRI, and 
the peripheral as shown in Figure 6.2. The values that are communicated along 
these channels are the values in the SFRs. Suppose we have a peripheral with two 
SFRs: SFRO and SFRl. These registers can be read and written bath by the CPU 
and by the peripheral. One way of implementing this is by introducing separate 
read channels and write channels for all SFRs, as shown in Figure 6.3. 

The SFRI can now watch all channels for a pending communication by using arbi
tration (the Tangram sel ... les-statement): 



6.2. Implementation 113 

C2SO P2SO 

C2S1 P2S1 

CPU 
S2CO 

SFRI 
S2PO 

Peripheral 

S2C1 S2P1 

Figure 6.3: An implementation of the SPR-Interface between the CPU and a pe
ripheral. 

forever 
do se1 C2SO?SFRO or C2S1?SFR1 

or S2CO!SFRO or S2C1!SFR1 
or P2SO?SFR0 or P2S1?SFR1 
or S2PO!SFRO or S2P1!SFR1 
les 

od 

This salution is expensive in both the number of channels and in the arbitration 
used. Accesses to an SFR are done strictly sequentially, according to the sequentia! 
nature of instruction execution by the CPU. This implies that at most one communi
cation channel between SFRI and CPU is use at some point in time. The same goes 
for the communication channels between SFRI and peripheral. Therefore we intro
duce an extra channel, code, making a number of other channels redundant. This 
channel indicates which SFR needs to be accessed and whether that SFR should be 
read or written. Using the code-channel we need only one read channel and only 
one write channel. Arbitration is now cheaper, as the SFRI bas to arbitrate between 
only one request from the CPU and only one request from the peripheral. In this 
way we obtain the salution as shown in Figure 6.4. 

A possible Tangram fragment for the SFRI is 

forever 
do sel codeC?<<bO,b1>> 

case <<bO,b1>> 
is <<0,0>> then readC!SFRO 
or <<0,1>> then writeC?SFRO 
or <<1,0>> then readC!SFR1 
or <<1,1>> then writeC?SFR1 



114 Chapter 6. Asynchronous 80C51 Peripherals 

coctee codeP 

CPU writeC SFRI writeP Peripheral 

readC readP 

Figure 6.4: A cheaper implementation of interface CPU, SFRI and Peripheral. 

si 
or codeP?<<bO,b1>> 

case <<bO,b1>> 
is <<0,0>> then readP!SFRO 
or <<0,1>> then writeP?SFRO 
or <<1,0>> then readP!SFR1 
or <<1,1>> then writeP?SFR1 
si 

les 
od 

This implementation saves on the arbitration at the costof multiplexing in the chan
nels for reading and writing the SFRs (readC, readP, wri tee, and wri teP). Ex
tending the SFRI with an extra SFR involves the extension of the case-statements 
with a new alternative, and possibly the extension of the width of channel code. 

Suppose that the CPU executes instructions that are Read-Modify-Write danger
ous. The CPU can indicate this by means of a boolean expression in the bits of the 
instruction opcode (Table 6.1 ). The SFRI can block the peripheral from writing 
that SFR by first waiting for the correct value to arrive from the CPU: 

forever 
do sel codeC?<<bO,b1,rmw>> 

case <<bO,b1>> 
is <<0,0>> then readC!SFRO 

if rmw then 
or <<0,1>> then writeC?SFRO 
or <<1,0>> then readC!SFR1 

if rmw then 
or <<1,1>> then writeC?SFR1 
si 

writeC?SFRO fi 

writeC?SFR1 fi 



6.3. Case study: the UART 115 

or codeP?<<bO,b1>> 
case <<bO,b1>> 
is <<0,0>> then readP!SFRO 
or <<0,1>> then writeP?SFRO 
or <<1,0>> then readP!SFR1 
or <<1,1>> then writeP?SFR1 
si 

les 
od 

Tbis salution still bas tbe property tbat tbe SFRI bas to arbitrate between only two 
cbannels. Wben tbe peripberal itself is able to cause a RMW-problem tben a similar 
salution can be applied in tbe second alternative of the select-statement. 

6.3 Case study: the UART 

In tbis section the observations made in the previous sections are applied to the de
sign of a UART for the 80C51. The UART (Universa! Asynchronous Receiver and 
Transmitter) takes care of serial data communication with the environment. Upon 
request by tbe CPU, it transmits a bit pattem to, or receives a bit pattem from tbe 
environment. When tbe UART is enabled to receive a bit-pattern, the environment 
may decide wben tbe reception starts, by means of sending a start-bit. This explains 
the asynchronous character of the UART: it is not determined on beforehand, when 
the bit-pattem will arrive. A timing protocol describes the validity of the data with 
respecttoa timing reference (for example a clock or a timer-overflow rate). Tbus, 
tbe UART bas to implement an asyncbronous-to-synchronous interface ( constraint 
3 inSection 6.1.3). lt also demonstrates bow to implement an SFR-interface. 

6.3.1 Specification 

Tbe specification of tbe UART is taken from the data-handbaak [4]. Tbe serial 
port of tbe 80C51 is full duplex, meaning tbat it can receive and transmit simulta
neously. lt is also receive-buffered, meaning tbat it can commence reception of a 
secoud bit pattem befare a previously received bit pattem has been read from the 
receive-register. 

There are two Special Function Registers that are of importance for the UART. 
Tbe first is SBUF, wbicb is used for transmitting and receiving data. Wben tbe 
CPU writes data into SBUF, this bit pattem will be transmitted by tbe UART; wben 



116 Chapter 6. Asynchronous 80C51 Peripherals 

a bit pattem was received by the UART, it is stared in SBUF and the CPU can collect 
the data by reading this register. 

7 6 5 4 3 2 1 0 

SMO SM1 SM2 REN TB8 RB8 TI RI 

Figure 6.5: Special Function Register SOCON. 

The other SFR involved is status-register SOCON, which is shown in Figure 6.5. In 
this register the bits have the following interpretation: 

• SMO and SMl denote the mode in which the UART operates (see below); 

• SM2 enables multiprocessor communication in mode 2 and 3, which will not 
be dealt with in this section; 

• REN indicates that reception of data is enabled; 

• TB8 is the 9th data bit that is transmitted in modes 2 and 3; 

• RB8 is the 9th data bit that is received in modes 2 and 3; 

• TI is the transmit interrupt; 

• RI is the receive interrupt. 

The UART can operate in four different modes as shown in the Table 6.2. The 
baud rate in modes 0 and 2 depends on the doek frequency. Thus, the UART 
has to communicate with the Synchronizer (Chapter 4). The baud rate in mode 1 
and 3 depends on the overflow rate of a timer. Therefore, the UART also has to 
communicate with the timer-peripheral. Loading the timer with different values 
will result in variabie baud rates for the UART in modes 1 and 3. 

6.3.2 Architecture 

The architecture consists of the UART itself and the Special Function Register 
Interface. The UART transmits and receives bit patterns, while the SFRI contains 
the special function registers SBUF and SOCON, which are readable and writable 
by the CPU. The UART only reacts these registers, and therefore it cannot cause 



6.3. Case study: the UART 117 

Mode SMO SM1 Description Baudrate 

0 0 0 shift register !elk I 12 

1 0 1 8-bit UART 
2PCON. SMOD j 

32 x tov 

2 1 0 9-bit UART 
2PCON. SMOD j 

64 x elk 

3 1 1 9-bit UART 
2PCON. SMOD j 

32 x tov 

Table 6.2: UART modes of operation. Bits SMO and SM1 are bits in the SFR 
s OCON (Figure 6.5). The baud rates in modes 0 and 2 depend on the 
clock frequency f elk. The baud rates for modes 1, 2 and 3 depend on bit 
PCON. SMOD (the 7tb bit in the Power Control special function register). 
Modes 1 and 3 have variabie baud rates, dependent on the timer overflow 

rate ftov· 

a Read-Modify-Write problem. It communicates the received bit patterns to the 
SFRI. The UART should of course never deadlock: it must always return to the 
initia! state when an error in data reception or transmission has occurred. 

The UART contains two processes, Transmit and Receive, that run in parallel. Bath 
processes can run independently, and therefore we need two sets of communication 
channels between UART and SFRI, instead of one set of channels as sbown in 
Figure 6.4. The architecture is shown in Figure 6.6. Tbe communication channels 
between the UART and the CPU follow the same structure as in Figure 6.4. 

In this Figure we see three main blocks: the processor CPU, the interface contain
ing the special functions registers (SFRI) and the UART itself. The set of interface 
channels of the UART can be divided into three categories: 

1. The interface channels to the environment of the microcontroller: RxD and 
TxD, for reception and transmission of serial data from and to the outside 
world. These channels are implemented as direct (i.e. non-handshake) chan
nels; 

2. The clock (elk), the timer overflow (tov) and the baud-rate bit PCON. SMOD. 

When this last bit is set to 1, transmission and reception are performed at 
double baud rate. 



118 Chapter 6. Asynchronous 80C51 Peripherals 

elk tov pcon . s rnod 

1 1 1 
r----------- - - --

startt 

codeC ( 3) AccModeT (2) 
~ - TxD 

ModeT (2) Transmil 
~ 

SBUFchan ( 9) 
~ -

readC (8) --------- -- ---- --
CPU SFRI UART 

r---------------
' startr ' ' ' 

h AccModeR ( 1) ' ' ' RxD 
' Receive writeC ( 8) h ModeR(2) ' ' 

h DataOut (9) ' ' ' r 
' r ---------- -- ---- -

Figure 6.6: The SFRI as interface between the CPU and the UART. The handshake 
channels between SPR-interface (SFRI) and the UART are depicted by 
arrows with circles; their width is denoted by the numbers. The direct 
channels are depicted by arrows without circles. 

3. The channels to the SFR-Interface: 

(a) Fortransmission we have a direct start-channel startt to enable trans
mission (when the CPU writes in SBUF), and three handshake channels. 
AccmodeT indicates what data the UART wants to exchange with the 
SFRI (cf. channel CodePin Figure 6.4): 

• the mode ( communicated along ModeT) in which the UART has 
to transmit data; 

• the data to be transmitted (communicated along SBUFchan); 

• whether the interrupt flag (TI) in SOCON should be raised (upon 
completed transmission of data). 

(b) For reception we have a similar communication interface: 

• the direct channel startr to initiate reception. This channel is 
connected directly to s OCON. REN (Figure 6.5); 



6.3. Case study: the UART 119 

• handshake channel AccModeR to indicate that the UART requests 
for receiving the mode from the SFRI; 

• ModeR to communicate the mode in which reception has to take 
place; 

• handshake channel Dataout to transfer the received bit pattem 
u pon completion of the reception. 

The specification of the UART in the data handhook describes the functionality 
of the various modes separately, but does not give any constraints as to when a 
mode may change [ 4]. lt is, for instance, possible to receive a pattem in mode 2 
while transmitting in mode 3. In mode 0 both the serial bit lines TxD and RxD are 
used for either transmission or reception, but not for bath simultaneously, as TxD 
is used to generate a doek signal in this mode. Therefore, when the UART starts 
transmitting or receiving in mode 0, it should be in the initia! state, i.e. not busy 
receiving or transmitting in any other mode. This constraint is not mentioned in 
the data handhook [ 4]. 

6.3.3 Design of the UART 

The UART consists of two processes in parallel, i.e. the Transmil process and the 
Receive process. Bath processes communicate with the SFRI by means of the 
direct channels and the handshake channels as introduced in the previous section. 
After initialization, the main part of the Tangram program consists of the parallel 
composition of the transruit process and the receive process: 

in i tialize ( ) 
Transmit() I I Receive() 

Transmission 

The transmission of serial data is initiated by the CPU writing new data in SFR 
SBUF. Once the CPU has written into SBUF, the SFRI responds with a transition 
from 0 to 1 on channel startt, initiating the transmission. The transmission
block of the UART detects this transition and asks the SFRI in which mode the 
data has to be transmitted. The data is collected from the SFRI and transmitted (in 
procedurestrO () and tr123 () respectively) as described in [4]. 

A sketch of the Tangram program for the transmission looks like 



120 

forever 
do wait(startt) 

AccModeTIO 
ModeT?m 

od 

if (m.O + m.1) 
then tr123() 
else trO() 
fi 

Chapter 6. Asynchronous 80C51 Peripherals 

I* transmission in mode 1,2 or 3 *I 
I* transmission in mode 0 *I 

ProcedurestrO () and tr123 ()take care ofthe transmission interrupt upon trans
mission of a bit pattem. The value communicated along channel AccModeT indi
cates which data bas to be transferred between UART and SFRI. We distinguish 
the following possibilities: 

1. AccModeT! 0: communicate (along ModeT) the mode in which the UART is 
to transmit a bit pattern; 

2. AccModeT! 1: communicate the bit pattem to be transmitted (along channel 
SBUFchan); 

3. AccModeT! 2: indicate that the transmission interrupt (TI) in the SOCON 
register should be set by the SFRI. The UART signals that the interrupt bas 
to be set, but tbe SFRI actually sets the bit. 

The implementation of the actual transruit procedures (trO () and tr123 ()) is 
straightforward and follows the specification in the Data Handbook [4]. After send
ing a start bit, tbe data bits are transmitted; finally a stop bit is sent. 

Reception 

The Tangram procedure that takes care of the reception of bit pattems bas a similar 
structure. A sketch of this procedure: 

forever 
do TxDOrbit:=true 

wait (startr) 
AceModeRIO 
if (m.O + m.1) 
then rec123() 
else recO() 

I* reception clock in mode 0 *I 

I* reception in mode 1,2 or 3 *I 
I* reception in mode 0 *I 



6.3. Case study: the UART 121 

fi 
od 

A value communicated along channel AccModeR indicates that the UART wants 
to read the mode from the SFRI. U pon completion of reception the UART commu
nicates the received pattem with the SFRI along Dataout. The SFRI then checks 
the conditions to write the received pattem into SBUF and raises the interrupt ftag 
(socoN. RI). As with the transmission-section, the SFRI sets the interrupt bit upon 
request by the UART. 

During reception in mode 0 a clock signal is generated along TxD; we refer to [ 4] 
for a complete description of this functionality. The clock is used by the environ
ment for detection of data-validity. In modes 1, 2, and 3 we have the following 
situation: reception of serial data is enabled by SOCON. REN=1 and a down-going 
transition on RxD. First the start bit is checked; if it is not a 0 then the UART starts 
checking for another down-going edge on RxD. When the start bit was correct, 8 
or 9 bits of data (de pending on the mode) are collected, foliowed by the stop bit, 
which should be 1. If it is not a 1 then the data is thrown away, and the UART 
starts checking for another down-going edge on RxD repeatedly. If the stop bit was 
correct then the received data is communicated to the SFRI that checks whether the 
data can be accepted and whether the receive interrupt SOCON. RI can be raised. 
Each data bit is determined to be the majority of three sampled values, during states 
7, 8, and 9 of each bit period. This bit period is derived from the clock (elk) or 
the timer overflow rate (tov), and the value of PCON. SMOD. While the SFRI deals 
with the received byte, the UART can commence receiving a second byte. 

6.3.4 Design of the SFRI 

The SFRI is to be designed in such a way that waiting of any other module (UART 
or CPU) is avoided. lts main procedure checks for any request from the other 
components to read or write data, and acts accordingly. Variabie starttbit is 
connected directly to channel startt while channel startr is connected to bit 
SOCON.REN (reception enable). A sketch ofthe Tangram program for the SFRI is 
shown in Figure 6.7. 

A handshake-circuit simulation of the operation of the UART is shown in Fig
ure 6.8. In mode 0 we see that during transmission and reception a correct clock 
signalis generated by the UART (signals TxDOtbi tand TxDOrbi t, respectively), 
as specified in the Data Handhook [ 4]. 



122 Chapter 6. Asynchronous 80C51 Peripherals 

forever 
do sel codeC?<<bO,b1,rmw>> 

case <<bO,b1>> 

od 

is <<0,0>> then readC!SOCON 
if rmw then writeC?SOCON 

startrbit:=SOCON.4 
I* reception enable */ 

fi 
or <<0,1>> then writeC?SOCON 

startrbit:=SOCON.4 
I* reception enable *I 

or <<1,0>> then readC!SBUF 
if rmw then writeC?SBUF fi 

or <<1,1>> then writeC?SBUF 
if startbit then I* uC too early *I 

skip 

fi 
si 

or AccModeT?accmt 
case accmt 
is 0 then ModeTirnode 
or 1 then 
or 2 then 
si 

or AccModeR?accmr 
ModeR!mode 

or DataOut?x 

SBUFchan!SBUF 
SOCON.TI:=1 I* 

else starttbit:=true 

; startbit:=false 
transmission interrupt 

if "conditions" then SBUF:=x I I SOCON.RI:=1 

*I 

fi /* receive interrupt *I 
les 

Figure 6.7: Tangram fragment for the Special Function Register Interface (SFRI). 



6.3. Case study: the UART 123 

TxDOtbit 
RxDObit 
TxDOrbit 
RxDbit 
TxD123bit 

mW 

TxDOtbit 
RxDObit 
TxDOrbit 
RxDbit 
TxD123bit 

mW 

~E 30. 

20. 

10. 

0. L...r..,. 
0, . 

UART in ALL Modes 

i I'' I'';''': 
50 I SO 

... ... 
. .. ... 

UART in Mode 0 

f---~---, 

.I 

i i 
200 

. .. ... 

1 1 , 4 

250 
US 

... 

=~ 1~:3 .. _____ ~t~·~l.~.~l,~,~l~. ~~~~·~·~l·~~~l·~·~l·~·~----~~~·~1~, ~~~·~'~'+l~,~~~~~~~·~l~, ~~--~ ..-- , , 1 , , , , 1 , , 1 , , , r r 1 , 

5 10 IS 20 
US 

Figure 6.8: Handshake-Circuit Simulation of the UART. A 12 MHz doek fre
quency and a 5 MHztimer overflow rate are assumed. 



124 Chapter 6. Asynchronous 80C51 Peripherals 

6.4 Review 

This chapter has introduced a design alternative for the peripherals of an asyn
chronous 80C51 microcontroller. The separation between the CPU and the periph
erals by means of a Special Function Register Interface enables us to construct a 
modular microcontroller system. New peripherals can be added by defining some 
special function registers and programming another interface to the new peripheral. 

The separation between the CPU and a peripheral enables both units to run as 
autonomously as possible. They can run in parallel, only communicating when 
necessary, but not blocking each other. For the UART, even the peripheral itself 
consistsof two parallel processes in (transmit and receive) that run independently 
of each other. 

The UART also shows that no energy is dissipated when the peripheral is not doing 
anything useful. It just waits to be started and no clock energy is dissipated. The 
functionality of a peripheral can easily be extended or shrunk by rewriting the 
Tangram program, which is typical advantage of the VLSI-programming approach. 
For example, it is straightforward to implement a UART that can only operate 
in two modes with one baud-rate. Ease of design results in quick generation of 
derivatives of the microcontroller family. 



Chapter 7 

Low-Power Implementatio11 

Cbapter 3 of this thesis outlines the basic function of the 80C51 microcontroller 
and identifies some !ow-power opportunities of the synchronous implementation. 
Chapters 4, 5, and 6 describe an exploration of the design space of an implementa
tion of the 80C51, using Tangram as a VLSI-programming language. 

To demonstrate the feasibility of the Tangram approach to building a competi
tive asynchronous microcontroller, demonstrator silicon was produced early in the 
project. The test chip was reported in [52], and was designed in cooperation with 
Philips Research Eindhoven and Philips Semiconductors Zürich. In this respect, 
it also served for supporting the transfer from the Tangram tools and the Tangram 
approach from Research toa product division. The chip bas the complete function
ality of the 80C51 CPU, with the peripherals that implement the Input/Output, the 
interrupt controller, and the timers and counters. It shows a power benefit witb re
spect to the synchronous implementation with an overhead in area. A comparison 
with the synchronous 80C51, as well as with other !ow-power microcontrollers, is 
discussed in this cbapter. 

Before embarking on the chip itself we first review the !ow-power opportunities as 
mentioned in Chapter 3. We then describe the asynchronous 80C51 test chip and 
campare it to a synchronous version of the 80C51, as well as to other microcon
trollers and microprocessors. 

125 



126 Chapter 7. Low-Power Implementation 

7.1 Low-power contributions 

In summary, we made the following !ow-power observations based on the syn
chronous implementation. For the control, we observed that the distribution of 
the clock together with the centralized control has two implications: energy is 
dissipated in the control, but also in the datapath by the redundant actions in the 
instruction execution scheme. For the datapath, the intemal bus IB is central in 
the synchronous implementation. This bus is used in each step of the execution 
of instructions for communicating uncorrelated data, and therefore shows a high 
switching activity. Furthermore, some synchronous 80C51 microcontrollers im
plement master-siave flipflops instead of latches. The peripherals are clocked at 
the clock frequency of the CPU (or a division on that frequency), whilst they show 
less activity, which is not evenly spread in time. Finally, idle power can take a sub
stantial part of the total power dissipation, especially in embedded applications. 

7.1.1 Distributed control 

The distributed control of the asynchronous 80C51 offers a natura! way to leave 
out the redundant actions in the synchronous instruction execution. We have seen 
examples of such redundant actions in Chapter 3 (Table 3.1 ). Leaving these actions 
out can reduce the total energy dissipation significantly. 

Distributed control is more complex and accupies more area than centralized con
trol. This is a clear point where area and energy dissipation can be traded for each 
other. Larger area can result in more energy-efficient implementations. For the 
80C51, the hybrid control structure using a mixture of centralized and distributed 
decading exploits the regularity in the instruction set execution, and offers a com
promise between area and energy efficiency. 

7.1.2 Asynchronous control 

The asynchronous character of the distributed control in handshake circuits not 
only reduces activity in the datapath, but also in the control itself. The control of a 
handshake circuit takes the structure of a tree, in which the leaves are the handshake 
channels to the transfeners in the datapath. Due to the sequentia! nature of the 
instruction execution, there is only one path from the root to a leaf active at any 
point in time. All others paths remain inactive and thus dissipate no energy.In the 
synchronous implementation the state machine keeps being clocked, dissipating 
power. 



7.1. Low-power contributions 127 

A clock distributed over the entire circuit triggers each register (flipflop or latch) at 
every clock cycle. When no clock gating is applied, all registers are clocked while 
for many of them this is not necessary. For these registers the clock-power is in 
essence wasted power. 

Some studies, like the one in Chapter 3, show that aften half of the total power 
dissipation of a circuit is directly related to the clock [21]. In an asynchronous im
plementation latehes are enabled selectively, thereby avoiding redundant switching 
of latch-enable signals. The consequence of selective steering of latehes is that 
such a control structure is more complex than a clock-network. 

7.1.3 Bus witb bypasses 

The synchronous implementation has two buses: the internal bus IB and a bus 
for program-counter traffic. For each step in the execution the same part of the 
datapath cao be used. Therefore, the use of the buses in combination with the 
sequentia! nature of instruction execution makes a small implementation possible. 
Connecting all registers to the bus makes its wires in the circuit layout relatively 
long, and thus the associated switching capacitance high. Since the bus is used for 
communicating uncorrelated data, on average half of the wires of the bus switches 
during each slot of the execution. Therefore the switching activity on the bus is 
high. 

To reduce the switching activity, point-ta-point communication can be introduced, 
as shown in Chapter 5. Assembler programs for the 80C51 typically show an 
uneven spread in use of communication paths: some paths are used much more 
than others. Using this observation makes a construction with bus and bypasses 
attractive: we use direct paths (bypasses) for frequent data traffic, saving long wires 
and thus switching capacitance. For the less frequent data traffic we opt for the 
bus in Tangram, with its associated smaller area (fewer multiplexers) but poorer 
performance and higher energy dissipation. 

A trade-off can be made to obtain a salution which combines favorable speed, low 
energy-dissipation and competitive area. One may abserve that bypassing the bus 
for frequent data traffic can also be applied to the synchronous implementation, but 
this has not been done yet. 

A bypass can be seen as a separate piece of datapath, which can be used in parallel 
with the rest of the datapath. Therefore it allows us to introduce parallelism in the 
execution of instructions. For example: suppose we have a bypass from the pro
gram ROM to the instruction register. This makes it possible to fetch the next byte 



128 Chapter 7. Low-Power Jmplementation 

from the program memory, while executing the current instruction, thus building 
a 2-stage pipeline. lt heavily depends on the encoding of the instructions whether 
this scheme can be implemented easily. In the 80C51, a byte in the program ROM 
can be interpreted as an instruction opcode, irnmediate data, a relative offset, or an 
address of some kind. Th is makes prefetching instructions more cumbersome com
pared to a RISC with fixed-length instruction encoding, as we will discuss briefly 
in Chapter 8. 

7.1.4 Latehes 

Same synchronous implementations of the 80C51 are based on flipflops. The se
quentia! nature of instruction execution makes it possible, however, to use latehes 
instead, as reading and writing the same variabie in one doek cycle do nat occur. 
The asynchronous implementation is latch-based, but also a synchronous imple
mentation can be made using latches. Avoiding flipflops makes the implemen
tation more energy-efficient because there is less switching power. On the other 
hand, using flipflops makes a design easier to test because flipflops can easier be 
incorporated in a scan-chain. 

7.1.5 Peripherals 

We have seen that peripherals are demand-driven by nature; they start their activity 
upon request. The synchronous irnplementation docks peripherals at the doek fre
quency of the CPU, or a division of that, thereby dissipating energy unnecessarily. 
The asynchronous nature of tbe Tangram-compiled circuits makes it possible to ac
tiva te the peripheral circuit only when necessary. The SPR-interface as discussed 
in Chapter 6 decouples the CPU and the peripherals, making such an implementa
tion possible. Purtbermore, the SPR-interface ensures maximum progress of bath 
the CPU and the peripherals. 

7.1.6 Idle power 

In embedded applications, idle power can be an important issue. Por example, a 
cellular phone in standby-mode has to contact its base station a coup Ie of tirnes per 
second. The circuitry for this function only bas to be activated at this frequency, 
which is orders of magnitude lower than the frequency of the doek of the CPU. In 
embedded applications the circuits are aften in idle mode for a large portion of the 



7.1. Low-power contributions 129 

total execution time. Therefore, the power dissipated in idle mode is important for 
the total power dissipation in these applications. 

In the synchronous implementation there are several modes for power saving, in 
each of which the clock is switched off in some parts of the circuit. Idle mode 
switches the clock off the CPU, but keeps some peripherals active. Sleep mode 
stops the oscillator completely. Stopping the oscillator has the disadvantage that 
resuming the activity of the circuit takes a long time (several ms) tostart the oscil
lator. 

The asynchronous 80C51 has no distinction between idle mode and sleep mode. 
Compared to the synchronous 80C51, the asynchronous version bas the advantage 
that in idle mode the peripherals are active only when necessary, i.e. they are po
tentially lower-power. In sleep mode, the asynchronous 80C51 has the advantage 
of instantaneous wake-up; the circuit can instantly resume its activity. 

We have seen six measures that were taken to reduce the energy dissipation in an 
80C51 microcontroller. Schematically, these measures are shown in Figure 7.1. 

< 
Control 

CPU 

Datapath 

< Distributed control 

Asyncbronous control 

< Bus with bypasses 

80C51 

Peripherals 

Latehes instead of flipflops 

-------- Demand-driven implementation 

Idle power 

Figure 7.1: Partsof the 80C51 microcontroller and measures tosave power. 

7.1.7 Evaluation 

The components in a handshake circuit can be divided into several classes, of which 
the energy dissipation per class can be obtained by simulation on the gate-level. 
The VLSI-programmer can make any such classification. For the 80C51 CPU, we 
distinguish between the bus (variable, drivers, and multiplexer), control (the control 
handshake components), latehes (the other variables), combinatorics (for example 



130 Chapter 7. Low-Power Implementation 

the binary adder), and multiplexing. Using this classification for the asynchronous 
80C51 CPU without bypasses, apart from a direct path from the program counter 
to the program memory (Table 5.6), we obtain the distribution of the energy dissi
pation as shown in Figure 7.2. 

Combinatorics 
21% 

Latehes 
15% 

Bus (latches +drivers) 
22% 

Bus multiplexer 
7% 

Control 
19% 

Figure 7.2: Distribution of the energy dissipation in the asynchronous 80C51 CPU 
with one bypass (the path from the program counter to the program 
memory). 

The energy dissipated by the control is, percentage-wise, considerably less than in 
the synchronous case. This is due to the distributed control and its asynchronous 
character. We see that the energy dissipation by the bus is rather large, of which 
a considerable part is dissipated by its multiplexer. As far as energy dissipation 
is concerned, there is not much difference between the synchronous and the asyn
chronous bus. The synchronous 80C51 bus consumes about 0.6 nJ per instruction, 
and the asynchronous bus 0.4 nJ. However, the asynchronous 80C51 reduces on 
the redundant actions that account for l of the total number of actions. Therefore, 
energy-wise, there is not much difference between the asynchronous bus and the 
synchronous bus. 

It is now worthwhile to reduce the energy dissipation of the bus by introducing four 
bypasses as discussed in Chapter 5. Wethen obtain Figure 7.3. The energy in the 
final 80C51 CPU is evenly distributed over the various classes of components. 

From these charts we conclude the following. First, the energy dissipation by the 
control in the asynchronous 80C51 is substantially lower than in the synchronous 
implementation. About ~ of the energy in the asynchronous 80C51 is dissipated in 
the datapath, in contrast to the energy dissipated by the clock and in the control-



7.2. Demonstrator chip 

Multiplexing 
20% 

Bus (latches +drivers) 
___ -,____ 12% 

Latehes 
19% 

Control 
24% 

131 

Figure 7.3: Energy distribution of the asynchronous 80C51 CPU with four by
passes. 

flipflops in the synchronous 80C51 (Figure 3.6). 

The latehes in the datapath take a smaller part in the asynchronous 80C51 than 
the flipflops in the synchronous case. This is the result of less doek energy as the 
latehes are only enabled when necessary. 

What remains is an energy distribution where the bus takes a substantial part. By
passing the bus is an attractive altemative, especially in the 80C51 where only a 
few communication paths are used frequently. 

7.2 Demonstrator chip 

The history ofthe projectgoesback to January 1995. Taking the hardware descrip
tion in the 80C51 Data Handbook [4] as starting point, a prototype of the CPU 
was designed in Tangram. This prototype could execute all but two instructions 
(multiply and divide ). The control of this prototype already eliminated most of the 
redundant actions by distinguishing between the Regular and the Irregular part of 
the instruction set (Section 5.3.3). It was completed in two months time. 

Sirnulations of the prototype showed a significant power advantage compared to 
the best-known synchronous 80C51 CPU at that time. It wasthen decided to com
plete the design, including peripherals such as timers and counters, an interrupt 



132 Chapter 7. Low-Power Implementation 

controller, and port logic. The chip also implements the timing-compatibility con
straints for external memory access, as discussed in Chapter 4. The completion 
was done in four months time, as a joint project between Philips Semiconductors 
Zürich and Philips Research Eindhoven. The design of the CPU was completed at 
Philips Research by the author, and the design of most of the peripherals was done 
by Philips Semiconductors. The general architecture of the SPR-interface was de
veloped at Philips Research, as was the design of the UART (by the author), as 
discussed in Chapter 6. This UART was not yet incorporated in implementation of 
the test chip. 

While many optimizations at the Tangram level were not yet incorporated, the lay
out of a netlist was sent for fabrication in July 1995. This chip was meant to be 
a demonstrator of the feasibility of the Tangram design flow to design and im
plement a low-power version of the 80C51 microcontroller. lt was fabricated in 
a 0.5J.L 3-metal layer CMOS process using a generic standard-cell library. The 
on-board program ROM and data RAM are the same as used in synchronous im
plementations in the same technology. The only difference is that they have a 
handshake wrapper: data-valid signals in the memories are connected to the ap
propriate handshake-signals in the standard-cell block. In that way it is possible 
to describe the communication with the memories on the level of Tangram, as 
shown in Section 4.2. Simulations were done at the gate-level, using Verilog1 (for 
functional correctness and timing behaviour) and Diesel (for power estimation at 
the gate-level) [2]. Three months later, silicon arrived and the testing of the chip 
started. lt proved almast tirst-time right: available tests revealed an error in the 
DA-instruction that could easily be fixed at the Tangram level. 

7.2.1 Chip 

The layout of the chip is shown in Figure 7.4. It can be divided into three parts: 
a program ROM of 16KByte (the block on top right), a data RAM of 256 bytes 
(top left) and a standard-cell block. This block implements the complete 80C51, 
including CPU, peripherals, and the Synchronizer, as shown schematically in Fig
ure 4.1. 

Area of the chip had no priority in the first place; the test chip is about twice as 
large as the synchronous implementation in the same cell library. In the first place 
this is due to the introduetion of debug-registers on the chip for testing purposes. 
They have no use for the functionality. Second, the chip implements point-ta-point 
communication between the registers. As we have seen in Chapter 5, communi-

1 Verilog is a trademark of Cadence Design Systems, Inc. 



7.2. Demonstrator chip 133 

Figure 7.4: Layout of an asynchronous 80C51 microcontroller. 



134 Chapter 7. Low-Power Implementation 

cation using a bus with a few bypasses results in a circuit that is smaller, while 
saving power and increasing speed. This was learnt after the chip was fabricated. 
Furthermore, many local optimizations, also described in Chapter 5, can be applied 
on the test ebip's design, resulting in a smaller area. 

7.3 Evaluation 

7.3.1 Comparison with synchronous 80C51 

We can draw a comparison with a synchronous version of the 80C51, implemented 
in the same cell library, but with a few more functions (a UART for example). 
This is the same implementation of the 80C51 that we used in Section 3.4 for the 
power analysis. The asynchronous version runs 4 MIPS when running freely. To 
make a fair comparison we let the synchronous version run on a 36 MHz internal 
clock to achieve the same speed, at the same supply voltage (Vdd = 3.3V). The 
synchronous 80C51 is a VHDL design that is synthesized to run a maximum in
tema! clock frequency of 40 MHz (i.e. one clock cycle per slot in the instruction 
execution). Thus, the asynchronous 80C51 is slightly slower than its synchronous 
counterpart. Table 7.1 shows that the asynchronous 80C51 is 4 times more power 
efficient than its synchronous counterpart when running under similar conditions. 
The values are measurements of the chips, including CPU, peripherals, and memo
ries. When a correction is made for the different functionality of the I Cs, the power 
advantage of the asynchronous version is reduced to a factor 3. 

Version MIPS Power MIPS/W 
(mW) 

Sync 80C51 4.0 40.0 100 
Async 80C51 4.0 9.00 444 
(with CPU Vl) 

Table 7.1: Measurements of synchronous and asynchronous 80C51 ICs (CPU, pe
ripherals, and memories) under typical conditions. When a correction 
for different functionality is made, the power advantage of the asyn
chronous version is reduced toa factor 3. 

Another way to campare the synchronous and asynchronous 80C51 is by visualiz
ing photon emission. Wh en a circuit is in operation, photons will be emitted from 
the places on the chip where circuitry is switching. These photons can be registered 



7.3. Evaluation 135 

Area Speed MIPS/W 
(trans.) (MIPS) 

CPU V1 (on-chip: point-ta-point) 39174 1.86 685 
CPU V2 (local optimizations) 31374 1.92 781 
CPU V3 (bus and bypasses) 27482 2.10 943 

Table 7.2: Results of gate-level simulations of three asynchronous 80C51 CPUs, 
excluding memories, assuming worst-case conditions. All CPUs exe
cute instructions from external memory. 

with a camera when their energy intensity, integrated over some periact of time, is 
above a eertaio threshold. This can be made visible by white spots on a picture. 
Figures 7.5 and 7.6 show the synchronous and the asynchronous versions of the 
80C51 under similar conditions running similar code. As can be seen from the 
picture the synchronous version releases more photons than the asynchronous one, 
indicating higher power consumption. Furthermore, activity on the asynchronous 
chip is more local than on the synchronous one. 

7 .3.2 lmprovements 

The test chip was designed and implemented early in the project. lt showed the fea
sibility of the VLSI-programming approach for making a redesign of an existing 
microcontroller architecture, with an interesting power advantage. The area of the 
test chip had no priority, but the overhead of almast a factor 2 should be brought 
down. The first step in reducing the area was to remave the redundant debug reg
isters that were implemented on the test chip. Other reductions in area had to do 
with restructuring the VLSI-program. 

Chapter 5 of this thesis describes how we can reduce area of the CPU, by rewriting 
the original Tangram program. For the 80C51 CPU, the results of these imprave
meuts are sbown in Table 7.2. 

There are two major steps to reduce the area. First, local optimizations can be 
done, like sharing combinatode functions and reducing the sequencers in the con
trol (Section 5.4). This yields CPU V2 in Table 7.2, which still impiemeuts point
ta-point communication. Second, going from point-ta-point to a bus-stmeture in
cluding four bypasses (Section 5.2), we were able to save even more area (CPU 
V3). The improved speed and energy-efficiency are due to the fact that the by-



136 Chapter 7. Low-Power lmplementation 

Figure 7.5: Photon emission of the synchronous 80C51. 

Figure 7.6: Photon emission of the asynchronous 80C51, showing less activity, 
which is more localized. 



7.3. Evaluation 137 

passes are used frequently in the 80C51 CPU. 

With exception of RAM and ROM, all handshake components are mapped onto 
a generic standard-cell library, which contains no dedicated asynchronous cells. 
This does contribute to the area overhead of single-rail handshake circuits: with 
the actdition of about 4 asynchronous cells (various C-elements) the area can be 
reduced by approximately 10%. 

Handshake circuits are implemented using a four-phase handshake protocol and 
single-rail encoding of data. The standard-cell implementation makes that special 
attention has to be paid to delay matching and the verification (after layout) of the 
timing assumptions that have been made [30]. In order to minimize the verification 
effort, delay-matching is done conservatively. For the chip, a safety margin of 
100% was chosen, but a margin of 30% for delays in the datapath is feasible, even 
in standard-cell implementation. These delays have nat been corrected for the 
additional safety margin that results from the delay in the control path. 

The Tangram programs for the peripherals also give room for reducing the area. 
These improvements at the Tangram-level, tagether with the few extra cells in the 
cell-library, make an area overhead of 30% over the synchronous implementation 
possible. The asynchronous 80C51 is slightly slower than its synchronous coun
terpart, but offers a power advantage of a factor 4. 

7.3.3 Comparison withother designs 

In designing a !ow-power asynchronous 80C51 IC we took the 80C51 instruction 
set and its sequentia! execution scheme as starting point. Camparing the chip witb 
its syncbronous counterpart with the same functionality and implemented in the 
same technology, we were able to save a factor 4 in power. However, starting from 
scratch one could go even further. The CoolRisc 8-bit microcontroller designed by 
Piguet et al. is an example [31]. The instruction set of this RISC microcontroller 
was designed from scratch, and allows for efficient pipelining, thereby introducing 
parallelism during the execution of instructions. The result is an impressive 3000 
MIPS/Watt figure. The CoolRisc's RISC instruction set is different from the 80C51 
CISC instruction set, with less expressive power per instruction, and fewer actdress
ing modes. Therefore the MIPS/Watt-figures of the CoolRisc and the 80C51 are 
not directly comparable. 

Reducing activity in a circuit is a key strategy to save energy dissipation. This 
approach was also used in an asynchronous implementation of a 16-bit DSP by 
Cogency [39]. The architecture of this DSP consists of several functional units 



138 Chapter 7. Low-Power Implementation 

(an ALU, a multiplier, etc.). The decoder fetches instructions and translates them 
into an intermediate format, adding information about which functional units are 
involved in the execution of tbe instruction. Each unit that is not involved, sends 
an acknowledgement immediately, thus dissipating no energy on calculation. The 
units that have to do the work send an acknowledge upon completion. The next 
instructien is fetched as soon as all units have signalied completion of the previous 
instruction. The decoder in this architecture is more complex (i.e. larger in area) 
than the synchronous equivalent without clock gating. On the other hand, it saves 
energy compared to the synchronous implementation by selectively invoking the 
necessary parts of the datapath. 

Researchers at the University of Manchester made several asynchronous imple
mentations of the ARM microprocessor [27, 11, 9, 36]. Amuletl shows that asyn
chronous logic in a large design is feasible, but it does not demonstrate a power 
advantage or speed advantage compared to the ARM6 [27]. The Jessous Jearnt 
from Amuletl were incorporated in the design of Amulet2e, which shows a per
formance and power efficiency comparable to ARM7 and ARM8 [9]. The ARM 
is a RISC, in which most steps of the instruction execution are useful and neces
sary for that instruction, i.e., there are not as many redundant actions as in the case 
of the synchronous 80C51. However, the advantage of less electromagnetic emis
sion could be present in the Amulet processors as well, making them attractive for 
portable applications. 

Martin et al. reported on an asynchronous implementation of tbe MIPS R3000 
RISC microprocessor [24]. Their "MiniMIPS" is laid out using full custom cells, 
and the architecture aims for high throughput of instructions. They take the power
delay product ET2 as measure for comparison and claim to be very competitive 
in this respect. Compared to Amulet2e the MiniMIPS is an order of magnitude 
better, as the ET2 -figures suggest. Measurements from silicon, however, are not 
yet available. 

At Tokyo Institute ofTechnology and the University ofTokyo, researchers have de
signed and implemented a 32-bit asynchronous microprocessor, tbe TITAC-2 [38, 
25]. This processor is based on the MIPS R2000, but the instruction set is modi
fied. This makes a comparison with a synchronous MIPS R2000 implementation 
not straightforward. Tbe TITAC-2 processor uses double-rail encoding of data, 
and is based on the so-called Scalabie Delay Insensitive delay model. Using this 
model, the design is split into small parts, and the design of each part is based on a 
more relaxed (and more optimistic) delay model than the QDI (quasi-delay insen
sitive) model. The interconnection between the various blocks is basedon the DI 
( delay-insensitive) model. 



7.4. Review 139 

7.4 Review 

One of the main conclusions of this chapter is that it is possible to make a com
petitive design using Tangram as VLSI-programming language and the Tangram 
compiler to map the program to an asynchronous netlist The tools offer the VLSI
programmer the possibility to redesign the Tangram program in such a way that 
the resulting circuit is better in area, execution time and energy dissipation. The 
demonstrator chip was produced in short time, and proved to be functionally cor
rect. 

Making a design and making a competitive design in terms of area, execution time, 
and energy dissipation are two different activities. Phrased differently, program
ming in Tangram is rather straightforward, but VLSI-programming in Tangram is 
more difficult. Tangram and the transparent compiler offer a large freedom to inves
tigate the design space. In a way the 80C5l's instruction set is suitable for research 
purposes; its mixture of regular and irregular parts forces the designer to inspeet 
the design space and to make a campromise between area on tbe one hand, and 
speed and power efficiency on the other. For a good VLSI-program it is necessary 
to have insight in the compile function and bandshake circuits. lt is not necessary, 
however, to have detailed knowledge about the low-level netlist implementation. 

VLSI-programming in Tangram offers the designer a natura! way to use the asyn
chronous distributed control structure of handshake circuits. This design style is 
different from the synchronous design style where there is a centralized control. 
Therefore VLSI-programming in Tangram can result in new architectmes that ex
ploit the distributed control to save power. 



140 Chapter 7. Low-Power Implementation 



Chapter 8 

Concluding Remarks 

The main targets of the research described in this thesis is to describe guidelines for 
VLSI-programming and to illustrate them on a vehicle of industrial relevance: the 
80C51 microcontroller. The process ofVLSI-programming bas been demonstrated 
by an exploration of the design space of a low-power asynchronous version of this 
microcontroller. 

The approach taken is to partition the microcontroller into a CPU with memories, 
peripherals, and a Synchronizer block, as shown in Figure 4.1. The blocks com
municate with each other using handshake channels and in this way a handshake 
CPU is isolated. The partition makes modular design of a microcontroller family 
possible, as derivatives differ in the memories and in the peripherals. 

The Synchronizer takes care of supplying timing information to the CPU and to the 
peripherals, as well as to the environment of the chip. lt is the only process that bas 
a clock as input, and therefore the clock is not distributed over the entire circuit. 
The Synchronizer caters for timing-compatibility with an ( existing) synchronous 
environment. Though timing-compatibility of an asynchronous chip with a syn
chronous environment is possible in principle, it can also reduce the advantages 
of an asynchronous system. Therefore it is important to decide what degree of 
compatibility is required. For the asynchronous 80C51, timing-compatibility for 
external program memory access bas been implemented. 

The handshake CPU can be split into a datapath and the controL For the datapath, 
it turns out that a combination of a bus with bypasses for frequently used commu
nication paths, offers the best campromise in area on the one hand, and execution 
time and energy dissipation on the other hand. For the control the regularity of 
the instruction set bas been exploited, reducing the number of actions per instruc-

141 



142 Chapter 8. Concluding Remarks 

tion compared to the synchronous version. The distributed character of the control 
saves on the redundant actions and saves power in the datapath. Furthermore, the 
asynchronous character of the control also saves power in the control as only a few 
handshake control components are active at a given point in time. 

The peripherals are demand-driven (rather than clock-driven) by nature, and this 
fits nicely with an asynchronous design style. They dissipate energy only when 
necessary. The CPU and the peripherals communicate with each other using the 
Special Function Registers. The Special Function Register Interface contains these 
registers, and caters for the communication to the CPU and to the peripheral. The 
SFRI also decouples the CPU and the peripheral, in such a way that maximum 
progress by all components is established. 

These techniques result in an asynchronous 80C51 that, compared to its synchronous 
counterpart, is slightly slower and has 30% more area, but dissipates four times less 
energy. 

Philips Semiconductors has implemented the asynchronous 80C51 in a pager chip. 
This pageris available on the world market today. 

Tangram as a programming language offers the possibility to express microcon
troller architectures. The tooi set allows for quick feedback of the characteristics 
of the circuit (a handshake simulation of the 80C51 CPU will simulate around 250 
instructions per second CPU time) and enables the designer to do a design space 
exploration. The transparent compilation scheme of Tangram to the netlist of a 
circuit enables the designer to reason about the circuit on the level of the program
ming language. However, some circuit characteristics are hidden in Tangram but 
visible on the handshake circuit level (e.g. multiplexers). Therefore it is important 
for the designer to have knowledge about the structure of handshake circuits, and 
of the compilation scheme from Tangram to handshake circuits. lt is, however, not 
necessary for the designer to have a detailed knowledge of the mapping from a 
handshake circuit to the netlist of a gate-level circuit. 

8.1 Other processor architectures 

This thesis has discussed various alternatives for architectmes in the design space 
of the 80C51 microcontroller. In this section we consider the applicability of these 
alternatives in the context of other processor architectures, in particular RISC ar
chitectures. 

The 80C51 is a typical example of a sequentia! processor architecture. This keeps 



8.1. Other processor architectures 143 

the datapath small, but also results in relatively poor performance in terms of ex
ecution time, compared to other microcontrollers and microprocessors. Introduc
ing parallelism in instruction execution can significantly improve the processor's 
speed. RISC processors aim at this kind of parallelism by overlapping instruction 
execution, i.e. by implementing pipelining. First we show how how this can be 
accomplished in Tangram. Then we make some power observations conceming an 
asynchronous RISC processor. 

8.1.1 Pipelining in Tangram 

The execution of an instruction can often be split into several components, that are 
more or less of the same kind for all instructions. For example, each instruction 
execution can be split into a fetch and an execute part, where the fetch part is the 
same for all instructions. When each stage uses a separate part of the datapath of 
the circuit, then overlapping the execution of instructions is possible. Pipelining 
is described extensively in many books on computer architecture (for example by 
Hennessy and Pattersou [14, 15, 26]). 

From an abstract point of view, pipelining can be seen as function decomposition. 
Taking this viewpoint, we can express pipelining in Tangram in the following way. 
Suppose we have the Tangram fragment 

forever 
do a?x 

od 

y:=f(x) 
c!g(y) 

The conesponding handsbake circuit is shown in Figure 8.1. 

Using the possible overlap in instructions, we can split the calculation of f (x) and 
g ( y) and put them in parallel for two consecutive instructions: 

( forever do a?x ; b!f(x) od ) 
I I ( forever do b?y ; c!g(y) od ) 

Wethen obtain the handshake circuit as shown in Figure 8.2, which bas the same 
structure as the 2-place buffer in Figure 1.4. 

In tbis handshake circuit an extra channel b bas been introduced to forward the 
data produced by the first "stage". For synchronization between the stages a pas
sivator is added (Peeters describes a handshake circuit with the same functionality 
in which the synchronization is done in the control [30]). This decoupling of the 
calculation of f and g makes it possible to overlap their execution in time. For 



144 Chapter 8. Concluding Remarks 

Figure 8.1: Sequentia! execution. 

example, suppose that f is the fetch-part and g implements the execute-part of an 
instruction, then these two actions cao be overlapped for two consecutive instruc
tions. The handshake circuit of the two-stage pipeline shows that pipelining yields 
more complex circuits in terms of number of handshake components (i.e. area). 
This is a penalty for the higher throughput. 

8.1.2 Asynchronous RISC and power 

In Chapter 3 we saw four CISC-characteristics of the 80C51 instruction set: 

• The various actdressing modes; 

• the variabie length encoding of the instruction set; 

• the non-uniform register structure; 

• the variabie number of doek cycles in which an instruction is executed. 

In the design of a RISC processor, the instruction set and the datapath are designed 
simultaneously. A RISC instruction set is defined around a register file. There 
is only one actdressing mode, viz. the one that addresses registers in the register 
file. RISC instructions are usually encoded using a fixed length for all instructions, 
with redundancy in the encoding. This makes it possible to have separate fields 



8.1. Other processor architectures 145 

Figure 8.2: Two-stage pipeline with synchronization in the datapath. 

in the instruction encoding, for example an opcode field, and fields that specify 
registers in the register file. The instructions are executed in a fixed number of 
steps. Examples of RISC machines are the ARM6 [11 ], the MIPS R3000 [18], 
the DLX [15], and the StrongARM [11]. Let us now look at the datapath and the 
control of a RISC processor to determine the power-saving options. 

The datapath of a RISC is built around a register file. Instructions read values from 
this register file, operate on them and store the result in the register file. There is a 
limited number of communication paths outside the register file. The multiplexing 
in the datapath that we encounter in the 80C51, is bidden intheregister file. There
fore, the discussion of point-to-point communication and the bus-communication 
that we encountered in Chapter 5, does not apply to such RISC architectures. 

For the control of a RISC machine, we consider the instruction execution scheme 
of a RISC. The synchronous 80C51 executes each instruction in six or twelve steps 
per instruction, but a RISC instruction takes in general fewer steps to execute. An 
example of such an execution scheme is shown in Table 8.1. This table shows 
instructions that execute in five steps: first the instruction is fetched, then regis
ter values are read from the register file, an ALU-operation is performed, the data 
memory can be accessed, and finally the result is written back into the register file. 
Each instruction in the instruction set fits into this scheme. Five-stage RISC ma
chines like in Table 8.1 are implemented in the MIPS R3000 [18], the DLX [15], 



146 

Step 
1 
2 
3 
4 
5 

Name 
IF (Instruction Fetch) 
ID (Instruction Decode) 
EX (Ex ecu te) 
MEM (Memory Access) 
WB (Write Back) 

Chapter 8. Concluding Remarks 

Action 
Fetch instruction opcode from progr. memory 
Decode instruction; read register file 
ALU-operation 
Read or write data-memory, if necessary 
Write result back into register file 

Table 8.1: The instruction execution scheme of the DLX RISC instruction set in 
five stages: Instruction Fetch (IF), Instruction Decode (ID), Execute 
(EX), Memory access (MEM) and Write-Back(WB) [15]. 

and the StrongARM [11]. The ARM6 [11] implements a three-stage execution 
scbeme: Fetch, Decode and Execute, in which Execute combines the stages 3, 4, 
and 5 in Table 8.1. We observe from this scheme that there are nat as many redun
dant actions that can be removed by using a distributed control, as we encounter in 
the 80C51. 

For the decading of a RISC instruction, we observe that the decading per stage 
is relatively simple, compared to the 80C51 CISC. The decoding is enhanced by 
the fact that instructions are encoded in fixed length using fields; usually a stage 
only needs information in a few fields to determine its task. This suggests to use 
a decode structure with distributed decoding, as shown in the handshake circuit of 
Figure 5.11. 

Furthermore, the stages in the execution scheme use separate pieces of datapath. 
IF uses channels to the program ROM and uses the program counter; ID contains 
the register file; EX contains the ALU; MEM caters for the communication to the 
data memory, and WB uses the register file to write the result. The only two stages 
that use one resource (the register file) are ID and WB. The use of separate pieces 
of datapath per stage enables overlapping the execution of instructions, i.e. intro
ducing pipelining. Pipelining does not reduce the latency but it does improve the 
throughput of instructions. The price is an overhead in area, as information about 
the instructions has to be transported along the pipeline. Another problem with 
pipelining is the introduetion of data hazards, i.e. the situation that one instruction 
needs the result of a previous instruction that has nat yet been made available. Th is 
problem can be solved by stalling the pipeline, which reduces the performance ad
vantage, or by forwarding results between the pipeline stages, which casts some 
area (extra communication paths and multiplexers). Hennessy and Patterson de
scribe these issues extensively in [15]. 



·' . 

8.2. Typically asynchronous? 147 

The goal of pipelining is to reduce the execution time by having the stages being 
active at any point in time. Asynchronous and distributed control does nat offer an 
obvious power advantage, as all parts of the circuit show more activity. 

Researchers at Manchester University have developed the AMULET-series asyn
chronous microprocessors [27, 11, 9, 36]. These processors implement the ARM 
RISC instructions set. AMULET takes a different approach to RISC than the 
pipelines described in this section; in their implementation micropipelines are used, 
as introduced by Sutherland [37]. The AMULET chips show that asynchronous 
RISC microprocessors can be designed and implemented with similar power and 
speed figures as their synchronous counterparts. They offer, however, another ad
vantage of asynchronous circuits: the absence of a clock leads to lower electramag
netic radialion with the additional advantages that the electromagnetic spectrum 
does nat show the peaks caused by the clock. The asynchronous 80C51 in this 
thesis offers the same advantage of reduced electromagnetic emission, compared 
to its synchronous counterpart. 

In summary, the simplicity of the datapath of an asynchronous RISC machine 
does not leave much room for power saving. Also the control of an asynchronous 
RISC machine has no particular power advantages: first, there are few redundant 
actions, and second, a RISC circuit shows more activity. However, asynchronous 
RISC processors do not have a clock, resulting in lower electromagnetic emission 
compared to their synchronous counterparts. 

8.2 Typically asynchronous? 

We have seen various techniques that were implemented to save power in the 
80C51 microcontroller. A legitimate question is whether these techniques could 
have been applied to a synchronous implementation as well. We take our six !ow
power opportunities of Chapter 3 and I ow-power solutions of Chapter 7 as starting 
point. 

The bus with bypasses can be implemented synchronously as well. Both in the 
synchronous and in the asynchronous case, the penalty will be some overhead in 
area for the controL 

Using latehes instead of master-stave flipflops saves energy in a synchronous so
lution as well. The sequentia! nature of instruction execution makes a straightfor
ward implementation using latehes possible. On the other hand, using master-siave 
flipflops instead of latehes makes it easier to test the circuit. 



148 Chapter 8. Concluding Remarks 

Clock-gating can reduce the activity of the doek in the circuit. However, dock
gating makes a more complicated control necessary, and is not as fine-grained as 
the asynchronous controL In asynchronous design, the starting point is to steer 
the latehes only when and where necessary. Synchronous design starts from the 
opposite side: alllatehes or flip-flops are docked at all doek cydes. Clock-gating 
reduces the dock-activity at a globallevel: it switches the doekoffin a part of the 
circuit that needs not to be active. Seelen describes a tooi that automatically imple
ments dock-gating [35]. For the synchronous 80C51 this results in a reduction of 
the doek power of 24%. 

In conneetion with this, distributed control makes it possible to reduce the capac
itance of the state machine. In other words, also in the control circuitry power is 
saved. Distributed control makes it possible to remove the redundant actions in 
the 80C51 instruction execution. Implementation of distributed control would in 
the synchronous case come with an overhead in area, because it is more complex. 
This overhead can also be found in the asynchronous solution. However, the asyn
chronous character of the distributed control also reduces the energy dissipated in 
the control as only one path in the handshake control tree shows activity at a given 
point in time. This is a typical advantage of an asynchronously operating control 
structure. 

The operation of peripherals is by nature asynchronous, though clock-gating can 
help to reduce the power dissipated in synchronous implementations. But that takes 
more design effort than in an asynchronous implementation, where it comes natu
rally with the design style. Peripherals are by nature demand-driven and not clock
driven. Take the UART that operates in reception-mode as an example: it waits 
for an external start-bit to arrive. Energy is only dissipated in the asynchronous 
version once this start-bit has arrived. The synchronous version has to be docked, 
even during the period that it waits for the start-bit to arrive. Thus, in this case, 
the combination of immediate response and !ow-power is harder to accomplish in 
synchronous design than in the asynchronous design. 

Finally, the synchronous implementation has two power-saving modes: idle mode 
and power-down mode. Idle mode stops the doek in the CPU but keeps the pe
ripherals docked; power-down mode stops the oscillator, in which case it takes a 
few ms to re-start the system. The asynchronous implementation does not make 
a distinction between idle mode and power-down mode: there is no activity when 
not necessary, and the circuit can respond immediately to resume activity. It is 
not possible to implement this combination in a synchronous solution without the 
doek running. 

Reviewing the six )ow-power opportunities, we can say that the bus with bypasses 



8.3. Remaining issues 149 

and the use of latches, can be straightforwardly implemented in a synchronous 
design. The cast in terms of area and reduced testability is roughly the same as 
for the asynchronous case. The absence of a global doek in conneetion with the 
distributed control results in a fine-grained control structure in the asynchronous 
design. This results in reduced power dissipation in bath the datapath and the 
control that is harder to accomplish in synchronous design at reasanabie casts. 
Finally, asynchronous design allows for fine-grained behaviour in time of the chip, 
which is advantageous in designing low-power peripherals, and in designs where 
idle-power is an important part of the total power. 

8.3 Remaining issues 

Testability is one of the main open fields for research in asynchronous circuits at 
the moment. The distributed control makes stopping the circuit during a test more 
cumhersome than in globally docked circuits. Therefore the control of a scan
chain in the datapath, for example, is more difficult to design. Work in this area 
has been done, but a push-button test methad in the VLSI-programming context is 
not implemented yet [32, 34, 33]. Scan-test in the context of micropipeline-based 
asynchronous circuits is discussed in [10]. 

The stuck-at fault model at the gate-level has been lifted to the handshake circuit 
level [ 48, 49]. A tooi gives feedback on the test coverage for a given test at the level 
of Tangram. To obtain a higher coverage the VLSI-programmer canthen adjust the 
test. For the 80C51 this methad can be foliowed to obtain a test, which is discussed 
in Appendix A 

The current Tangram compiler delivers circuits that have a relatively large execu
tion time. This is due to the fact that the compiler was designed to deliver !ow
power circuits. In the case of the DCC error decoder, speed was not an issue, as the 
synchronous salution did not use a high doek frequency either. In the case of the 
80C51 we can make two observations. First, the 80C51 is nota high-performance 
machine; the standard version runs below 1 MIPS. Second, removing the redun
dant actions in the asynchronous 80C51 CPU, we obtain a variabie execution time 
per instruction. This impraves the speed compared to an asynchronous salution in 
which we would fully mimic the synchronous slot-scheme. There are opportuni
ties to imprave the speed of the circuits that are produced by the Tangram compiler. 
The matching of delays, for example, is done conservatively resulting in very ra
bust circuits [30]. However, these delays can be tightened when we know more 
about the implementation and the layout, improving the speed of the circuit. 



150 Chapter 8. Concluding Remarks 



Appendix A 

Testability 

In Chapters 1 and 2 of this thesis we have seen that the parameters of the design 
space of an IC are area, execution time, energy dissipation, and testability. This 
thesis mainly concentrates on the first three parameters. In this appendix some 
aspects of testability are discussed. Testability is an essential requirement for an 
IC to be accepted for industrial production. 

A.l Background 

Since the resurgence of interest in asynchronous design over the last decade, there 
has also been an interest in the testability of asynchronous circuits. An overview 
of these activities is given by Hulgaard et. al. [17]. In the Tangram project there 
have been two ma in activities in the area of testing. 

The first activity aims at high-level development and evaluation of tests and is de
scribed in [48]. In this approach the stuck-at fault model as used in synchronous 
design is "lifted" to the level of handshake circuits. In this new model, a faulty cir
cuit can be modeled by replacing a handshake-circuit component by another com
ponent that shows erroneous behaviour. The one-to-one correspondence between 
handshake circuits and the Tangram language makes it possible to reason about the 
test on the level of Tangram. Fault-coverage simulation can be done at the hand
shake level using the handshake fault-model, and a tooi views the coverage results 
to the VLSI-programmer. The test is described as a Tangram program of the envi
ronment of the chip. The designer can then adjust the test to achieve a higher fault 
coverage. The handshake circuit simulator needs to determine whether a fault in a 

151 



152 Arpendix A. Testability 

data-component is observable on an output of the circuit. For the single-rail imple
mentation of handshake circuits the defined handshake fault model includes stuck
at-output faults in the controllogic and all stuck-at faults in the datapath [48, 49]. 
With the handshake fault-model it is possible to design a testfora circuit generated 
from a Tangram program. 

The second testability-activity in the Tangram project aims at improving the testa
bility of asynchronous Tangram-compiled circuits even further by implementing 
Design-for-Testability (DIT) . In this approach extra hardware is added to enhance 
the effect of test-methods. One of these methods is scan test in which all register
elements (latches or flipflops) are in test mode connected into one chain that can 
be read and written by the environment. Partial scan was used in the DCC error 
corrector chip and offers a trade-off between the cost for testing and the cost associ
ated with scan-design [32]. The approach taken is to implement the extra hardware 
for the test enhancement in Tangram. This gives the designer the opportunity to 
implement the test facilities on the level of the VLSI-programming language. 

Partial scan was implemented in the double-rail implementation of the DCC error 
corrector chip. Observability was for free in this chip, as incorrect functioning 
of the IC would manifest itself by deadlock. In the single-rail implementation 
of handshake circuits, however, observability is no Jonger for free as single-rail 
circuits are no longer quasi-delay-insensitive with respect to datapath operation. 
Put differently, a fault in the datapath needs no Jonger result in deadlock of the 
IC. Asynchronous scan facilities can then be used to take snapshots of the sys
tem states from time to time and thereby compensate for the lost observability-by
deadlock [32]. 

To increase the testability of single-rail handshake circuits further, the applicability 
of other existing test-methods for synchronous ICs on asynchronous circuits were 
investigated [34]. One of these methods stops the circuit at some points in time 
and measures the quiescent supply current InnQ . Stopping a synchronous circuit 
is straightforward as one can stop the clock. In asynchronous circuits the situation 
is different: there is no global clock and therefore it is more difficult to stop the 
operation of the circuit. To control the operation of the asynchronous circuit on 
a more fine-grained level to enhance the effect of the InnQ method, extra DIT 
can be added: the HOLD components as introduced in [34]. HOLD components 
make it possible to stop the operation of the circuit during testing to enhance the 
observability of the state of the circuit. This approach and its applications are 
described in [34 ]. 

The development of a test for an IC is a task of the designer. When an IC is 
developed using the Tangram design flow, the VLSI-programmer should design a 



A.2. Approach 153 

test for that IC. Therefore it is important that the VLSI-programmer can design 
a test on the level of Tangram, as described in the first testability activity in the 
Tangram project [48, 49]. Therefore, in the design of a test for the 80C51 we 
concentrate on the first approach, viz. the development of a test on the level of the 
Tangram language. 

A.2 Approach 

Currently there is no automated procedure for generating a test for an asynchronous 
Tangram-compiled circuit. Therefore we have to develop the test manually, though 
the methad described in [48, 49] makes an automatic path possible in principle. 

The model used in [ 48, 49] defines for each handshake component a repfacement 
set. The elements in this set represent handshake components that show erroneous 
behaviour. A reptacement component can be restricted: this handshake component 
shows a behaviour-trace that is a prefix of the behaviour of the original (non-faulty) 
handshake component, causing the circuit to deadlock. Non-restricted replace
ments show a different (and non-blocking) behaviour and are much harder to test, 
as the circuit does not deadlock and faults may not be externally visible. 

Because the reptacement sets of control components only contain restricted re
placements, all faults can be tested by doing handshakes on every control channel. 
In other words: the test of the circuit should activate all paths on the handshake 
circuit control tree. 

For the datapath, we distinguish between combinatoric circuitry and registers. 
Combinatoric circuitry in asynchronous single-rail circuits is not different from 
synchronous irnplementations, and therefore existing tools for test pattem genera
tion can be used. For the registers we have to make sure that all register elements 
(flipflops or latehes in the implementation) have assumed all possible values, 0 and 
1, and that this has been made visible on an external output. 

The 80C51 is a programmabie architecture and therefore the test for an 80C51 
can be described in terms of an assembly program containing instructions. The 
VLSI-programmer has to design a test in the form of an environment to the circuit, 
delivering the test-vectors. The environment of the 80C51 can be modeled as a 
memory that contains the test program. 

The 80C51 is a modular system that consists of various blocks: CPU with memo
ries, peripherals, and the synchronizer (Chapter 4). In the same modular fashion, a 
test can be designed for each block separately. We can design and imptement a test 



154 Appendix A Testability 

for the 80C51 blocks in the following way: 

• For the control, we have to create a test that generates handshakes on all 
paths of the decode tree. For the CPU this implies that the test has to contain 
all 80C51 instructions. 

• For the combinatode circuitry test veetors have to be generated. As the stroc
ture of combinatmie circuitry in a synchronous circuit is similar to that of an 
asynchronous single-rail circuit, the same tools for generation of the test 
veetors cao be used. 

• For tbe registers in the datapath we have to make sure that all bits have 
assumed 0 and 1 during the test, and that this has been made visible to an 
external output. For example, we can "mimic" a scan-chain through the 
registers and route values through the "chain", making the result visible on 
an externalport (for example Port 1 (Pl)). This is expressed by the assembly 
program 

MOV A,#llllllll 
MOV REGl,A 
MOV REG2,REG1 

MOV REGn,REGnl 
MOV Pl, REGn 

MOV A,#OOOOOOOO 
MOV REGl ,A 
MOV REG2,REG1 

MOV REGn,REGnl 
MOV Pl, REGn 

In principle, the bus-construct as described in Chapter 5 enhances observability 
compared to point-to-point communication as all values pass through the same 
variable, viz. bus. This variabie can be made observable to the environment using 
an external port. Using this approach of high-level test design, a test for the asyn
chronous 80C51 microcontroller was designed by Philips Semiconductors, with a 
coverage of 98% based on the handshake circuit fault model. 



A.3. Example: a test for the UART 155 

A.3 Example: a test for the UART 

This section describes a test for the UART as described in Section 6.3, but it does 
not provide a test for the Special Punction Register Interface. 

Por the datapath of the UART we abserve that there are a few registers present (i.e. 
the shift-registers). There is no combinatoric circuitry present. Por the registers we 
have to make sure that all bits assume the values 0 and 1 and that these values are 
made visible to the environment. 

Por the control we have to make sure that the test follows all paths of the control 
circuitry. There is quite some similarity between modes 1,2, and 3 of the UART: 
they only differ in the baud rate and the number of bits that is transmitted and 
received. In the Tangram program this is exploited by sharing the procedures for 
modes 1,2, and 3. Inthetest for the UART we can exploit this by taking the test for 
modes 1,2, and 3 tagether into one section. Mode 0 is different: there is a specific 
section in the Tangram program that deals transmission and reception in this mode. 
Therefore, also the test program for the UART contains a separate section for mode 
0. 

Transmission and reception follow the same protocol: the start-bit and the stop-bit 
are for both actions the same. Therefore we can test transmission and reception 
simultaneously, by connecting theserial transmission line TxD directly totheserial 
reception line RxD. 

The reception part of the UART in modes 1 ,2, and 3 contains some extra circuitry 
to detect a start-bit and a stop-bit. This circuitry also has to be covered by the test. 

The following test for the UART contains three parts: 

1. Test mode 0: 

• transmit pattem SBUF=<<10101010>> (the CPU makes the UART to 
send this pattem); 

• receive pattem <<01010101>> (the environment makes the UART to 
receive this pattem). 

2. Test mode 1, 2, and 3: output TxD is connected directly to input RxD. Pattems 
that are transmitted, are then received simultaneously: 

• send (and receive) pattem <<SBUF, TB8>>=<<0 1010101, 0>> in mode 
2 at slow baud rate; 



156 Appendix A. Testability 

• send (and receive) pattem <<SBUF, TB8>>=<<1 010101 o, 1>> in mode 
2 at fast baud rate; 

• send (and receive) pattem <<SBUF ,TB8>>=<<01010101, 0>> in mode 
3 at the baud rate determined by the timer overflow; 

• send (and receive) pattem <<SBUF ,TB8>>=<<10101010, 1>> in mode 
1 at the baud rate determined by the timer overflow; note that in mode 
1 the value of bit TBS does not matter as mode 1 specifies an eight-bit 
UART. 

3. Finally, the environment generates wrong start bits and stop bits to test the 
hardware that detects these faults in serial data communication: 

• generate the wrong stop bit, which should be 1, in mode 2 at fast baud 
ra te; 

• generate two wrong start bits in mode 2 at fast baud rate: 

- offer bits 0,1,1 at counter states 7, 8, and 9 respectively; 

- offer bits 1,0,1 at counter states 7, 8, and 9 respectively. 

The simulation of this test on the level of handshake circuit is shown in Figure A.l. 
The test yields 100% coverage according to the handshake fault-model. In the 
complete handshake si mulation we see the parts of the test described above. 

A.4 Review 

Testability is a problem that can be addressed at the level of the VLSI-programming 
language: the test is seen as a Tangram description of the environment of the cir
cuit. For the datapath of a circuit, test pattems have to be affered by the environ
ment and the results have to be observable by the environment. As the datapath 
of an asynchronous system is camparabie to a datapath in a synchronous system, 
a synchronous testing approach can be chosen. The control of an asynchronous 
system is different from that of a synchronous system. The control of a handshake 
circuit takes the structure of a tree, in which each path from root to any leaf must 
be activated in the test, to achieve a higher coverage. The VLSI-programmer must 
therefore have insight in the structure of the control to design a high-eaverage test 
for the IC that is compiled from the VLSI-program. 

At this moment high-level test generation has to be done by hand: the VLSI
programmer designs a test and obtains observability data from the test-tooi [48, 49]. 



A.4. Review 

TxDOtbit 
RxDObit 
TxDOrbit 
RxDbit 
TxD123bit 

157 

UART in ALL Modes 

m\V ~-~---+-------------r------7-------T------T------r-----~ 

, ---0 50 150 200 r 

I I US 
I I I I I I 

Mode 0: Mode 2, :Mode 2,: Mode 3 :Mode 1: Wrong: Wrong 
• slow baud rate 1ast baud: : :stop b1t: start bits 

Figure A.l: Handshake simulation results of a test for the UART. 

This path can in principle be automated to obtain an automatic generation of test 
patterns fora VLSI-design in Tangram. When this test does nat yield a high enough 
coverage the design-for-test methods as described in [32, 34, 33] have to be applied 
to increase the coverage. 



158 Appendix A Testability 



Appendix B 

80C51 Instruction Set 

All mnemonics are copyrighted ©Intel Corporation 1980. 

In this table the opcode of the instructions atentry Pi ++Zj, is ij where i and j 
are in hexadecimal format. Columns Z8 through ZF are taken together into one 
column, are are columns Z6 and Z7. The specification of the instructions can be 
found in the 80C51 Data Handbook (IC20) [4]. 

159 



160 Appendix B. 80C51 Instmction Set 

11 zo Zl Z2 Z3 

PO NOP AJMP UMP RR 
adll ad16 A 

Pl JBC AC ALL LCALL RRC 
bit,ad8 adll ad16 A 

P2 JB AJMP RET RL 
bit,ad8 adll A 

P3 JNB AC ALL RETI RLC 
bit,ad8 adll A 

P4 JC AJMP ORL ORL 
ad8 adll dir,A dir,#data 

PS JNC AC ALL ANL ANL 
ad8 adll dir,A dir,#data 

P6 JZ AJMP XRL XRL 
ad8 adll dir,A dir,#data 

P7 JNZ AC ALL ORL JMP 
ad8 adll C,bit @A+DPTR 

P8 SJMP AJMP ANL MOVC 
ad8 adll C,bit A,@A+PC 

P9 MOV AC ALL MOV MOVC 
DPTR,#data16 adll bit,C A,@A+DPTR 

PA ORL AJMP MOV INC 
C,-bit adll C,bit DPTR 

PB ANL AC ALL CPL CPL 
C,-bit adll bit c 

PC PUSH AJMP CLR CLR 
dir adll bit c 

PO POP AC ALL SETB SETB 
dir adll bit c 

PE MOVX AJMP MOVX 
A,@DPTR adll A,@Ri 

PF MOVX AC ALL MOVX 
@DPTR,A adll @Ri,A 



161 

11 Z4 zs 11 Z67 Z8F 

PO INC INC INC INC 
A dir @Ri Rn 

P1 DEC DEC DEC DEC 
A dir @Ri Rn 

P2 ADD ADD ADD ADD 
A,#data A,dir A,@Ri A,Rn 

P3 ADDC ADDC ADDC ADDC 
A,#data A,dir A,@Ri A,Rn 

P4 ORL ORL ORL ORL 
A,#data A,dir A,@Ri A,Rn 

PS ANL ANL ANL ANL 
A,#data A,dir A,@Rï A,Rn 

P6 XRL XRL XRL XRL 
A,#data A,dir A,@Ri A,Rn 

P7 MOV MOV MOV MOV 
A,#data dir,#data @Ri,#data Rn,#data 

P8 DIV MOV MOV MOV 
A,B dir,dir dir,@Ri dir,Rn 

P9 SUBB SUBB SUBB SUBB 
A,#data A,dir A,@Ri A,Rn 

PA MUL MOV MOV 
A,B @Rï,dir Rn,dir 

PB CJNE CJNE CJNE CJNE 
A,#data,ad8 A,dir,ad8 @Ri ,#data,ad8 Rn,#data,ad8 

PC SWAP XCH XCH XCH 
A A,dir A,@Ri A,Rn 

PD DA DJNZ XCHD DJNZ 
A dir,ad8 A,@Ri Rn,ad8 

PE CLR MOV MOV MOV 
A A,dir A,@Ri A,Rn 

PF CPL MOV MOV MOV 
A dir,A @Rï,A Rn,A 



162 Appendix B. 80C51 Instroelion Set 



Bibliography 

[1] Electronk Engineering Times, March 1995. 

[2] Diesel User Manual - Version 1.0.1, 1.0.2. Technica! report, Philips Elec
tronic Design & Tools, 1996. 

[3] 16-bit 80C51XA (eXtended Architecture) Miercontrollers Data Handbook 
(IC25). Philips Semiconductors, 1997. 

[4] 80C51-Based 8-bit Microcontrollers: Data Handbook (IC20). Philips Semi
conductors, 1997. 

[5] G. Birtwistle, Y. Liu, D. Spooner, John Aldwinckle, Ken Stevens, and 
Wanzhen Yu . Case Studies in Asynchronous Design. Part 1: AMM Architec
ture. Technica! report, University of Calgary, 1993. 

[6] Brik Brunvand. Translating Concurrent Communicating Programs intoAsyn
chronous Circuits. PhD thesis, Carnegie Mellon University, 1991. 

[7] Thomas D. Burd and Robert W. Brodersen. Energy Efficient CMOS Micro
processor Design. In Proceedings of the 28th Annual HICSS Conference, 
pages 288-297, January 1995. 

[8] Philip B. Endecott. SCALP: A Superscalar Asynchronous Low-Power Mi
croprocessor. PhD thesis, Department of Computer Science, University of 
Manchester, 1995. 

[9] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and N.C. Paver. 
AMULET2e: An Asynchronous Embedded Controller. In Proc. International 
Symposium on Advanced Research in Asynchronous Circuits and Systems. 
IEEE Computer Society Press, April1997. 

[10] S. B. Furber and 0. A Petlin. Scan Testing of Micropipelines. In Proc. IEEE 
VLSI Test Symposium, pages 296--301, May 1995. 

163 



164 Bibliography 

[11] Steve Furber. ARM System Architecture. Addison-Wesley, 1996. 

[12] Sonya Gary. Low-Power Microprocessor Design. In Jan M. Rabaey and Mas
soud Pedram, editors, Low-Power Design Methodologies, pages 255-288. 
Kluwer Academie Publishers, 1996. 

[13] Ricardo Gonzalez and Mark Horowitz. Energy Dissipation in General Pur
pose Microprocessors. IEEE Joumal of Solid-State Circuits, 31(9):1277-
1283, 1996. 

[14] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan
titative Approach. Morgan Kauffman, 1990. 

[15] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan
titative Approach. Morgan Kauffman, secoud edition, 1996. 

[16] C.A.R. Hoare. Communicating Sequentia! Processes. Prentice Hall, 1985. 

[17] Henrik Hulgaard, Steven M. Burns, and Gaetano Borriello. Testing Asyn
cbronous Circuits: A Survey. Integration, the VLSI journal, 19(3):111-131, 
November 1995. 

[18] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice Hall PTR, 
1992. 

[19] Joep Kessels. VLSI-Programming of a Low-Power Asynchronous Reed
Soloman Decoder for tbe DCC Player. In Asynchronous Design Method
ologies, pages 44-52. IEEE Computer Society Press, May 1995. 

(20] lsrael Koren. Computer Arithmetic Algorithms. Prentice Hall, 1993. 

[21] Dake Liu and Christer Svensson. Power Consumption Estimation in CMOS 
VLSI Chips. IEEE Journat of Solid-State Circuits, 29(6):663-670, June 
1994. 

[22] Michael S. Malone. The Microprocessor A Biography. Springer-Verlag, 
1995. 

[23] Alain J. Martin. Programming in VLSI: From Communicating Processes 
to Delay-Insensitive Circuits. In C. A. R. Hoare, editor, Developments in 
Concurrency and Communication, UT Year of Programming Series, pages 
1-64. Addison-Wesley, 1990. 



Bibliography 165 

[24] Alain J. Martin, Andrew Lines, Rajit Manohar, Mika Nystroem, Paul Penzes, 
Robert Southworth, and Uri Cummings. The Design of an Asynchronous 
MIPS R3000 Microprocessor. In Advanced Research in VLSI, September 
1997. 

[25] T. Nanya, A Takamura, M. Kuwako, M. Imai, T. Fujii, M. Ozawa, 
I. Fukasaku, Y. Ueno, F. Okamoto, H. Fujimoto, 0. Fujita, M. Yamashina, 
and M. Fukuma. TITAC-2: A 32-bit Scalable-Delay-Insensitive Micropro
cessor. In Symposium Record of HOT Chips IX, pages 19-32, August 1997. 

[26] David A Pattersou and John L. Hennessy. Computer Organization & Design 
- The Hardware I Software Interface. Morgan Kauffman, 1994. 

[27] Nigel Paver. The Design and Implementation of an Asynchronous Micropro
cessor. PhD thesis, Department of Computer Science, University of Manch
ester, 1994. 

[28] Ad Peeters. The 'Asynchronous' Bibliography (BIBT:E)() database file 
async.bib. ftp://ftp.win.tue.nl/pub/tex/async.bib.Z. 
Corresponding e-mail address: async-bib@win. tue. nl. 

[29] Ad Peeters and Kees van Berkel. Single-Rail Handsbake Circuits. In 
Asynchronous Design Methodologies, pages 53-62. IEEE Computer Society 
Press, May 1995. 

[30] Ad M.G. Peeters. Single-Rail Handshake Circuits. PhD thesis, Department of 
Mathernaties and Computing Science, Eindboven University of Technology, 
1996. 

[31] Christian Piguet et al. Low-Power Design of 8-b Embedded CoolRisc Mi
crocontroller Cores. IEEE Journat of Solid-State Circuits, 32(7):1067-1078, 
1997. 

[32] Marly Roncken. Partial Scan Test for Asynchronous Circuits lllustrated on a 
DCC Error Corrector. In Proc. International Symposium on Advanced Re
search in Asynchronous Circuits and Systems, pages 247-256, November 
1994. 

[33] Marly Roncken, Emile Aarts, and Wim Verhaegh. Optima! Scan for Pipelined 
Testing: An Asynchronous Foundation. In Proc. International Test Confer
ence, pages 215-224, October 1996. 



166 Bibliography 

[34] Marly Roneken and Erik Bruis. Test Quality of Asynchronous Circuits: A 
Defect-Oriented Evaluation. In Proc. International Test Conference, pages 
205-214, October 1996. 

[35] H.A.J.M. Seelen. Automatic Synthesis of Gated Clocks for Low Power. Mas
ter's thesis, Dept. of Electrical Engineering, Eindhoven University of Tech
nology, October 1996. 

[36] Peter Song. Asynchronous Design Shows Promise. Microprocessor Report, 
October 6 1997. 

[37] Ivan E. Sutherland. Micropipelines. Communications oftheACM, 32(6):720-
738, June 1989. 

[38] Akihiro Takamura, Masashi Kuwako, Masashi Ima, Taro Fujii, Motokazu 
Ozawa, Izumi Fukasaku, Yoichiro Ueno, and Takashi Nanya. TITAC-2: 
An asynchronous 32-bit microprocessor based on Scalable-Delay-Insensitive 
model. In Proc. International Conf. Computer Design (/CCD), pages 288-
294, October 1997. 

[39] Jim Turley. Cogency Pushes Asynchronous Logic. Microprocessor Report, 
October 6 1997. 

[40] C. H. (Kees) vanBerkeland Ronald W. J. J. Saeijs. Compilation ofCommuni
cating Processes into Delay-Insensitive Circuits. In Proc. International Conf. 
Computer Design (/CCD), pages 157-162. IEEE Computer Society Press, 
1988. 

[41] Kees van Berkel. Handshake Circuits. An Asynchronous Architecture for 
VLSI Programming. Cambridge University Press, 1993. 

[42] Kees vanBerkeland Arjan Bink. Single-Track Handshaking Signaling with 
Application to Micropipelines and Handshake Circuits. In Proc. International 
Symposium on Advanced Research in Asynchronous Circuits and Systems, 
pages 122-133. IEEE Computer Society Press, March 1996. 

[43] Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Roncken, 
and Frits Schalij. A Fully-Asynchronous Low-Power Error Corrector for the 
DCC player. In International Solid State Circuits Conference, pages 88-89, 
February 1994. 

[44] Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Roncken, 
and Frits Schalij. Asynchronous Circuits for Low Power: A DCC Error Cor
rector. IEEE Design & Test of Computers, 11(2):22-32, Summer 1994. 



Bibliograpby 167 

[45] Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Roncken, 
Frits Schalij, and Rik van de Wiel. A Single-Rail Re-implementation of a 
DCC Error Detector Using a Generic Standard-Cell Library. In Asynchrmwus 
Design Methodologies, pages 72-79. IEEE Computer Society Press, May 
1995. 

[ 46] Kees van Berkel and Martin Rem. VLSI Programming of Asynchronous 
Circuits for Low Power. In Graham Birtwistle and Al Davis, editors, A.syn
chronous Digital Circuit Design, Workshops in Computing, pages 152-210. 
Springer-Verlag, 1995. 

[47] Kees van Berkel, Hans van Gageldonk, Joep Kessels, Cees Niessen, 
Ad Peeters, Marly Roncken, and Rik van de Wiel. Asynchronous Does Not 
Imply Low power, But ... In A. Chandrakasan, editor, IEEE Low Power Book 
(Reader), 1998. 

[ 48] Rik van de Wiel. High-Level Test Evaluation of Asynchronous Circuits. In 
A.synchronous Design Methodologies, pages 63-71. IEEE Computer Society 
Press, May 1995. 

[49] Rik van de Wiel. Testing Handshake Circuits. PhD thesis, Department of 
Mathernaties and Computing Science, Eindhoven University of Technology, 
To appear in 1998. 

[50] Hans van Gageldonk. The Asynchronous Move Machine: Verification using 
CCS. Master's thesis, Dept. of Mathernaties and Computing Science, Eind
hoven University of Technology, August 1994. 

[51] Hans van Gageldonk. VLSI-Programming for Low-Power Applications. In 
ProRISC/IEEE Workshop on Circuits, Systems and Signa/ Processing, pages 
137-142, Mierlo, The Netherlands, 1996. STW, Technology Foundation. 

[52) Hans van Gageldonk, Daniel Baumann, Kees van Berkel, Daniel Gloor, 
Ad Peeters, and Gergard Stegmann. An Asynchronous Low-Power 80C51 
Microcontroller. In Proc. International Symposium on Advanced Research 
inA.synchronous Circuits and Systems. IEEE Computer Society Press, March 
1998. 

[53) Tom Verhoeff. Delay-Insensitive Codes-An Overview. Distributed Com
puting, 3(1):1-8, 1988. 

[54] Neil H.E. Weste and Kamran Eshraghian. Principles ofCMOS VLSI Design: 
A Systems Perspective. Addison-Wesley, second edition, 1993. 



Index 

PAR-component, 9, 20 
case-component, 20 
do-component, 20 
80C51 instruction set, 40, 159 
80C51 microcontroller, 37, 38 
80C51 synchronous architecture, 42 
80C51XA microcontroller, 39 

acknowledge, 6 
active handshake port, 6 
activity factor, 11 
actdressing mode, 41 
area, 11 
asynchronous circuits, 1 
auto-assignment, 28 
autonomous execution, 109 
average-case execution time, 59, 72 

binary operator, 19 
bit-compatibility, 59 
bus, 38,56 
bus structure, 73, 75 
bypass, 82 

capacitance, 11 
carry-select adder, 93 
centralized control, 52, 71 
centralized decoding, 85 
channel, 6 
CISC, 47 
clock, 1, 53, 60 
clock frequency, 10 
clock gating, 10 

168 

clock-driven operation, 56 
CMOS, 1 
communication, 2, 9, 17 
compatibility, 55, 59 
concurrency, 69 
control component, 7, 18, 20 
control of handshake circuit, 20, 84 
control of microprocessor, 21, 67, 69 
counter, 46 
CPI, 48 
CPU, 38, 39, 56, 141 

data channel, 18 
data component, 18 
data hazard, 146 
datapath component, 7 
datapath of handshake circuit, 20, 73 
datapath of microprocessor, 21, 67, 

69 
delay matching, 5 
demand-driven operation, 56 
designspace exploration, 11, 14 
DIT (Design for Testability, 152 
direct channel, 60, 118 
distributed control, 53, 71 
distributed decoding, 86 
double-rail encoding, 5 

energy dissipation, 4, 12 
environment, 107 
exception, 103 
execution slot, 44 



Index 

external memory access, 61 

fault coverage, 4 

Flash, 39 
flip-flop, 53 
four-phase handshake protocol, 7 

handshake channel, 2 
handshake circuit, 2, 18 
handshake component, 2, 18 
handshake CPU, 58, 67 
Harvard architecture, 39 
header, 6 

IB-bus, 42, 53 
idle mode, 53 
input/output (1/0), 46 
instruction execution scheme, 69 
instruction register, 85 
interface component, 18, 20 
interrupt, 103 
interrupt controller, 39, 46 
isochronie fork, 5 

latch, 53 
laad-store architecture, 48 

machine cycle, 44 
microcontroller, 37, 38 
micropipeline, 14 7 
microprocessor, 38 
mixer, 20 
modular design, 64 
Move Machine, 18, 23 
Move Machine instruction set, 23 
multiplexer, 19 

nonput channel, 6, 18 

operating speed, 12 
OTP, 39 

parallel instruction execution, 70 
parallel transfer path, 36 
parallelism, 2, 9, 10, 17 
partial scan, 152 
passivator, 8, 18 
passive component, 18 
passive handshake port, 6 
peephole optimization, 4 
peripheral, 38, 53, 56, 107, 141 
pin-compatibility, 59 

169 

pipelining, 35, 44, 143, 146 
point-ta-point communication, 73 
power dissipation, 10 
power-down mode, 53 
program counter, 26, 68 
pull component, 18, 19 
push component, 18, 19 

quasi delay insensitive (QDI), 5 

RAM,40 
Read-Modify-Write (RMW) problem, 

111 
redundant action, 45, 71 
register, 67 
register bank, 40 
register file, 23 
repeater, 7, 20 
request, 6 
ripple-carry adder, 93 
RISC, 47,48 
ROM,39 

scalabie delay insensitive (SDI), 138 
scan test, 152 
semicolon sweeping, 100 
sequencer, 7, 20 
sequentia! instruction execution, 42, 

71 
sequentiality, 69 
SFR-interface, 58, 110 



170 

sharing, 2, 9, 14, 29 
single-rail encoding, 5 
single-track encoding, 5 
special condition, 59, 103 
Special Function Register (SFR), 40, 

42 
startup channel, 18 
state of CPU, 67 
superscalar, 10 
supply voltage, 10 
Synchronizer, 60, 141 
synchronous circuit, 1 

Tangram, 17 
testability, 13 
timer, 39, 46 
timing, 4 
timing-compatibility, 46, 59, 141 
transferrer, 8, 20 
transparent translation, 2, 6, 17 
two-phase handshake protocol, 7 

UART,39,46, 115 

variable, 18 
VLSI-programming, 6, 17 

worst-case execution time, 60, 71 

Index 



Summary 

Power consumption has become increasingly important, especially for hand-held 
battery-powered products. A large part of the power in these products is dissipated 
by the digital circuitry. Microcontrollers are examples of digital circuits that are 
widely used in embedded applications where !ow-power is an issue. 

The main contribution of this thesis is a !ow-power implementation of one such mi
crocontroller: the 8-bit 80C51 microcontroller. Another contribution is a demon
stration of the use of a methad with which low-power circuits can be designed: 
silicon compilation from a high-level programming language. This compilation 
is transparent, which makes it possible to reason about the characteristics of the 
circuit at the level of the programming language: area, execution time, energy dis
sipation, and testability. The methad makes it possible to do a design-space explo
ration. An important aspect of the compilation is that it results in an asynchronous 
circuit, i.e. a circuit without a global clock signa/. 

Clocked circuits are also called synchronous circuits. The doek is a global control 
signa! that causes activity to take place anywhere in the circuit, at speci:fic points 
in time. Asynchronous circuits take a different approach: circuit elements activate 
each other by using local handshaking instead of global clocking. In principle, 
asynchronous circuits show activity only when and where necessary. 

At Philips Research there have been investigations into the methodology to design 
asynchronous circuits using the approach of silicon compilation. A description in 
a programming language is translated into the netlist of an asynchronous circuit. 
The programming language is called Tangram, and has similarities to C and Pascal, 
with additional constrocts to express communication, parallelism, and sharing of 
hardware. The process of writing programs in Tangram with the aim to generate 
efficient circuits in terms of area, execution time, energy dissipation, and testability 
is called VLSI-programming. The designer is assisted by a set of tools that give 
feedback on these aspects at the level of the programming language. 

171 



172 Summary 

This thesis starts when the Tangram compiler and the associated tooiset are avail
able. The potential advantages of the Tangram approach were demonstrated on an 
error decoder for the DCC (Digital Compact Cassette) player, which shows a power 
advantage of a factor 6 at the penalty of 20% overhead in area. The asynchronous 
80C51 microcontroller as described in this thesis served as vehicle to leam to ex
ploit the transparent compiler, but also to transfer the Tangram technology from 
Research to Philips Semiconductors. 

The synchronous 80C51 consistsof two parts: the CPU and the peripherals. The 
CPU fetches and executes instructions from its program memory. The peripher
als perfarm specific and small tasks, and cater for the communication between the 
CPU and the environment. Timers, counters, and the interrupt controller are exam
ples of peripherals. Derivatives of the 80C51 architecture have the same CPU, but 
differ in the sizes and implementations of the memories, as well as in the peripher
als. The synchronous 80C51 is analyzed for !ow-power opportunities, of which six 
are identified. With these in mind we develop an asynchronous !ow-power 80C51. 

To enable modular design of the asynchronous 80C51, we adopt the same partition 
into CPU and peripherals. There is, however, an extra block: the Synchronizer. 
The CPU and the peripherals are designed asynchronously to maximally exploit tbe 
advantages of an asynchronous implementation for !ow-power. The Synchronizer 
is the only process that has a clock as input; it synchronizes with the CPU and the 
peripherals when they need a timing reference for correct functioning. An example 
of such a situation is external memory access, wbere a protocol is executed in 
which data validity with respect to a timing reference (i.e. a clock) is specified. 
In effect, the Synchronizer enables the designer to establish timing compatibility 
with synchronous environments when necessary. The CPU, the peripberals, and 
the Synchronizer communicate with each other using handshake channels. 

The CPU can be split into the datapath and the control. Tbe datapath contains 
the registers and arithmetic circuitry, and is steered by the controL In the datapath 
we can choose between point-ta-point communication between the registers, or 
a bus-structure, in which there is an extra variabie that all registers can write to 
and read from. In the bus-stmeture each communication takes place via the bus. 
The bus-stmeture is cheaper in area, but a point-ta-point path can be more energy
efficient and faster. In the 80C51 only a few communication paths are used very 
frequently, and therefore a hybrid scheme is best for area, execution time, and 
energy dissipation of the datapath: a point-ta-point path for frequent traffic (faster 
and more energy-efficient) and the bus for less-frequent traffic (cheaper in area). 
For the control we can also choose between two design alternatives: either decode 
the instruction completely and then execute the appropriate actions (centralized 



Summary 173 

decoding), or split the decoding into a few steps ( distributed decoding). The 80C51 
instruction set can be split into two parts that.we call regular and irregular. It tums 
out that for the regular part distributed decading is the best solution, while for the 
irregular part centralized decoding is. The distributed control structure enables 
the designer to remove the redundant actions that are present in the synchronous 
execution scheme of instructions, saving power in the datapath. Furthermore, the 
asynchronous character of the handshake control circuits also saves on power in 
the control, as only a few components are active at any point in time. 

Peripherals are small blocks that communicate with the CPU and with the envi
ronment. Their activity is usually demand-driven, i.e. they only have to become 
active upon request, which is issued either by the CPU or by the environment. The 
CPU and the peripherals can be decoupled to ensure maximum progress and min
imum power dissipation by the blocks. They communicate with each other using 
shared memory, viz. the Special Function Registers. To establish the decoupling, a 
new interface structure containing these Special Function Registers is introduced, 
and exemplified by the design of a peripheral for the 80C51: the UART (Universa! 
Asynchronous Receiver and Transmitter), which takes care of serial communiea
tion of data between the CPU and the environment . 

Early in the project the cooperation with Philips Semiconductors resulted in a 
demonstrator chip, containing the 80C51 's functionality implemenled using the 
Tangram silicon compiler. Since this chip the design space exploration for the 
80C51 has been carried out, as described in this thesis. The chip is compared to 
a recent synchronous counterpart. With all improvements we show that it is pos
sibie to build an asynchronous 80C51 that is slightly slower and 30% larger, but 
uses four times less energy than its synchronous counterpart. This design is used 
in Philips pagers that are available on the world market today. 

The design of an asynchronous Tangram-compiled 80C51 microcontroller shows 
how the transparent compilation scheme can be used to reason about the character
istics of the resulting circuit. lt also demonstrates how a new architecture can be 
described in Tangram to exploit the potential power benefits of an asynchronous 
implementation. 



174 Summary 



Samenvatting 

Het energieverbruik wordt vooral in draagbare producten die op een batterij werken, 
steeds belangrijker. Een groot deel van de energie die deze producten gebruiken 
wordt gedissipeerd door de digitale ICs in die producten. Microcontrollers zijn 
voorbeelden van digitale !Cs die veel toegepast worden in producten waar een laag 
energieverbruik belangrijk is. 

De belangrijkste bijdrage van dit proefschrift is een energie-zuinige implementatie 
van zo'n microcontroller: de 80C51 8-bit microcontroller. Een andere bijdrage 
is een demonstratie van het gebruik van een methode waarmee energie-zuinige 
circuits kunnen worden ontworpen: silicium compilatie vanuit een hoog-niveau 
programmeertaal. Deze vertaling is transparant, hetgeen het mogelijk maakt te 
redeneren over de eigenschappen van het circuit op het niveau van de program
meertaal: oppervlakte, executietijd, energieverbruik en testbaarheid. De methode 
maakt het mogelijk een exploratie van de ontwerpruimte uit te voeren. Een be
langrijke eigenschap van de vertaling is dat zij resulteert in een asynchroon circuit, 
d.w.z. een circuit zonder centrale klok. 

Circuits met een centrale klok worden ook wel synchrone circuits genoemd. De 
klok is een globaal signaal dat ervoor zorgt dat er overal in het circuit activiteit 
is op bepaalde tijdstippen. Asynchrone circuits gaan van een ander standpunt uit: 
elementen in het circuit activeren elkaar door het gebruik van locale handshaking 
in plaats van een globale klok. In principe vertonen asynchrone circuits alleen 
activiteit waar en wanneer dat nodig is. 

Op het Natuurkundig Laboratorium van Pbilips wordt onderzoek gedaan naar het 
ontwerp van asynchrone schakelingen met behulp van silicium compilatie. Een 
beschrijving in een programmeertaal wordt vertaald naar de netlijst van een asyn
chroon circuit. De programmeertaal die hierbij gebruikt wordt heet Tangram en 
vertoont gelijkenissen met talen als C en Pascal, met extra constructen om com
municatie, parallellisme, en gemeenschappelijk gebruik van hardware (sharing) te 

175 



176 Samenvatting 

kunnen uitdrukken. Het proces om programma's in Tangram te schrijven met als 
doel om efficiënte circuits te genereren in termen van oppervlakte, executietijd, 
energieverbruik en testbaarheid, heet VLSI-programmeren. De ontwerper wordt 
hierbij geassisteerd door diverse gereedschappen die informatie over deze aspecten 
geven in termen van de constructen van de programmeertaal. 

Dit proefschrift begint als de Tangram vertaler met de gereedschappen die erbij 
horen, beschikbaar is. De potentiële voordelen van de Tangram benadering waren 
aangetoond met verscheidene proefontwerpen, waaronder een error decoder voor 
de Digitale Compact Cassette (DCC) speler, die 20% groter is maar zes keer min
der energie verbruikt dan zijn synchrone tegenhanger. De asynchrone 80C51 mi
crocontroller zoals beschreven in dit proefschrift diende als vehikel om te leren 
om de transparante vertaling uit te buiten, maar ook als medium om de Tangram 
technologie te introduceren bij Philips Semiconductors. 

De synchrone 80C51 bestaat uit twee delen: de CPU (Central Processing Unit, 
de centrale verwerkingseenheid) en de periferie. De CPU haalt instructies op uit 
het programma geheugen en voert ze uit. De periferie bestaat uit een aantal blok
jes die ieder een kleine en goed omschreven taak uitvoeren. Bovendien nemen de 
perifere blokken de communicatie met de omgeving van de chip voor hun reke
ning. Voorbeelden van perifere blokken zijn timers en counters, en de interrupt 
controller. Afgeleiden van de 80C51 architectuur hebben allen dezelfde CPU, maar 
zij verschillen in de afmetingen en implementatie van de geheugens en in de peri
fere blokken. In dit proefschrift wordt eerst een analyse gedaan van de synchrone 
80C51 waarbij er zes punten worden geïdentificeerd waar energie zou kunnen wor
den bespaard. Deze zes punten dienen als uitgangspunt bij het ontwerpen van een 
asynchrone energie-zuinige 80C51 architectuur. 

Om modulair ontwerpen van de asynchrone 80C51 mogelijk te maken gaan we uit 
van dezelfde opdeling als in het synchrone geval: CPU en periferie. Er is echter 
een extra blok: de Synchronizer. De CPU en de periferie worden asynchroon ont
worpen om de voordelen van een asynchrone implementatie voor energie-zuinige 
chips zoveel mogelijk uit te kunnen buiten. De Synchronizer is het enige pro
ces dat een klok als invoer heeft; zij synchroniseert met de CPU en de perifere 
blokken wanneer die een tijds-referentie nodig hebben. Een voorbeeld van zo'n 
situatie is extern geheugen acces, waar een protocol uitgevoerd moet worden dat 
data-geldigheid op externe poorten in relatie tot een kloksignaal aangeeft. De Syn
chronizer maakt het de ontwerper mogelijk om tijd-compatibiliteit met (bestaande) 
synchrone omgevingen te bewerkstelligen. De CPU, de perifere blokken en de 
Synchronizer communiceren met elkaar door middel van handshake communi
catie. 



Samenvatting 177 

De CPU bestaat uit een datapad en een control. Het datapad bevat de registers en 
de schakelingen die rekenkundige operaties kunnen uitvoeren, en wordt bestuurd 
door de controL In het datapad kunnen we kiezen uit punt-tot-punt communicatie 
tussen de registers, of een bus-structuur waarbij er een extra register is waar alle 
registers naar toe kunnen schrijven en van kunnen lezen. Iedere communicatie 
in de bus-structuur gebruikt de bus. De bus-structuur is goedkoper in oppervlakte, 
maar punt-tot-punt communicatie kan energie-zuiniger en sneller zijn. In de 80C51 
worden slechts enkele communicatie paden zeer frequent gebruikt, terwijl de an
dere paden weinig gebruikt worden. Dit maakt een tussenoplossing aantrekkelijk: 
punt-tot-punt paden voor frequent data-verkeer (snel en energie-zuinig) en de bus 
voor de andere paden (kleine oppervlakte). Ook voor de control kunnen we kiezen 
uit twee ontwerp varianten: de instructie eerst decoderen en dan acties uitvoeren 
in het datapad (centrale decodering), of de decodering opsplitsen in kleine stap
jes (gedistribueerde decodering). De 80C51 instructieset kan gesplitst worden in 
twee delen die we regulier en irregulier noemen. Het reguliere deel kan het beste 
met een gedistribueerde decodering gedecodeerd worden, en het irreguliere deel 
met een gecentraliseerde decodering. De gedistribueerde structuur van de con
trol maakt het zo mogelijk om redundante acties in de synchrone implementatie 
te elimineren zodat er energie in het datapad wordt bespaard. Bovendien wordt 
energie bespaard door het asynchrone karakter van de control, doordat er slechts 
enkele delen van de control actief zijn op een bepaald tijdstip. 

Perifere blokken communiceren met de CPU en met de omgeving van het IC. Hun 
activiteit wordt meestal bepaald door een gebeurtenis in de omgeving of in de CPU. 
De CPU en de periferie kunnen ontkoppeld worden om zo maximale voortgang 
van de blokken alsmede minimaal energieverbruik mogelijk te maken. Zij com
municeren met elkaar door middel van een gemeenschappelijk geheugen, namelijk 
de Speciale Functie Registers (SFRs). Om de ontkoppeling mogelijk te maken 
wordt er in dit proefschrift een nieuwe interface-structuur tussen CPU en perifere 
blokken voorgesteld die de SFRs bevat. Dit wordt toegelicht door middel van het 
ontwerp van een perifeer blok: de UART (Universa! Asynchronous Receiver and 
Transmitter), een blok dat zorg draagt voor serieel data verkeer tussen de CPU en 
de omgeving. 

Vroeg in het project is er een testchip gefabriceerd, in samenwerking met Philips 
Semiconductors. Deze chip implementeert de functionaliteit van de 80C51 met 
behulp van de Tangram silicium compiler. Na de fabricage van de chip is de explo
ratie van de ontwerpruimte uitgevoerd, zoals beschreven in dit proefschrift. Met de 
gevonden verbeteringen is het mogelijk om een asynchrone energie-zuinige 80C51 
te maken die iets trager en 30% groter is, maar vier keer minder energie gebruikt 
dan zijn synchrone tijdgenoot. Dit ontwerp wordt gebruikt in Philips pagers die op 



178 Samenvatting 

dit moment op de wereldmarkt verkrijgbaar zijn. 

Het ontwerp van de asynchrone 80C51 in Tangram demonstreert het gebruik van de 
transparante vertaling naar silicium om over de eigenschappen van het circuit te re
deneren. Het laat ook zien hoe een nieuwe architectuur in Tangram is te beschrijven 
zodat de potentiële voordelen van een asynchrone implementatie kunnen worden 
uitgebuit. 



Curriculum Vitae 

Hans van Gageldonk was bom on September 3rd, 1971 in Heerlen, The Nether
lands. After attending the Rombouts College Atheneum in Brunssum, he started 
his study Computing Science at Eindhoven University ofTechnology in September 
1989. In 1993 he was co-organizer of a study tour to Japan. His M.Sc. thesis was 
about formal verification of asynchronous circuits using the process algebra ces. 
The work for this thesis was carried out at the University of Manchester, U.K. , in 
the first half of 1994. 

After gradation he started to work towards a Ph.D. at September 1st, 1994. As a 
Ph.D.-student at Eindhoven University, he spent most of his time at Philips Re
search Eindhoven. This research resulted in this thesis, on which he expects to 
receive the degree at September 1st, 1998. 

From October 1st, 1998, Hans will be working at Philips Research Laboratodes 
Eindhoven as a research scientist. 

179 



180 Curriculum Vitae 



IPA 

Titles in the IPA Dissertation Series 

The State Operator in Process Algebra 
J. 0. Blanco 
Faeulty of Mathernaties and Computing Scienee, TUE, 1996-1 

Transformational Development of Data-Parallel Algorithms 
A. M. Geerling 
Faculty of Mathernaties and Computer Scienee, KUN, 1996-2 

Interactive Functional Programs: Models, Methods, and Implementation 
P.M.Achten 
Faculty of Mathernaties and Computer Science, KUN, 1996-3 

Parallel Loc al Search 
M. G. A. Verhoeven 
Faculty of Mathernaties and Computing Scienee, TUE, 1996-4 

181 

The Implementation of Functional Languages on Parallel Machines with Distrib. 
Memory 
M.H.G. K. Kesseler 
Faeulty of Mathernaties and Computer Science, KUN, 1996-5 

Distributed Algorithms for Hard Real-Time Systems 
D. Alstein 
Faculty of Mathernaties and Computing Science, TUE, 1996-6 

Communication, Synchronization, and Fault-Toleranee 
j. H. Hoepman 
Faeulty of Mathernaties and Computer Science, UvA, 1996-7 

Reductivity Arguments and Program Construction 
H.Doombos 
Faeulty of Mathernaties and Computing Science, TUE, 1996-8 

Functorial Operational Semantics and its Denotational Dual 



182 

D. Thri 
Faculty of Mathernaties and Computer Science, VUA, 1996-9 

Single-Rail Handshake Circuits 
A. M. G. Peeters 
Faculty of Mathernaties and Computing Science, TUE, 1996-10 

A Systems Engineering Specification Formalism 
N. W. A. Arends 
Faculty of Mechanica! Engineering, TUE, 1996-11 

Normalisation in Lambda Calculus and its Relation to Type Inference 
P. Severi de Santiago 
Faculty of Mathernaties and Computing Science, TUE, 1996-12 

Abstract Interpretation and Partilion Refinement for Model Checking 
D.R.Dams 
Faculty of Mathernaties and Computing Science, TUE, 1996-13 

Topological Dualities in Semantics 
M. M. Bonsangue 
Faculty of Mathernaties and Computer Science, VUA, 1996-14 

Algorithms for Graphs of Smal! Treewidth 
B. L. E. de Fluiter 
Faculty of Mathernaties and Computer Science, UU, 1997-01 

Process-algebraic Transformations in Context 
W. T.M.Kars 
Faculty of Computer Science, UT, 1997-02 

A Generic Theory of Data Types 
P. F. Hoogendijk 
Faculty of Mathernaties and Computing Science, TUE, 1997-03 

IPA 



IPA 

The Evolution of Type Theory in Logic and Mathernaties 
T.D. L. Laan 
Faculty of Mathernaties and Computing Science, TUE, 1997-04 

Preservat ion of Terminalion for Explicit Substitution 
C. J. Bloo 
Faculty of Mathernaties and Computing Science, TUE, 1997-05 

Discrete-Time Process Algebra 
J. J. Vereijken 
Faculty of Mathernaties and Computing Science, TUE, 1997-06 

A Functional Approach to Syntax and Typing 
F. A. M. van den Beuken 
Faculty of Mathernaties and Informaties, KUN, 1997-07 

Ins and Outs in Refusal Testing 
Lex Heerink 
Faculty of Computer Science, UT, 1998-01 

A Diserete-E vent Simulator for Systems Engineering 
G. Naumoski and W. Alberts 
Faculty of Mechanica! Engineering, TUE, 1998-02 

Scheduling with Communication for Multiprocessor Computation 
Jacques Verriet 
Faculty of Mathernaties and Computer Science, UU, 1998-03 

AnAsynchronous Low-Power 80C51 Microcontroller 
Hans van Gageldonk 
Faculty of Mathernaties and Computing Science, TUE, 1998-04 

183 



Stellingen 

behorende bij het proefschrift 

An Asynchronous Low-Power 
80C51 Microcontroller 

van 

Hans van Gageldonk 

Technische Universiteit Eindhoven 
September 1998 



1. Een krachtige VLSI-programmeertaal in combinatie met een transparante 
vertaling maakt een gestructureerde exploratie van de ontwerpruimte van 
een digitaal IC mogelijk. 

[Literatuur] Dit proefschrift, hoofdstuk 5 en 6. 

2. Het is mogelijk om een asynchrone 80C51 microcontroller zodanig te ont
werpen dat hij, qua functionaliteit en timing, door een omgeving niet van een 
synchrone tegenhanger te onderscheiden is. 

[Literatuur] Dit proefschrift, hoofdstuk 4. 

3. Het asynchroon ontwerpen van een CISC CPU nodigt uit tot het elimine
ren van redundante acties in de executie van instructies, ten gunste van het 
energieverbruik. 

[Literatuur] Dit proefschrift, hoofdstuk 5. 

4. Handshaking maakt het mogelijk om circuit-blokken te ontkoppelen in de 
tijd, ten gunste van het energieverbruik. 

[Literatuur] Dit proefschrift, hoofdstuk 6. 

5. Asynchroon ontwerpen levert vaak nieuwe inzichten op die synchroon ook 
toegepast kunnen worden, maar waar het synchrone ontwerptraject niet op 
een natuurlijke wijze langs loopt. 

6. Het is mogelijk om een pipelined RISC processor compact in Tangram te 
beschrijven; de huidige compiler die Tangram naar een circuit vertaalt is 
echter niet gericht op het genereren van snelle circuits, en daarom is het 
op dit moment niet mogelijk om een snelle RISC processor te maken in 
Tangram. 

7. De 8051 architectuur is waarschijnlijk de op een na meest gebruikte micro
processor architectuur tot op heden. 

[Literatuur] Michael S. Malone: The Microprocessor A Biography. 
Springer Verlag, 1995. 

8. Gereedschappen voor de formele verificatie van hardware kunnen steeds gro
tere ontwerpen verifiëren en zullen daardoor in een industriële omgeving 
steeds meer gebruikt gaan worden. 

9. In een tijd waarin steeds meer ontwerpen gemaakt worden waarin goede 
keuzes gemaakt moeten worden voor zowel hardware als software zullen 
universiteiten aan beide onderwerpen aandacht moeten besteden in de on
derwijsprogramma's. 



10. Als bij kinderen met leesproblemen geruime tijd wordt getraind in woord
lezen dan ontstaat er automatische woordherkenning; hierdoor kunnen zij 
sneller gelijkende woorden herkennen. 

[Literatuur] Mariken de Wolf: Mstudeerscriptie. 
Vrije Universiteit Amsterdam, 1998. 

11. Een promotie-onderzoek als samenwerking tussen een universiteit en een be
drijf vereist dat er goede afspraken tussen de beide partijen gemaakt worden, 
die dan ook nageleefd moeten worden. 

12. Een goedkope piano wordt door handelaren vaak "studie-piano" genoemd; 
de kwaliteit van zo'n piano belemmert de studievoortgang echter zodanig dat 
"studie-piano" daarmee een twijfelachtig begrip is. 




