1,026 research outputs found

    Hierarchic Bayesian models for kernel learning

    Get PDF
    The integration of diverse forms of informative data by learning an optimal combination of base kernels in classification or regression problems can provide enhanced performance when compared to that obtained from any single data source. We present a Bayesian hierarchical model which enables kernel learning and present effective variational Bayes estimators for regression and classification. Illustrative experiments demonstrate the utility of the proposed method

    Kernel Multivariate Analysis Framework for Supervised Subspace Learning: A Tutorial on Linear and Kernel Multivariate Methods

    Full text link
    Feature extraction and dimensionality reduction are important tasks in many fields of science dealing with signal processing and analysis. The relevance of these techniques is increasing as current sensory devices are developed with ever higher resolution, and problems involving multimodal data sources become more common. A plethora of feature extraction methods are available in the literature collectively grouped under the field of Multivariate Analysis (MVA). This paper provides a uniform treatment of several methods: Principal Component Analysis (PCA), Partial Least Squares (PLS), Canonical Correlation Analysis (CCA) and Orthonormalized PLS (OPLS), as well as their non-linear extensions derived by means of the theory of reproducing kernel Hilbert spaces. We also review their connections to other methods for classification and statistical dependence estimation, and introduce some recent developments to deal with the extreme cases of large-scale and low-sized problems. To illustrate the wide applicability of these methods in both classification and regression problems, we analyze their performance in a benchmark of publicly available data sets, and pay special attention to specific real applications involving audio processing for music genre prediction and hyperspectral satellite images for Earth and climate monitoring

    Kernel Fisher Discriminant Analysis Based on a Regularized Method for Multiclassification and Application in Lithological Identification

    Get PDF
    This study aimed to construct a kernel Fisher discriminant analysis (KFDA) method from well logs for lithology identification purposes. KFDA, via the use of a kernel trick, greatly improves the multiclassification accuracy compared with Fisher discriminant analysis (FDA). The optimal kernel Fisher projection of KFDA can be expressed as a generalized characteristic equation. However, it is difficult to solve the characteristic equation; therefore, a regularized method is used for it. In the absence of a method to determine the value of the regularized parameter, it is often determined based on expert human experience or is specified by tests. In this paper, it is proposed to use an improved KFDA (IKFDA) to obtain the optimal regularized parameter by means of a numerical method. The approach exploits the optimal regularized parameter selection ability of KFDA to obtain improved classification results. The method is simple and not computationally complex. The IKFDA was applied to the Iris data sets for training and testing purposes and subsequently to lithology data sets. The experimental results illustrated that it is possible to successfully separate data that is nonlinearly separable, thereby confirming that the method is effective

    Speech Recognition Using Augmented Conditional Random Fields

    Get PDF
    Acoustic modeling based on hidden Markov models (HMMs) is employed by state-of-the-art stochastic speech recognition systems. Although HMMs are a natural choice to warp the time axis and model the temporal phenomena in the speech signal, their conditional independence properties limit their ability to model spectral phenomena well. In this paper, a new acoustic modeling paradigm based on augmented conditional random fields (ACRFs) is investigated and developed. This paradigm addresses some limitations of HMMs while maintaining many of the aspects which have made them successful. In particular, the acoustic modeling problem is reformulated in a data driven, sparse, augmented space to increase discrimination. Acoustic context modeling is explicitly integrated to handle the sequential phenomena of the speech signal. We present an efficient framework for estimating these models that ensures scalability and generality. In the TIMIT phone recognition task, a phone error rate of 23.0\% was recorded on the full test set, a significant improvement over comparable HMM-based systems

    Advances in Hyperspectral Image Classification Methods for Vegetation and Agricultural Cropland Studies

    Get PDF
    Hyperspectral data are becoming more widely available via sensors on airborne and unmanned aerial vehicle (UAV) platforms, as well as proximal platforms. While space-based hyperspectral data continue to be limited in availability, multiple spaceborne Earth-observing missions on traditional platforms are scheduled for launch, and companies are experimenting with small satellites for constellations to observe the Earth, as well as for planetary missions. Land cover mapping via classification is one of the most important applications of hyperspectral remote sensing and will increase in significance as time series of imagery are more readily available. However, while the narrow bands of hyperspectral data provide new opportunities for chemistry-based modeling and mapping, challenges remain. Hyperspectral data are high dimensional, and many bands are highly correlated or irrelevant for a given classification problem. For supervised classification methods, the quantity of training data is typically limited relative to the dimension of the input space. The resulting Hughes phenomenon, often referred to as the curse of dimensionality, increases potential for unstable parameter estimates, overfitting, and poor generalization of classifiers. This is particularly problematic for parametric approaches such as Gaussian maximum likelihoodbased classifiers that have been the backbone of pixel-based multispectral classification methods. This issue has motivated investigation of alternatives, including regularization of the class covariance matrices, ensembles of weak classifiers, development of feature selection and extraction methods, adoption of nonparametric classifiers, and exploration of methods to exploit unlabeled samples via semi-supervised and active learning. Data sets are also quite large, motivating computationally efficient algorithms and implementations. This chapter provides an overview of the recent advances in classification methods for mapping vegetation using hyperspectral data. Three data sets that are used in the hyperspectral classification literature (e.g., Botswana Hyperion satellite data and AVIRIS airborne data over both Kennedy Space Center and Indian Pines) are described in Section 3.2 and used to illustrate methods described in the chapter. An additional high-resolution hyperspectral data set acquired by a SpecTIR sensor on an airborne platform over the Indian Pines area is included to exemplify the use of new deep learning approaches, and a multiplatform example of airborne hyperspectral data is provided to demonstrate transfer learning in hyperspectral image classification. Classical approaches for supervised and unsupervised feature selection and extraction are reviewed in Section 3.3. In particular, nonlinearities exhibited in hyperspectral imagery have motivated development of nonlinear feature extraction methods in manifold learning, which are outlined in Section 3.3.1.4. Spatial context is also important in classification of both natural vegetation with complex textural patterns and large agricultural fields with significant local variability within fields. Approaches to exploit spatial features at both the pixel level (e.g., co-occurrencebased texture and extended morphological attribute profiles [EMAPs]) and integration of segmentation approaches (e.g., HSeg) are discussed in this context in Section 3.3.2. Recently, classification methods that leverage nonparametric methods originating in the machine learning community have grown in popularity. An overview of both widely used and newly emerging approaches, including support vector machines (SVMs), Gaussian mixture models, and deep learning based on convolutional neural networks is provided in Section 3.4. Strategies to exploit unlabeled samples, including active learning and metric learning, which combine feature extraction and augmentation of the pool of training samples in an active learning framework, are outlined in Section 3.5. Integration of image segmentation with classification to accommodate spatial coherence typically observed in vegetation is also explored, including as an integrated active learning system. Exploitation of multisensor strategies for augmenting the pool of training samples is investigated via a transfer learning framework in Section 3.5.1.2. Finally, we look to the future, considering opportunities soon to be provided by new paradigms, as hyperspectral sensing is becoming common at multiple scales from ground-based and airborne autonomous vehicles to manned aircraft and space-based platforms

    K-means based clustering and context quantization

    Get PDF
    • …
    corecore