1,307 research outputs found

    A survey on mobility management protocols in Wireless Sensor Networks based on 6LoWPAN technology

    Get PDF
    International audienceMobility has the advantage of enlarging WSN applications. However, proposing a mobility support protocol in Wireless Sensor Networks (WSNs) represents a significant challenge. In this paper, we propose a survey on the mobility management protocols in Wireless Sensor Networks based on 6LoWPAN technology. This technology enables to connect IP sensor devices to other IP networks without any need for gateways. We highlight the advantages and drawbacks with performances issues of each studied solution. Then, in order to select a typical classification of mobility management protocols in WSNs, we provide some classification criteria and approaches on which these protocols are based. Finally, we present a comparative study of the existing protocols in terms of the required performances for this network type

    Smart handoff technique for internet of vehicles communication using dynamic edge-backup node

    Get PDF
    © 2020 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/electronics9030524A vehicular adhoc network (VANET) recently emerged in the the Internet of Vehicles (IoV); it involves the computational processing of moving vehicles. Nowadays, IoV has turned into an interesting field of research as vehicles can be equipped with processors, sensors, and communication devices. IoV gives rise to handoff, which involves changing the connection points during the online communication session. This presents a major challenge for which many standardized solutions are recommended. Although there are various proposed techniques and methods to support seamless handover procedure in IoV, there are still some open research issues, such as unavoidable packet loss rate and latency. On the other hand, the emerged concept of edge mobile computing has gained crucial attention by researchers that could help in reducing computational complexities and decreasing communication delay. Hence, this paper specifically studies the handoff challenges in cluster based handoff using new concept of dynamic edge-backup node. The outcomes are evaluated and contrasted with the network mobility method, our proposed technique, and other cluster-based technologies. The results show that coherence in communication during the handoff method can be upgraded, enhanced, and improved utilizing the proposed technique.Published onlin

    An eco-friendly hybrid urban computing network combining community-based wireless LAN access and wireless sensor networking

    Get PDF
    Computer-enhanced smart environments, distributed environmental monitoring, wireless communication, energy conservation and sustainable technologies, ubiquitous access to Internet-located data and services, user mobility and innovation as a tool for service differentiation are all significant contemporary research subjects and societal developments. This position paper presents the design of a hybrid municipal network infrastructure that, to a lesser or greater degree, incorporates aspects from each of these topics by integrating a community-based Wi-Fi access network with Wireless Sensor Network (WSN) functionality. The former component provides free wireless Internet connectivity by harvesting the Internet subscriptions of city inhabitants. To minimize session interruptions for mobile clients, this subsystem incorporates technology that achieves (near-)seamless handover between Wi-Fi access points. The WSN component on the other hand renders it feasible to sense physical properties and to realize the Internet of Things (IoT) paradigm. This in turn scaffolds the development of value-added end-user applications that are consumable through the community-powered access network. The WSN subsystem invests substantially in ecological considerations by means of a green distributed reasoning framework and sensor middleware that collaboratively aim to minimize the network's global energy consumption. Via the discussion of two illustrative applications that are currently being developed as part of a concrete smart city deployment, we offer a taste of the myriad of innovative digital services in an extensive spectrum of application domains that is unlocked by the proposed platform

    Handover management in mobile WiMAX using adaptive cross-layer technique

    Get PDF
    The protocol type and the base station (BS) technology are the main communication media between the Vehicle to Infrastructure (V2I) communication in vehicular networks. During high speed vehicle movement, the best communication would be with a seamless handover (HO) delay in terms of lower packet loss and throughput. Many studies have focused on how to reduce the HO delay during lower speeds of the vehicle with data link (L2) and network (L3) layers protocol. However, this research studied the Transport Layer (L4) protocol mobile Stream Control Transmission Protocol (mSCTP) used as an optimal protocol in collaboration with the Location Manager (LM) and Domain Name Server (DNS). In addition, the BS technology that performs smooth HO employing an adaptive algorithm in L2 to perform the HO according to current vehicle speed was also included in the research. The methods derived from the combination of L4 and the BS technology methods produced an Adaptive Cross-Layer (ACL) design which is a mobility oriented handover management scheme that adapts the HO procedure among the protocol layers. The optimization has a better performance during HO as it is reduces scanning delay and diversity level as well as support transparent mobility among layers in terms of low packet loss and higher throughput. All of these metrics are capable of offering maximum flexibility and efficiency while allowing applications to refine the behaviour of the HO procedure. Besides that, evaluations were performed in various scenarios including different vehicle speeds and background traffic. The performance evaluation of the proposed ACL had approximately 30% improvement making it better than the other handover solutions

    Performance assessment of mobility solutions for IPv6-based healthcare wireless sensor networks

    Get PDF
    This thesis focuses on the study of mobile wireless sensor networks applied to healthcare scenarios. The promotion of better quality-of-life for hospitalized patients is addressed in this research work with a solution that can help these patients to keep their mobility (if possible). The solution proposed allows remote monitoring and control of patients’ health in real-time and without interruptions. Small sensor nodes able to collect and send wirelessly the health parameters allow for the control of the patients' health condition. A network infrastructure, composed by several access points, allows the connection of the sensor nodes (carried by the patients) to remote healthcare providers. To ensure continuous access to sensor nodes special attention should be dedicated to manage the transition of these sensor nodes between different access points’ coverage areas. The process of changing an access point attachment of a sensor node is called handover. In that context, this thesis proposes a new handover mechanism that can ensure continuous connection to mobile sensor nodes in a healthcare wireless sensor network. Due to the limitations of sensor nodes’ resources, namely available energy (these sensor nodes are typically powered by small batteries), the proposed mechanism pays a special attention in the optimization of energy consumption. To achieve this optimization, part of this work is dedicated to the construction of a small sensor node. The handover mechanism proposed in this work is called Hand4MAC (handover mechanism for MAC layer). This mechanism is compared with other mechanisms commonly used in handover management. The Hand4MAC mechanism is deployed and validated through by simulation and in a real testbed. The scenarios used for the validation reproduces a hospital ward. The performance evaluation is focused in the percentage of time that senor nodes are accessible to the network while traveling across several access points’ coverage areas and the energy expenditures in handover processes. The experiments performed take into account various parameters that are the following: number of sent messages, number of received messages, multicast message usage, energy consumption, number of sensor nodes present in the scenario, velocity of sensor nodes, and time-to-live value. In both simulation and real testbed, the Hand4MAC mechanism is shown to perform better than all the other handover mechanisms tested. In this comparison it was only considered the most promising handover mechanisms proposed in the literature.Fundação para a Ciência e a Tecnologia (FCT

    Location Management in IP-based Future LEO Satellite Networks: A Review

    Full text link
    Future integrated terrestrial, aerial, and space networks will involve thousands of Low Earth Orbit (LEO) satellites forming a network of mega-constellations, which will play a significant role in providing communication and Internet services everywhere, at any time, and for everything. Due to its very large scale and highly dynamic nature, future LEO satellite networks (SatNets) management is a very complicated and crucial process, especially the mobility management aspect and its two components location management and handover management. In this article, we present a comprehensive and critical review of the state-of-the-art research in LEO SatNets location management. First, we give an overview of the Internet Engineering Task Force (IETF) mobility management standards (e.g., Mobile IPv6 and Proxy Mobile IPv6) and discuss their location management techniques limitations in the environment of future LEO SatNets. We highlight future LEO SatNets mobility characteristics and their challenging features and describe two unprecedented future location management scenarios. A taxonomy of the available location management solutions for LEO SatNets is presented, where the solutions are classified into three approaches. The "Issues to consider" section draws attention to critical points related to each of the reviewed approaches that should be considered in future LEO SatNets location management. To identify the gaps, the current state of LEO SatNets location management is summarized. Noteworthy future research directions are recommended. This article is providing a road map for researchers and industry to shape the future of LEO SatNets location management.Comment: Submitted to the Proceedings of the IEE
    • …
    corecore