2,715 research outputs found

    Design and Optimization of Explicit Runge-Kutta Formulas

    Get PDF
    A model of the pretzel knot is described. Explicit Runge-Kutta methods have been studied for over a century and have applications in the sciences as well as mathematical software such as Matlab\u27s ode45 solver. We have taken a new look at fourth- and fifth-order Runge-Kutta methods by utilizing techniques based on Gröbner bases to design explicit fourth-order Runge-Kutta formulas with step doubling and a family of (4,5) formula pairs that minimize the higher-order truncation error. Gröbner bases, useful tools for eliminating variables, also helped to reveal patterns among the error terms. A Matlab program based on step doubling was then developed to compare the accuracy and efficiency of fourth-order Runge-Kutta formulas with that of ode45

    Spatially partitioned embedded Runge-Kutta Methods

    Get PDF
    We study spatially partitioned embedded Runge–Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in non-embedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to non-physical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted non-oscillatory (WENO) spatial discretizations. Numerical experiments are provided to support the theory

    More efficient time integration for Fourier pseudo-spectral DNS of incompressible turbulence

    Full text link
    Time integration of Fourier pseudo-spectral DNS is usually performed using the classical fourth-order accurate Runge--Kutta method, or other methods of second or third order, with a fixed step size. We investigate the use of higher-order Runge-Kutta pairs and automatic step size control based on local error estimation. We find that the fifth-order accurate Runge--Kutta pair of Bogacki \& Shampine gives much greater accuracy at a significantly reduced computational cost. Specifically, we demonstrate speedups of 2x-10x for the same accuracy. Numerical tests (including the Taylor-Green vortex, Rayleigh-Taylor instability, and homogeneous isotropic turbulence) confirm the reliability and efficiency of the method. We also show that adaptive time stepping provides a significant computational advantage for some problems (like the development of a Rayleigh-Taylor instability) without compromising accuracy

    Implicit and Implicit-Explicit Strong Stability Preserving Runge-Kutta Methods with High Linear Order

    Full text link
    When evolving in time the solution of a hyperbolic partial differential equation, it is often desirable to use high order strong stability preserving (SSP) time discretizations. These time discretizations preserve the monotonicity properties satisfied by the spatial discretization when coupled with the first order forward Euler, under a certain time-step restriction. While the allowable time-step depends on both the spatial and temporal discretizations, the contribution of the temporal discretization can be isolated by taking the ratio of the allowable time-step of the high order method to the forward Euler time-step. This ratio is called the strong stability coefficient. The search for high order strong stability time-stepping methods with high order and large allowable time-step had been an active area of research. It is known that implicit SSP Runge-Kutta methods exist only up to sixth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and we can find implicit SSP Runge-Kutta methods of any linear order. In the current work we aim to find very high linear order implicit SSP Runge-Kutta methods that are optimal in terms of allowable time-step. Next, we formulate an optimization problem for implicit-explicit (IMEX) SSP Runge-Kutta methods and find implicit methods with large linear stability regions that pair with known explicit SSP Runge-Kutta methods of orders plin=3,4,6 as well as optimized IMEX SSP Runge-Kutta pairs that have high linear order and nonlinear orders p=2,3,4. These methods are then tested on sample problems to verify order of convergence and to demonstrate the sharpness of the SSP coefficient and the typical behavior of these methods on test problems

    An efficient Runge-Kutta (4,5) pair

    Get PDF
    AbstractA pair of explicit Runge-Kutta formulas of orders 4 and 5 is derived. It is significantly more efficient than the Fehlberg and Dormand-Prince pairs, and by standard measures it is of at least as high quality. There are two independent estimates of the local error. The local error of the interpolant is, to leading order, a problem-independent function of the local error at the end of the step

    An Efficient Runge-Kutta (4,5) pair

    Get PDF
    A pair of explicit Runge-Kutta formulas of orders 4 and 5 is derived. It is significantly more efficient than the Fehlberg and Dormand-Prince pairs, and by standard measures it is of at least as high quality. There are two independent estimates of the local error. The local error of the interpolant is, to leading order, a problem-independent function of the local error at the end of the step

    A family of parallel Runge-Kutta pairs

    Get PDF
    AbstractIncreasing availability of parallel computers has recently spurred a substantial amount of research concerned with designing explicit Runge-Kutta methods to be implemented on such computers. Here, we discuss a family of methods that require fewer processors than methods presently available do, still achieving a similar speed-up. In particular, (5,6) and (6,7) pairs are derived, that require a minimum number of function evaluations on two and three processors, respectively
    • …
    corecore