
Rose-Hulman Undergraduate Mathematics Journal Rose-Hulman Undergraduate Mathematics Journal

Volume 8
Issue 1 Article 8

Design and Optimization of Explicit Runge-Kutta Formulas Design and Optimization of Explicit Runge-Kutta Formulas

Stephen Dupal
Rose-Hulman Institute of Technology, stephen.dupal@rose-hulman.edu

Michael Yoshizawa
Pomona College, michael.yoshizawa@pomona.edu

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj

Recommended Citation Recommended Citation
Dupal, Stephen and Yoshizawa, Michael (2007) "Design and Optimization of Explicit Runge-Kutta
Formulas," Rose-Hulman Undergraduate Mathematics Journal: Vol. 8 : Iss. 1 , Article 8.
Available at: https://scholar.rose-hulman.edu/rhumj/vol8/iss1/8

https://scholar.rose-hulman.edu/rhumj
https://scholar.rose-hulman.edu/rhumj/vol8
https://scholar.rose-hulman.edu/rhumj/vol8/iss1
https://scholar.rose-hulman.edu/rhumj/vol8/iss1/8
https://scholar.rose-hulman.edu/rhumj?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol8%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol8/iss1/8?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol8%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages

REU NUMERICAL ANALYSIS PROJECT: DESIGN
AND OPTIMIZATION OF EXPLICIT RUNGE-KUTTA

FORMULAS*

STEPHEN DUPAL AND MICHAEL YOSHIZAWA

Abstract. Explicit Runge-Kutta methods have been studied for
over a century and have applications in the sciences as well as
mathematical software such as Matlab’s ode45 solver. We have
taken a new look at fourth- and fifth-order Runge-Kutta methods
by utilizing techniques based on Gröbner bases to design explicit
fourth-order Runge-Kutta formulas with step doubling and a fam-
ily of (4,5) formula pairs that minimize the higher-order trunca-
tion error. Gröbner bases, useful tools for eliminating variables,
also helped to reveal patterns among the error terms. A Matlab
program based on step doubling was then developed to compare
the accuracy and efficiency of fourth-order Runge-Kutta formulas
with that of ode45.

1. Introduction

1.1. Explicit Runge-Kutta Formulas. Runge-Kutta methods are a
family of methods which produce a sequence {xn, yn}N

n=0 of approximat-
ing points along the solution curve of the system of ordinary differential
equations represented by

(1) y′(x) = f(x, y), y(0) = y0,

where f : R ×Rm → Rm is a differentiable vector field and y0 ∈ Rm

is the initial-value vector.
An explicit Runge-Kutta formula uses quadrature to approximate

the value of (xn+1, yn+1) from (xn, yn). As described by Lambert [17],
explicit Runge-Kutta formulas take sample derivatives in the solution
space to help determine the new solution space for the next step. The
actual formula for the s-stage explicit Runge-Kutta method with step

Date: March 18, 2007.
Key words and phrases. Runge-Kutta formula, Gröbner basis.
*This work was supported by NSF grant DMS-0353880.

1

2 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

size h is given by

(2) yn+1 = yn + h
s∑

i=1

biki,

where

(3) ki = f

(
xn + cih, yn + h

i−1∑
j=1

aijkj

)
, i = 1, 2, ...s.

The coefficients aij and ci are related by

(4) ci =
i−1∑
j=1

aij.

These coefficients are customarily displayed in a Butcher tableau, which

is written shorthand as
c A

bT
. Figure 1.1 shows the tableau for a

four-stage fourth-order formula.

c1

c2 a21

c3 a31 a32

c4 a41 a42 a43

b1 b2 b3 b4

Figure 1.1: Four-stage fourth-order Butcher tableau.

For an elementary introduction to Runge-Kutta formulas, consult
Conte and deBoor [5]. Lambert [17] and Hairer and Wanner [9] provide
a more advanced treatment.

It is also important to note that often polynomial interpolation is
used with Runge-Kutta formulas to find solutions between Runge-
Kutta steps. For example, Matlab’s ode45 solver by default uses
interpolation to quadruple the number of solution points to provide
a smoother-looking graph. Ideally, this polynomial interpolation will
make use of the derivative evaluations already performed by the Runge-
Kutta formulas to limit the additional work required.

Besides being found in ODE software such as Matlab’s ode45,
Runge-Kutta methods have been recently assessed for their effective-
ness on stiff ODE problems [14] and partial differential equations [28].
Specialized Runge-Kutta methods are also being developed with appli-
cations in the sciences, such as computational acoustics [11], colored
noise [10], Hamiltonian waves [21], and Navier-Stokes equations (which

RUNGE-KUTTA DESIGN AND OPTIMIZATION 3

are used in chemical reactions, for instance) [15]. Thus, Runge-Kutta
methods continue to be a developing area of research.

1.2. Butcher Order Conditions and Rooted Trees. A Runge-
Kutta formula has order p if the Taylor series of the computed solution
and the exact local solution agree up to terms of order p. Butcher [4]
found that the terms of the Taylor series of the computed solution can
be represented by rooted trees. Specifically, a Runge-Kutta formula
has order p if for every rooted tree τ with p or fewer vertices,

(5) bTA(τ) =
1

τ !
,

where τ ! is a certain integer and the components of the vector A(τ) are
certain polynomials in the aij and ci, each determined by the structure
of τ .

If the formula has order p, but not order p+1, we define the leading-
order truncation error coefficients by

(6) ατ

(
bTA(τ) − 1

τ !

)
for all rooted trees τ having p + 1 vertices. Each coefficient ατ is the
reciprocal of an integer that is determined by the structure of τ .

Thus, each rooted tree has a corresponding order condition expressed
by a polynomial equation in the coefficients bi, ci, and aij. For an s-
stage formula there are a total of s(s + 1)/2 unknowns. Any set of
coefficients aij, bi, ci satisfying the polynomial equations for all rooted
trees with up to p vertices gives a Runge-Kutta formula of order p.

1.3. ODE Software and the Control of Local Error. The accu-
racy of a Runge-Kutta formula is usually judged by its local error. For
equation (1), in the step from (xn, yn) to (xn+1, yn+1), we define the
local solution un(x) by

u′n(x) = f(x, un(x)), un(xn) = yn.

When yn+1 is computed using a Runge-Kutta formula of order p, the
local error is defined to be un(xn+1) − yn+1 and has an expansion in
powers of h of

(7) un(xn+1)− yn+1 = hp+1ϕp+1(xn, yn)+hp+2ϕp+2(xn, yn)+O(hp+3).

The coefficient ϕp+1 is known as the principal error function and is
expressed in terms of the truncation error coefficients in Equation (6)
by

ϕp+1 =
∑

#τ=p+1

ατ

(
bTA(τ) − 1

τ !

)
D(τ)f,

4 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

where #r refers to the order of a tree τ and D(τ)f represents the
elementary differential corresponding to this tree [4].

For ODE initial value problems, modern software such as Matlab
estimates the local error and controls its step size to keep the local
error estimate smaller than a user-supplied tolerance (Tol).

For example, on an integration step from xn to xn + h, the software
computes yn+1 ≈ y(xn + h) as well as an estimate of the local error
Est. If Est ≤ Tol, the step is accepted and the program proceeds to
the next step. Otherwise, if Est > Tol, the step is rejected and retried
with a smaller h. The software adjusts the step by using Equation
(7) for the local error, assuming that the principal term hp+1ϕp+1 is
dominant.

There are two main strategies for error estimation in ODE software.

1.3.1. Fehlberg embedding. Fehlberg embedding is the favored approach
by modern software to estimate the local error. It involves finding a
set of weights b̂i that correspond to an equation of lower order than
what the weights bi in Equation (2) provide. Thus, if the weights b

yield yn+1 of order p, then the weights b̂ give ŷn+1 of order p− 1. The
error estimate is hence given by

Est = ‖yn+1 − ŷn+1‖.
The combination of formulas of orders p−1 and p is called a (p−1, p)

pair. In Section 3 we derive a family of (4,5) pairs.

1.3.2. Step doubling. Step doubling is a form of extrapolation that pro-
vides a local error estimate for one-step methods. It compares the so-
lution after a single step of size h with the solution after two half steps
of size h/2 to achieve an estimate of the local error.

Hence, by using this method, two estimates for the value of yn+1 are
compared to yield an estimate for the error. Thus,

(8) Est =
1

2p+1 − 2
‖yn+1 − ŷn+1‖,

where yn → yn+ 1
2
→ yn+1 by two steps of size h

2
and yn → ŷn+1 by one

step of size h.
While doubling is not as popular as Fehlberg’s embedding method,

Shampine [24] supports step doubling as a viable alternative. In fact,
the two methods are conceptually very similar.

It is well known that an s-stage Runge-Kutta formula with doubling
may be regarded as a (3s − 1)-stage formula [23]. In Section 2 we
adopt this point of view for a new approach to optimizing four-stage
fourth-order formulas.

RUNGE-KUTTA DESIGN AND OPTIMIZATION 5

1.4. Previous work on Explicit Runge-Kutta Formulas.

1.4.1. Four-stage fourth-order formulas. Runge-Kutta formulas can be
identified by their respective Butcher tableaus (Figure 1.1 on page 2).
However, if there are more aij, bi, and ci coefficients than order condi-
tions, there may be free parameters.

In fact, the constants for a four-stage fourth-order formula (Figure
1.1 on page 2) can all be written as rational functions of c2 and c3.
Hence, a fourth-order Runge-Kutta formula can be identified just by
the values for those two parameters. Early values for these constants
were chosen to help with hand computation or to minimize round-off
error [13]. With the help of computers, attention later turned toward
finding parameters that yield the most accurate results.

Previous results include the classic formula, which is an attractive
option for hand computation since the constants a31, a41, and a42 are
all zero. The Kutta formula was later developed to have improved
accuracy. Ralston [20] determined an optimum formula by assuming
bounds on the partial derivatives of the vector field. Kuntzmann [16]
developed his own optimum formula that eliminates four of the nine
fifth-order truncation error coefficients. Hull and Johnston [13] ana-
lyzed the error of the fourth-order Runge-Kutta formulas using three
different measures of the truncation error; they found that in all cases
the optimum values for c2 and c3 were approximately 0.35 and 0.45
respectively. These results as well as a more in-depth analysis and
bibliography can be found in Lapidus [17].

These notable formulas are presented here.

Name c2 c3

Classic 1
2

1
2

Kutta 1
3

2
3

Ralston 2
5

7
8
− 3

√
5

16

Kuntzmann 2
5

3
5

Hull and Johnston 7
20

9
20

1.4.2. (4,5) Runge-Kutta formula pairs. Extensive research and devel-
opment of (4,5) formula pairs has been conducted, such as the family of
formulas developed by Dormand and Prince [6] and used in the ode45

solver in Matlab. Sharp and Verner showed that (4,5) formula pairs
provide an efficient method to solving nonstiff initial value problems
[27]. Papakostas and Papageorgiou [19] later constructed a new family

6 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

of formulas using simplifying conditions similar to those used in Section
3; they claim this family has a higher efficiency than the Dormand and
Prince formulas do.

1.5. Gröbner Bases and Normal Forms. We use a Gröbner basis
of the ideal generated by the Butcher order conditions to efficiently an-
alyze the solutions to these conditions and the higher-order truncation
error.

Recall from Equation (5) that the polynomial order conditions [4]
are of the form

P (τ)(A, b, c) = bTA(τ) − 1

τ !
= 0, #τ ≤ p,

where P is a polynomial and (A, b, c) represents the set of coefficients
aij, bi, and ci.

Then (A, b, c) distinguishes a Runge-Kutta formula of order p if and
only if

(A, b, c) ∈ V = {(A, b, c)|P (τ)(A, b, c) = 0 ∀ τ, #τ ≤ p}.
By letting J be the ideal generated by {P (τ)|#τ ≤ p}, the Runge-Kutta
formula derived by (A, b, c) has order p if and only if

(A, b, c) ∈ V (J),

where V (J) is the variety of J , the set of common zeros of all poly-
nomials in J . We then use a Gröbner basis of this ideal J to find
solutions to the polynomial equations that generate J and simplify the
truncation error terms.

In short, a Gröbner basis is a generating basis for an ideal where
the leading terms of the elements in a Gröbner basis also generate the
leading terms of all the elements in the ideal. For more information
on Gröbner bases, consult the basic theory in Rotman [22] and Adams
and Loustaunau [1].

When using an elimination order such as pure lexicographical order,
reducing by a Gröbner basis eliminates variables and thus allows solu-
tions to be easily written in parametric form. This type of reduction
can be thought of as the nonlinear analogue of the reduced row echelon
form of linear systems of equations. Boege, Gebauer,and Kredel were
the first to suggest this application of Gröbner bases [2]. A second
advantage with using a Gröbner basis of J is that the truncation error
coefficients

ατ

(
bTA(τ) − 1

τ !

)
, for τ with #τ > p,

can be reduced to a normal form. Thus, the coefficients are simplified,
making it easier to distinguish patterns (see Sections 2.2.1 and 2.2.2).

RUNGE-KUTTA DESIGN AND OPTIMIZATION 7

2. Four-stage Fourth-Order Runge-Kutta Formula with
Step Doubling

2.1. Creation of an Eleven-stage Fifth-order Formula Using a
Double Step. As mentioned in Section 1.3.2, an ODE solver based
on step doubling takes two steps and then compares the result with
the solution computed after a single step of double length, allowing
it to gain an extra order of accuracy. A proof of this can be found
in Shampine [24]. By then picturing this process itself as a Runge-
Kutta formula, we can get an idea of the error associated with each
iteration of the step-doubling process. Furthermore, if we used an s-
stage pth-order Runge-Kutta formula in the original solver, then the
Runge-Kutta formula representing the double step is in fact of order
p + 1 with 3s− 1 stages.

In this case we are treating a four-stage fourth-order formula with
step doubling as an eleven-stage fifth-order formula. This perspective
is very helpful since it allows us to analyze the sixth-order truncation
error associated with each double step.

2.2. Using Gröbner Bases to Find Normal Forms of Order
Conditions. A four-stage Runge-Kutta formula has order four if and
only if the following eight Butcher order conditions vanish:

Order 1: b1 + b2 + b3 + b4 − 1(9)

Order 2: b2c2 + b3c3 + b4c4 −
1

2

Order 3: b2c
2
2 + b3c

2
3 + b4c

2
4 −

1

3

c2(b3a32 + b4a42) + c3b4a43 −
1

6

Order 4: b2c
3
2 + b3c

3
3 + b4c

3
4 −

1

4

c2(c3b3a32 + b4c4a42) + c3c4b4a43 −
1

8

c2
2(b3a32 + b4a42) + c2

3b4a43 −
1

12

c2b4a32a43 −
1

24
We used Maple to compute a Gröbner basis of these eight terms with

a pure lexicographical term order.
Pure lexicographic order was chosen so that variables could be elim-

inated more easily before choosing values to optimize the Runge-Kutta

8 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

formula. We also chose a term ordering that omitted the c2 and c3

values in order for the basis to be calculated in a reasonable length of
time. While this conveniently allowed us to solve for all other parame-
ters in terms of c2 and c3, it did create problems due to artificial poles
(see Section 2.3.1). Thus, the resulting Gröbner basis was a set of eight
polynomials, where each can be solved for an individual parameter in
terms of c2 and c3.

Not only did Gröbner bases allow us to avoid lengthy calculations
to solve for parameters, but they also gave us an efficient method for
simplifying truncation error terms. Our main concern was the fifth- and
sixth-order error terms for the four-stage fourth-order Runge-Kutta
formula, as well as the sixth-order error terms for the eleven-stage fifth-
order formula. Reducing these three sets of error terms by our Gröbner
basis led them to all be constants or, with a few exceptions, linear or
quadratic functions of c2 and c3. This simpler form also revealed some
interesting patterns.

2.2.1. Pairing of rooted trees. After reducing the truncation error co-
efficients into their normal forms, it became evident that a majority of
the error coefficients of the fifth order for the four-stage fourth-order
formula (see Appendix A) and of the sixth-order for the eleven-stage
fifth-order formula could be sorted into pairs, where the equations were
additive inverses of each other. Furthermore, the corresponding rooted
trees of these pairs were related in that the child node connected by a
single branch to the root of one tree served as the root of the other.
Lastly, for a Runge-Kutta formula of order p and truncation error co-
efficients of order p + 1, the rooted trees associated with these paired
error coefficients had corresponding τ ! values that were different by a
factor of p. By definition, τ ! is equal to the order of the tree multi-
plied by the order of all subtrees that are produced by systematically
eliminating roots (see Butcher [4] for a more detailed explanation).

These observations can be explained by the condition that

(10) bT(A + C − I) = 0.

Indeed, if the parameters of a Runge-Kutta formula of order p met this
condition, then

bTA = bT(I − C).

Any tree that began with only one branch from its root would have the
corresponding coefficient bTA(...)e, where (...) refers to some combina-
tion of A’s and C’s that would make bTA(...)e of order p + 1. Then for

RUNGE-KUTTA DESIGN AND OPTIMIZATION 9

such trees,

bTA(...)e− 1

τ !
= bT(...)e− bTC(...)e− 1

τ !
.

As bT(...) is of order p, its Butcher order condition must be satis-
fied since our Runge-Kutta formula has order p. Then by Equation
(5), bT(...)e = 1/τ ∗!, where τ ∗ corresponds to the tree represented
by bT(...)e. Therefore, as bTA(...)e is bT(...)e with a root and single
stem added to its bottom, the recursive definition of τ ! [3] implies that
τ ! = (p + 1)τ ∗!. Hence,

bTA(...)e− 1

τ !
=

1

τ ∗!
− 1

τ !
− bTC(...)e

=
p + 1

(p + 1)τ ∗!
− 1

(p + 1)τ ∗!
− bTC(...)e

= −
(
bTC(...)e− p

τ !

)
,

which corresponds to all three of the relationships observed.
When the four-stage fourth-order and eleven-stage fifth-order Runge-

Kutta parameters were tested, they both satisfied Equation (10).
Equation (10) was not met by the conditions for a third-order Runge-

Kutta formula and hence this pairing was not observed. However, set-
ting an additional constraint of c3 = 1 on the order conditions would
allow the third-order formula to satisfy Equation (10). It is hypoth-
esized that for any explicit Runge-Kutta formula of s stages, setting
cs = 1 would imply Equation (10), but this has yet to be verified.

2.2.2. Structure of Tp+2. During the calculation of the fifth- and sixth-
order terms for the fourth-order formula and the sixth-order terms for
the double-step formula, a correlation among these error coefficients
was noticed. Further investigation revealed the following theorem. This
theorem shows how the truncation error coefficients of the extrapolated
formula are related to those of the basic formula.

Theorem 1. Consider an s-stage Runge-Kutta formula of order p. Let
A and b represent the parameters for this formula. Similarly, let Ā and
b̄ represent the parameters for the (3s− 1)-stage Runge-Kutta formula
of order (p+1) created via a double step. A single step is considered to
be of size h/2, while a double step is of size h. Then for every τ with

10 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

#τ = p + 2,

ατ

(
bTA(τ) − 1

τ !

)
= − 1

2(2p − 1)
ατ

(
b̄TĀ(τ) − 1

τ !

)
(11)

+
1

4(2p − 1)

∑
#β=p+1

g(β, τ)αβ

(
b̄TĀ(β) − 1

β!

)
,

where g(β, τ) is the number of times τ is produced by adding a leaf to
a terminal vertex of β or a new root and a single stem to the bottom
of β.

Proof. Suppose an s-stage Runge-Kutta method of order p is being
applied to the autonomous differential equation y′ = f(y). We consider
full steps to be of size h where xn+i = xn + ih. We then define the
result of a single half step of size h/2 from the point (xn, yn) to be
(xn+ 1

2
, yn+ 1

2
), while two half steps result in (xn+1, yn+1). A full step of

size h from (xn, yn) yields (xn+1, ŷn+1).
The extrapolated solution ȳn+1 at xn+1 is the result of two half steps

adjusted by the result of the single full-length step and is defined as

(12) ȳn+1 = yn+1 +
2

2p+1 − 2
(yn+1 − ŷn+1).

This combination is chosen to eliminate truncation error terms of order
p + 1.

The order-(p + 2) error is the difference between the extrapolated
solution and the local solution at xn+1 and is represented by the equa-
tion

(13) un(xn+1)− ȳn+1 = hp+2
∑

#τ=p+2

ατ

(
b̄TĀ(τ)− 1

τ !

)
D(τ)f + O(hp+3).

Recall that un is the local solution as defined in Section 1.3, where
u′n(x) = f(un(x)) with the initial condition that un(xn) = yn. We can
also find un(xn+1)− ȳn+1 by using Equation (12) to yield

(14) un(xn+1)− ȳn+1 = un(xn+1)− yn+1 −
2

2p+1 − 2
(yn+1 − ŷn+1).

Thus, to find the local sixth-order error, we need to evaluate both
(un(xn+1)− yn+1) and (yn+1− ŷn+1). We rewrite the first expression as

(15) un(xn+1)−yn+1 =
(
un(xn+1)−un+ 1

2
(xn+1)

)
+
(
un+ 1

2
(xn+1)−yn+1

)
.

We define z(x) = un(x) − un+ 1
2
(x) to eventually get an expression

for un(xn+1)− un+ 1
2
(xn+1). Then

un(x) = un+ 1
2
(x) + z(x).

RUNGE-KUTTA DESIGN AND OPTIMIZATION 11

Differentiating and using the differential equation gives on the one hand

u′n(x) = u′
n+ 1

2
(x) + z′(x)

and on the other

u′n(x) = f(un(x))

= f(un+ 1
2
(x) + z(x))

= f(un+ 1
2
(x)) + f ′(un+ 1

2
(x))z(x) + O(|z|2).

Hence u′
n+ 1

2

(x) = f(un+ 1
2
(x)) implies that

(16) z′(x) = f ′(un+ 1
2
(x))z(x) + O(|z|2).

As z satisfies the initial condition

z(xn+ 1
2
) = un(xn+ 1

2
)− un+ 1

2
(xn+ 1

2
)(17)

= un(xn+ 1
2
)− yn+ 1

2

=
(h

2

)p+1

ϕp+1(yn) +
(h

2

)p+2

ϕp+2(yn) + O(hp+3)

= O(hp+1),

we get that O(|z|2) is at least O(hp+3) (since p ≥ 1). Evaluating z at
xn+1 and taking the Taylor expansion then gives

un(xn+1)− un+ 1
2
(xn+1) = z(xn+1)

= z(xn+ 1
2
) +

h

2
z′(xn+ 1

2
) + O(hp+3).

We can then substitute for z′ with Equation (16) to get

= z(xn+ 1
2
) +

h

2
f ′(un+ 1

2
(x))z(xn+ 1

2
) + O(hp+3).

Substituting for z(xn+ 1
2
) with Equation (17) then gives

=
(h

2

)p+1

ϕp+1(yn) +
(h

2

)p+2

ϕp+2(yn)

+
(h

2

)p+2

f ′(un+ 1
2
(x))ϕp+1(yn) + O(hp+3)

=
(h

2

)p+1

ϕp+1(yn)

+
(h

2

)p+2

(ϕp+2(yn) + f ′(yn+ 1
2
)ϕp+1(yn)) + O(hp+3).

12 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

Writing f ′(yn+ 1
2
) = f ′(yn) + O(h), we get

=
(h

2

)p+1

ϕp+1(yn)

+
(h

2

)p+2

(ϕp+2(yn) + f ′(yn)ϕp+1(yn)) + O(hp+3).

The second term in Equation (15) is just the local error in the step
from xn+ 1

2
to xn+1. It is equal to

un+ 1
2
(xn+1)− yn+1 =

(h

2

)p+1

ϕp+1(yn+ 1
2
) +

(h

2

)p+2

ϕp+2(yn+ 1
2
) + O(hp+3).

Substituting in the Taylor expansion of yn+ 1
2

then gives

=
(h

2

)p+1

ϕp+1

(
yn +

h

2
f(yn)

)
+
(h

2

)p+2

ϕp+2(yn) + O(hp+3).

Again we substitute in the Taylor expansion, this time with ϕp+1, to
get

=
(h

2

)p+1

ϕp+1(yn) +
(h

2

)p+2

(ϕp+2(yn) + ϕ′
p+1(yn)f(yn) + O(hp+3).

We can now evaluate Equation (15) to get

un(xn+1)− yn+1 =
((h

2

)p+1

ϕp+1 +
(h

2

)p+2

(ϕp+2 + ϕ′
p+1f)

)(18)

+
((h

2

)p+1

ϕp+1 +
(h

2

)p+2

(ϕp+2 + f ′ϕp+1)
)

+ O(hp+3)

= 2
(h

2

)p+1

ϕp+1 +
(h

2

)p+2

(2ϕp+2 + ϕ′
p+1f + f ′ϕp+1) + O(hp+3).

To evaluate Equation (14) we now just need to find yn+1− ŷn+1. We
can rewrite this as

(19) yn+1 − ŷn+1 = yn+1 − un(xn+1) + un(xn+1)− ŷn+1,

which takes advantage of the fact that we already have Equation (18).

RUNGE-KUTTA DESIGN AND OPTIMIZATION 13

The expression un(xn+1)− ŷn+1 is simply the local error after a full
step of size h. Thus, we can write

un(xn+1)− ŷn+1 = (h)p+1ϕp+1(yn) + (h)p+2ϕp+2(yn) + O(hp+3)

= 2p+1
(h

2

)p+1

ϕp+1(yn) + 2p+2
(h

2

)p+2

ϕp+2(yn) + O(hp+3).

Substituting this expression and Equation (18) back into Equation
(19) then gives
(20)

yn+1−ŷn+1 = (2p+1−2)
(h

2

)p+1

ϕp+1+
(h

2

)p+2

((2p+2−2)ϕp+2−ϕ′
p+1f−f ′ϕp+1)+O(hp+3).

Inserting Equations (15) and (18) into (14) now yields

un(xn+1)− ȳn+1 = un(xn+1)− yn+1 −
2

2p+1 − 2
(yn+2 − ŷn+1)

(21)

= 2
(h

2

)p+1

ϕp+1+
(h

2

)p+2

ϕp+2(2ϕp+2 + ϕ′
p+1f + f ′ϕp+1)

− 2
(h

2

)p+1

ϕp+1 −
2

2p+1 − 2

(h

2

)p+2

((2p+2 − 2)ϕp+2 − ϕ′
p+1f − f ′ϕp+1)

= hp+2
(−1

2(2p+1 − 2)
ϕp+2 +

(
1

4(2p+1 − 2)

)
(ϕ′

p+1f + f ′ϕp+1)
)
.

Consider now any rooted tree τ of order p+2. We want to show that
the coefficient of D(τ)f in un(xn+1)− ȳn+1 is as stated in Theorem 1.

By definition, the coefficient of D(τ)f in ϕp+2 is

ατ

(
bTA(τ) − 1

τ !

)
,

so the first term in (21) agrees with (11).
Thus, it only remains to show that the coefficient of D(τ)f in (ϕ′

p+1f+
f ′ϕp+1) is ∑

#β=p+1

g(β, τ)αβ

(
bTA(β) − 1

β!

)
.

We first consider ϕ′
p+1f . By definition, we have

ϕ′
p+1f =

∑
#β=p+1

αβ

(
bTA(β) − 1

β!

)
∂

∂y
D(β)f.

We can write out

(22) D(β)f = f (p̄)(D(β1)f, D(β2)f, ..., D(βn)f),

14 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

where p̄ ≤ p, n = p̄, and
∑n

i=1 #βi = p. Then the partial derivative of
D(β)f with respect to y is

∂

∂y
D(β)f = f (p̄+1)(D(β1)f, D(β2)f, ..., D(βn)f)

+
n∑

i=1

f (p̄)(...,
∂

∂y
D(βi)f, ...).

Notice that f (p̄+1)(D(β1)f, D(β2)f, ..., D(βn)f) corresponds to the tree of
order p + 2 where a leaf is added to the root of β. The summation
then adds up trees where a leaf is added to the root of each βi, and it
proceeds recursively. Thus, the partial derivative of D(β)f results in a
summation of trees of order p + 2 where each is obtained by adding a
terminal leaf to a vertex of β.

f ′ϕp+1 is by definition∑
#β=p+1

αβ

(
bTA(β) − 1

β!

)
f ′(D(β)f).

Using (22) we can then calculate f ′(D(β)f) to be

f ′(D(β)f) = f (p̄+1)(D(β1)f, D(β2)f, ..., D(βn)f).

Thus, f ′(D(β)f) corresponds to the tree of order p + 2 that is obtained
by attaching the root of β to the terminal vertex of the second-order
tree. A more visual description would be “putting β on a stem.”

Hence, we define g(β, τ) to return the number of times a tree τ of
order p + 2 is produced by adding a terminal leaf to a vertex of β or
by “putting β on a stem,” completing the proof. �

2.3. Optimizing Formulas. As mentioned in Section 1.3, an ODE
solver uses an estimate of the local error to adjust its step size. The
algorithm that adjusts the step is based on the assumption that terms
of order p + 1 dominate in the local error.

Therefore, a program based on a fourth-order Runge-Kutta formula
requires fifth-order error coefficients that are substantial enough to
drown out error of the sixth order or higher. Minimizing the sixth-
order terms of the p-order formula would also be beneficial to improve
accuracy of both the formula and the local error estimates.

To optimize a fourth-order Runge-Kutta formula with fifth-order er-
ror terms T̂5 and sixth-order error terms T̂6, and to optimize a double-
step formula with sixth-order error terms T6, we want the formula to

RUNGE-KUTTA DESIGN AND OPTIMIZATION 15

obey the following conditions [23]:

‖T6‖ minimized subject to(23)

T̂5 ≥ lower bound

and
‖T6 − T̂6‖
‖T̂5‖

≤ upper bound

By using a Gröbner basis for the eight order conditions (9), we ob-
tained normal forms for the fifth- and sixth-order error coefficients that
simplified the calculations in the search for optimum formulas.

2.3.1. Problems with lack of adequate parametric equations. However,
one difficulty in analyzing the fifth- and sixth-order error coefficients
was due to artificial poles created by the parametric form of the equa-
tions. Although these special cases could be analyzed separately, it
still prevented us from gathering accurate information at points on the
contour maps close to these artificial poles.

The three cases where solutions to the error terms existed, but had
to be analyzed separately, were c2 = 1/2, c2 = c3, and c2 = 1/2(4c3 −
3)/(3c3−2). By adjusting the initial order conditions to reflect each of
these cases, a special Gröbner basis could be calculated for that single
scenario. Solving this Gröbner basis caused all of the parameters and
error terms to be functions of just one free parameter.

Furthermore, the values for c2 and c3 were constricted to just a few
cases. c2 = c3 implied that both terms were 1/2. c2 = 1/2 implied
that c3 = 0 or 1/2. And the final condition only allowed for c2 = 1 and
c3 = 1/2.

These three scenarios were each studied individually; however, the
problem of distortion close to these points on the contour maps was
unable to be resolved. Attempts at calculating Gröbner bases using
different term orderings or with different variables in the term ordering
proved to be unsuccessful.

2.4. Testing of Runge-Kutta Formulas Via MATLAB. We de-
veloped a program in Matlab to test four-stage fourth-order Runge-
Kutta formulas using step doubling (see [23]). The initial step size
was determined using simple estimates of ‖∂f

∂x
(x0, y0)‖ and ‖∂f

∂y
(x0, y0)‖

based on ideas by Watts [29]. The algorithm used step doubling to esti-
mate the local truncation error and achieve an extra order of accuracy.
A proof of this can be found in Shampine [24]. Note that the program
adjusts step sizes according to error per step, as opposed to error per

16 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

unit step. Hermite quintic interpolation [5] was used to evaluate the
function at the final x-value.

A selection of three periodic orbit problems was used to test the error
of each Runge-Kutta formula. The simplest orbit was a Keplerian orbit
of eccentricity 0.9, used in the DETEST battery of ODE problems [12].
The second orbit was a plane-restricted, circular three-body problem
based on the orbitode demonstration program in Matlab. The most
difficult orbit was the three-body Arenstorf orbit [9].

The error of a Runge-Kutta formula was calculated by taking the
norm of the difference between the initial and final position and velocity
vectors after one full period. Error was then plotted against the number
of derivative evaluations for each Runge-Kutta formula, with absolute
and relative error tolerances ranging from 10−4 to 10−10 to generate a
graph of each formula’s relative efficiency. A selection of graphs can be
found in Appendix B.

2.4.1. Results. As expected, none of the formulas tested could con-
sistently compete with ode45, although some formulas were able to
achieve better efficiency on specific orbits and certain tolerances.

One of the most successful Runge-Kutta formulas was associated
with c2 = 2/3 and c3 = 1/2. It was selected as a possible candi-
date due to the fact that it eliminated eight of the sixth-order error
terms associated with the double-step formula. Interestingly, the b2

parameter of this formula is 0, making this fourth-order formula sim-
ilar to Simpson’s rule, but it has an improved derivative evaluation
at h/2. This formula was significantly more efficient than most of
the previously-optimized Runge-Kutta formulas covered in Section 2.
The only exception was the three-body Arenstorf orbit on tight error
tolerances, where the classic formula and Ralston’s optimized formula
exhibited higher efficiency. This observation was surprising since the
classic formula was not expected to perform well, especially on difficult
problems.

The reason for the classic formula’s success was revealed once a
Gröbner basis for the case where c2 = c3 = 1/2 was calculated, showing
that the classic formula eliminated ten of the sixth-order error terms.
Further testing showed that a slight variation of the classic formula
(changing a32 from 1/2 to 1/4) led to an even better performance on
the three-body Arenstorf orbit, to the point where at tight tolerances
the formula outperformed ode45. However, all variations of the clas-
sic formula performed relatively poorly on the Keplerian orbit and the
orbit from orbitode. This evidence may lead to the conclusion that
formulas with c2 = c3 = 1/2 are most effective on difficult problems

RUNGE-KUTTA DESIGN AND OPTIMIZATION 17

with very strict error tolerances, where sixth-order error may become
more significant. In fact, a formula that minimized the sixth-order error
(c2 = 0.5130 and c3 = 0.4974) was also most effective on the Arenstorf
orbit, providing further proof that minimizing the sixth-order error is
important for demanding ODEs, but it does not necessarily improve
performance on easier problems.

Meanwhile, it appears as though previous Runge-Kutta formulas (be-
sides the classic and Ralston) were primarily focused on reducing the
fifth-order truncation error. The Kutta and Kuntzmann optimized
formulas performed very similarly to a formula that minimized the
fifth-order truncation error (c2 = 0.3578, c3 = 0.5915). Prior to the
discovery of the c2 = 2/3 and c3 = 1/2 formula, these fifth-order min-
imizers were the most efficient on the Kepler orbit and even the orbit
of orbitode. The higher-order error on these orbits was likely to be
less significant. The fifth-order minimizers could often take larger steps
without a significant loss in accuracy, which agrees with the groupings
of formulas with comparable derivative evaluations for a given accuracy.

Why the formula with c2 = 2/3 and c3 = 1/2 performs so well on
even the simple Kepler orbit is curious, as its fifth-order error coeffi-
cients are not minimized. A possible explanation is that it achieves a
very good balance between maintaining a robust fifth-order error and
minimizing the sixth-order error. Another possibility is that it elimi-
nates the exact sixth-order elementary differentials that are especially
prevalent in orbit problems.

Another odd result was that the formula with c2 = 2/3 and c3 = 0.51
showed even better results than with c3 = 1/2, competing with ode45

at high tolerances on the simpler orbits. No explanation has yet been
found as to why this slight change to c3 would improve results.

Testing was also done on the special cases where vales of c2 and c3 re-
quired the order conditions to be adjusted to find the error coefficients.
From their initial appearance, these values of c2 and c3 appeared to not
be conducive to producing effective formulas, as they either had c3 = 0
or c2 = 1. However, they produced reasonable results, proving that
these special cases should not be simply disregarded when investigat-
ing Runge-Kutta formulas. The most successful formula of these tested
was c2 = 1/2 and c3 = 0 with free parameter a43 set to 5/4, which had
the best relative efficiency on the simpler orbits at tight tolerances.

18 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

3. Runge-Kutta (4,5) Formula Pairs

Since Fehlberg embedding methods have become popular among
software including Matlab’s ode45, we then chose to examine Runge-
Kutta (4,5) formulas in more detail. Optimizing a formula of this type
involved some significantly different strategies than with a fourth-order
formula, though the overall process was similar.

3.1. Solving Order Conditions. The first step toward finding an
optimal (4,5) pair was the solving of a particular set of order conditions
using a Gröbner basis. We made some simplifying assumptions about
these order conditions to reduce the complexity of the optimization
problem.

3.1.1. Theorem of alternate conditions up to 5th order. The paper by
Papakostas and Papageorgiou [19] shows 20 conditions that are equiva-

lent to the 17+8 order conditions that
c A

bT
has order 5 and

c A

b̂T

has order 4, if the conditions Ae = c and eT
i

(
AC − c2

2

)
e = 0, i =

3 . . . 6 are assumed true. We developed a theorem using an added con-
dition for stage order 3,

eT
i

(
AC2 − C3

3

)
e = 0, i = 3 . . . 6.

This condition constrained the solution set a little more, but it reduced
the number of equivalent order conditions. When used with Ae = c and

eT
i

(
AC − C2

2

)
e, i = 3 . . . 6, it determines 16 conditions equivalent to

the 17 + 8 order conditions as previously stated.

Theorem 2. Assume an s-stage Butcher tableau satisfies

s = 7,(24)

ci 6= cj when i 6= j,(25)

c7 = 1, and(26)

bi = a7i (i = 1 . . . 7).(27)

RUNGE-KUTTA DESIGN AND OPTIMIZATION 19

Then if the conditions

Ae = c(28)

eT
i

(
AC − C2

2

)
e = 0, i = 3 . . . 6(29)

eT
i

(
AC2 − C3

3

)
e = 0, i = 3 . . . 6(30)

are satisfied, the following 16 order conditions are necessary and suf-

ficient for the 17 + 8 order conditions that
c A

bT
has order 5 and

c A

b̂T

has order 4:

Orthogonality conditions:

bTe2 = bTAe2 = bTCAe2 = bTA2e2 = 0(31)

b̂Te2 = b̂TAe2 = 0(32)

Quadrature conditions:

bTCk−1e− 1

k
= 0, k = 1 . . . 5(33)

b̂TCk−1e− 1

k
= 0, k = 1 . . . 4(34)

Tree condition:

bTAC3e− 1

20
= 0(35)

Proof. For the sufficiency, assume that conditions (31) to (35) are sat-
isfied. First we note that conditions (33), (34), and (35) are identical to
10 of the 25 conditions, leaving 15 others. Consider any of the remain-
ing 15, such as bTA3Ce− 1

120
= 0. By (29) and assumptions (24)-(27),

20 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

there exist nonzero scalars δ2 and δ3 such that

ACe =
1

2
C2e + δ2e2(36)

AC2e =
1

3
C3e + δ3e3.(37)

With this in mind,

bTA3Ce− 1

120
= bTA2(ACe)− 1

120

= bTA2

(
1

2
C2e + δ2e2

)
− 1

120
by (36)

=
1

2
bTA2C2e + δ2b

TA2e2 −
1

120

=
1

2
bTA(AC2e) + 0− 1

120
by (31)

=
1

2
bTA

(
1

3
C3e + δ3e2

)
− 1

120
by (37)

=
1

6
bTAC3e +

1

2
δ3b

TAe2 −
1

120

=
1

6
bTAC3e + 0− 1

120
by (31)

=
1

6

(
1

20

)
− 1

120
by (35)

= 0

The 14 other conditions can be shown in a similar way to prove the
sufficiency argument.

For the converse, assume that the 17+8 “standard” order conditions
are satisfied. We prove the 16 order conditions.

Once again, 10 of the conditions are identical, so it suffices to prove
the orthogonality conditions (31) and (32). To show bTCAe2 = 0, for
example, notice that

bTCA

(
AC − C2

2

)
e = bTCA2Ce− 1

2
bTCAC2e

=
1

30
− 1

2

(
1

15

)
= 0.

RUNGE-KUTTA DESIGN AND OPTIMIZATION 21

On the other hand,

bTCA

(
ACe− C2

2
e

)
= bTCA(δ2e2) by 36

= δ2b
TCAe2.

Since this means δ2b
TCAe2 = 0 and δ2 6= 0, bTCAe2 = 0 follows. The

necessary and sufficient directions have both been shown, so the proof
is complete. �

3.1.2. Choice of initial basis polynomials. To reduce the number of
variables in the eventual Gröbner basis, we used the first expressions
in Equations (31) and (32) to make b2 = b̂2 = 0. We also used Equa-
tions (29) and (30) with i = 3 to find c2 = 2

3
c3 and a32 = 3

4
c3 by hand

calculation.
The six order conditions involving b̂ terms, found in Equations (31),

(32), and (34), meant that a solution could be found for the b̂ terms

as a linear combination of a freely-chosen b̂ term (we chose to make b̂7

free). So we planned to first find a Gröbner basis for the other 18 order
conditions (reduced to 15 by the simplifications above).

Only one of these conditions, bTA2e2 = 0, was nonlinear, so by using
an elimination order with one of c4 or c6 chosen with the lowest priority
and the other 14 variables (all a’s and b’s, with no ai1 needed due to

the fact that ai1 = ci −
i−1∑
j=2

aij) having higher priority, a Gröbner basis

was computed successfully.

3.1.3. Two cases to consider. When c4 was included in the elimination
order, then c4− c3

2(5c23−4c3+1)
was part of the Gröbner basis. [19] showed

that c4 = c3
2(5c23−4c3+1)

is equivalent to b̂7 = 0. This choice is undesirable

because having the seventh b̂ term equal 0 causes the flexibility of
incorporating the first stage of a subsequent step (from the seventh
stage of the current step) into the fourth-order error estimator to be

lost. We expected a better error estimator if b̂7 6= 0, which [19] also
showed was equivalent to bT(A + C − I) = 0. As Section 2.2.1 showed
with the fourth-order formula, this equation resulted in pairing among
sixth-order error terms.

So we included c6 in the elimination order; c6 − 1 was part of the
Gröbner basis and b̂7 could be chosen as a free parameter to determine
the other b̂ terms.

22 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

3.2. Choosing Optimal Coefficients. With a Gröbner basis gen-
erated, we then aimed to optimize a set of coefficients relative to the
conditions in Equation (23). First, we normalized the sixth-order trun-
cation error terms with respect to the basis, and then we looked to
optimize the resulting expressions. It appeared promising when the 20
reduced errors could be placed in four groups, with each expression a
multiple of the others in the same group. These expressions depended
only on c3, c4, and c5; there were 9 expressions in the first group, 6 in
the second group, 3 in the third group, and 2 in the last group.

3.2.1. Minimization of sixth-order truncation error. It was possible to
choose values for c3, c4, and c5 so 14 or more of the 20 sixth-order error
conditions were equal to 0. One solution even permitted all 20 errors
to be 0. Unfortunately, none of these cases was feasible for our desired
formula. When all 20 error conditions were set to 0, c4 = c5 = c6 =
c7 = 1, which if implemented would have treated the formula like it
had four stages instead of seven (or actually six stages since c6 = c7 = 1
already). When 18 error conditions were set to 0, the denominators of
a52, a53, and a54 were forced to be 0 due to the structure of the terms
in one error group. And when 14 error conditions were set to 0, one of

the fifth-order error terms in T̂5 was forced to be 0 relative to

c A

b̂T

,

which would be undesirable if its corresponding elementary differential
was a significant part of the magnitude of the estimated error.

Our most recent efforts focused on solving for two equations from two
groups to cause 12 error terms to be 0. Doing this led to expressions

for c3 = 2(3c5−2)
3(5c5−3)

and c4 =
15c25−19c5+6

15c25−20c5+7
, so the remaining indeterminates

were c5 and b̂7.

3.2.2. Choice of coefficients based on plots and tests. When c3 and c4

were plotted as a function of c5, it revealed several intervals of values
that should not be assigned to c5 due to the necessity of 0 ≤ ci ≤ 1 and
assumptions (24)-(27). The interval 0.2 ≤ c5 ≤ 0.55 looked desirable
due to the spread between c3, c4, and c5. A plot of the sum of square
of T6 terms had a relative minimum when c5 ≈ 0.51 and took even
smaller values when 0.7 ≤ c5 ≤ 1, so we examined the formula with
values of c5 in the neighborhood of 0.5 and 0.8.

Interestingly, it seems that varying b̂7 has little effect on a Matlab
graph of error versus number of functional evaluations. This is coun-
terintuitive against the fact that when ‖b̂7‖ increases, ‖b̂6‖ increases

RUNGE-KUTTA DESIGN AND OPTIMIZATION 23

(but with opposite sign) about as quickly, but other b̂ values are not
affected as much.

3.3. Testing. Thus far, we have tested a limited number of formulas in
the family of solutions determined by setting 12 of the T6 errors equal
to 0. The three periodic orbits used with the four-stage fourth-order
formula were also tested here.

3.3.1. RK44Auto Modified. We made several changes to our RK44Auto.m
function (and renamed it RK45Auto.m) so it would use a given fifth-

order tableau
c A

bT
of stage order 3 with fourth-order tableau

c A

b̂T

.

3.3.2. Comparison using test problems. The Kepler, orbitode, and
Arenstorff differential equation problems were used to assess the qual-
ity of chosen formula implementations compared to Matlab’s ode45

function. Though this testing was limited in scope and depth due to
the deadline of this project, some notable results have already been
determined.

Appendix C contains three graphs that each plot error vs. effort
for ode45 and four Runge-Kutta (4,5) formulas distinguished by the

value of c5 (b̂7 = 1 in all cases). For the Kepler orbit, one formula that
consistently beat ode45 used c5 = 0.465. This formula (and the ones in
the other two graphs here) was found by comparing plots with different
values of c5 and zooming in where the error seemed to get lower relative
to the others. With the Kepler orbit, for instance, we plotted error vs.
effort starting with c5 ∈ {0.4, 0.45, 0.5, 0.55} and saw that c5 = 0.45
had the smallest error for the same number of derivative evaluations.
The next iteration involved c5 ∈ {0.42, 0.44, 0.46, 0.48}, and so forth.

With the three-body orbit of Matlab’s orbitode, we were unfortu-
nately unable to find a formula the surpassed ode45 in an error range
prior to the limits of the numerical software. But the formula with
c5 = 0.8334 gave us hope for our optimization technique when it per-
formed better than ode45 on the Arenstorf orbit when the error was
between 10−5 and 10−8. Further research is suggested so the behavior
of the family of Runge-Kutta (4,5) formulas that we optimized for can
be understood better.

24 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

4. Conclusion

We found that Gröbner bases are an effective and relatively sim-
ple way of simplifying the Butcher order conditions and reducing the
higher-order error coefficients in explicit Runge-Kutta formulas.

Also, by treating the double-step process for an s-stage formula of
order p as a (3s − 1)-stage formula with order p + 1, we could then
optimize a formula in terms of the order p + 2 truncation error. This
process led to the discovery of more efficient Runge-Kutta methods
that generally increased in effectiveness on demanding problems.

Furthermore, we developed a new family of Runge-Kutta (4,5) for-
mula pairs that are easy to derive. It is suggested by our most recent
results that some optimal formula pairs can be competitive with ode45.

5. Acknowledgements

We wish to thank Professor Roger Alexander of Iowa State Univer-
sity for his instruction and guidance. Chris Kurth also provided assis-
tance. We are grateful to Iowa State University where the research was
performed. This project was sponsored by NSF REU grant #0353880.

RUNGE-KUTTA DESIGN AND OPTIMIZATION 25

Appendix A. Fifth-Order Conditions Reduced by Gröbner
Basis for a Fourth-Order Runge-Kutta

Formula

26 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

Appendix B. Error vs. Effort graphs for Fourth-Order
Runge-Kutta Formulas and ode45

B.1. Previously-discovered formulas.

Previously-discovered formulas compared with a formula minimizing
the fifth-order truncation error.

Three-body orbit of Matlab’s orbitode

RUNGE-KUTTA DESIGN AND OPTIMIZATION 27

B.2. Formula with c2 = 2/3 and c3 = 1/2.

The formula with c2 = 2/3 and c3 = 1/2 compared to
previously-optimized fourth-order formulas.

Kepler orbit with eccentricity 0.9

Three-body orbit of Matlab’s orbitode

28 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

Three-body Arenstorf orbit

RUNGE-KUTTA DESIGN AND OPTIMIZATION 29

B.3. Modifying a32 value of classic formula.

The formula with c2 = 1/2, c3 = 1/2, and a32 = 1/4 compared to the
classic formula (a32 = 1/2)

Three-body Arenstorf orbit

30 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

B.4. Formula with c2 = 2/3 and c3 = 0.51.

The formula with c2 = 2/3 and c3 = 0.51.

Kepler orbit with eccentricity 0.9

Three-body orbit of Matlab’s orbitode

RUNGE-KUTTA DESIGN AND OPTIMIZATION 31

Appendix C. Error vs. Effort graphs for (4,5)
Runge-Kutta Formulas and ode45

C.1. Formula with b̂7 = 1 and selected values of c5.

RK (4,5) formulas (dependent on c5) compared to ode45.

Kepler orbit with eccentricity 0.9

Three-body orbit of Matlab’s orbitode

32 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

Three-body Arenstorf orbit

RUNGE-KUTTA DESIGN AND OPTIMIZATION 33

References

[1] W. Adams, P. Loustaunau, An Introduction to Gröbner Bases, American
Mathematics Society, Providence, RI, 1994.

[2] W. Boege, R. Gebauer, and H. Kredel. Some examples for solving systems of
algebraic equations by calculating Groebner bases, J. Symb. Comp. 1 (1986),
pp. 83-98.

[3] Folkmar Bornemann, Runge-Kutta Methods, Trees, and Maple, Selçuk Journal
of Applied Mathematics, 2 (2001), pp. 3-15.

[4] J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations:
Runge-Kutta and General Linear Methods, John Wiley & Sons, Chichester,
1987.

[5] Samuel D. Conte, Carl de Boor, Elementary Numerical Analysis, McGraw-Hill,
New York, 1980.

[6] J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulas, Jour-
nal of Computational and Applied Mathematics, 6 (1980), pp. 19-26.

[7] W.H. Enright, T.E. Hull, Test Results on Initial Value Methods for Non-
Stiff Ordinary Differential Equations, SIAM Journal of Numerical Analysis,
13 (1976), pp. 944-961.

[8] Erwin Fehlberg, Classical fifth, sixth, seventh, and eigth order Runge-Kutta
formulas with step-size control, NASA, Springfield, VA, 1968.

[9] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II Springer-
Verlag, New York, 1991.

[10] R. L. Honeycutt, Stochastic Runge-Kutta algorithms. II. Colored Noise, Phys.
Rev. A., 45 (1992), pp. 604-610.

[11] F.Q. Hu, J.L. Matheny, M.Y. Hussaini, Low-dissipation and low-dispersion
Runge-Kutta schemes for computational acoustics, Journal of Computational
Physics, 124 (1996), pp. 177-191.

[12] T.E. Hull, W.H. Enright, B.M. Fellen, A.E. Sedgwick Comparing Numeri-
cal Methods for Ordinary Differential Equations SIAM Journal on Numerical
Analysis, 9 (1972), pp. 603-637.

[13] T.E. Hull and R.L. Johnston, Optimum Runge-Kutta methods, Math. Comp.,
18 (1964), pp. 306-310.

[14] Peter Kaps, Peter Renthrop, Generalized Runge-Kutta methods of order four
with stepsize control for stiff ordinary differential equations, Numerishce Math-
ematik, 33 (1979), pp. 55-68.

[15] C.A. Kennedy, M.H. Carpenter, R.M. Lewis, Low-storage, explicit Runge-
Kutta schemes for the compressible Navier-Stokes equations, Applied Numeri-
cal Mathematics, 35 (2000), pp. 177-219.

[16] J. Kuntzmann, Deux Formules Optimales du type de Runge-Kutta, Chiffres, 2
(1959), pp. 21-26.

[17] J.D. Lambert, Numerical Methods for Ordinary Differential Systems, John
Wiley & Sons, New York, 1991.

[18] L. Lapidus and J. Seinfeld, Numerical Solution of Ordinary Differential Equa-
tions, Academic Press, New York, 1971.

[19] S. N. Papakostas and G. Papageorgiou, A Family of Fifth Order Runge-Kutta
Pairs, Mathematics of Computation, 65 (1996), pp. 1165-1181.

[20] A. Ralston, P. Rabinowitz, A First Course in Numerical Analysis, McGraw-
Hill, New York, 1978.

34 STEPHEN DUPAL AND MICHAEL YOSHIZAWA

[21] S. Reich, Multi-sympletic Runge-Kutta Collocation Methods for Hamiltonian
wave equations, Journal of Computational Physics, 157 (2000), pp. 473-499.

[22] Joseph J. Rotman, A First Course in Abstract Algebra, Prentice-Hall, New
Jersey, 2000.

[23] Lawrence F. Shampine, Numerical Solution of Ordinary Differential Equations,
Chapman and Hall Mathematics, 1994.

[24] Lawrence F. Shampine, Local error estimation by doubling, Springer Wien, 34
(1985), pp. 179-190.

[25] L.F. Shampine and M. K. Gordon, Computer Solution of Ordinary Differential
Equations, W.H. Freeman & Co., 1975.

[26] L.F. Shampine and M.W. Reichelt, The MATLAB ODE Suite, SIAM Journal
on Scientific Computing, 18-1, 1997.

[27] P.W. Sharp and J.H. Verner, Explicit Runge-Kutta 4-5 Pairs wit Interpolants,
Mathematical Preprint No. 1995-03, Queen’s University, (1995).

[28] J.G. Verwer, Explicit Runge-Kutta methods for parabolic partial differential
equations, Applied Numerical Mathematics, 22 (1996), pp. 359-379.

[29] H.A. Watts, Starting step size for an ODE solver, J. Comput. Appl. Math., 9
(1983), pp. 177-191.

30401 Ashton Lane, Bay Village, OH 44140
E-mail address: dupalsm@rose-hulman.edu

2688 Marsh Drive, San Ramon, CA 94583
E-mail address: michael.yoshizawa@pomona.edu

	Design and Optimization of Explicit Runge-Kutta Formulas
	Recommended Citation

	tmp.1484503927.pdf.u8FnV

