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Abstract--A pair of explicit Runge-Kutta formulas of orders 4 and 5 is derived. It is significantly 
more efficient than the Fehlberg and Dormand-Prince pairs, and by standard measures it is of at 
least as high quality. There are two independent estimates of the local error. The local error of the 
interpolant is, to leading order, a problem-independent function of the local error at the end of the 
step. 
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1. I N T R O D U C T I O N  

Fourth-order explicit Runge-Kutta  formulas have always been popular for the solution of the 
initial value problem for a first-order system of ordinary differential equations (ODEs) 

y' = f ( x , y ) ,  a < x < b, y(a) given. 

The error made in a step, the local error, is estimated by taking each step with a fifth-order 

formula and estimating the error in the fourth-order formula by comparison. A natural measure 

of the cost of a Runge-Kutta formula is the number of stages involved--the number of times 

f(x, 9) is evaluated. By embedding the evaluation of one formula in the other, it is possible 

to make evaluation of the pair very much cheaper than separate evaluation of the individual 

formulas. At least six stages are needed for a fifth-order formula, and it is possible to derive pairs 

that require only six stages. 

The landmark paper of Hull et al. [i] considers how to assess the effectiveness of methods for 
the numerical solution of ODEs. There, the six stage F(4,5) pair due to Fehlberg [2] proved to be 

very effective. Provided that the stability of the fifth-order formula is acceptable, advancing the 

integration with the higher-order result, called local extrapolation [3], results in a more accurate 

integration at no additional cost. The comparison [4] shows the considerable advantages of 

implementing F(4,5) in this way. For quite some time the F(4,5) pair in local extrapolation mode 
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was generally accepted as the best way to proceed at these orders. Dormand and Prince [5] 
achieved a considerable improvement by exploiting the idea of FSAL, First Same As Last. The 
idea is to form the result for advancing the integration, form the first stage of the next  step, and 
use this stage as a last stage in the current step for the formation of the other formula of the pair. 
Provided that  the step is a success, an extra stage is obtained for "free" in this way. Theoretical 
arguments [6] and experience say that  the Dormand-Prince pair, DP5(4)TM, is considerably more 
efficient than F(4,5). 

In this paper, we present the BS(4,5) pair that  represents about as great an increase in efficiency 
over the Dormand-Prince pair as that  pair represents over the Fehlberg pair. The stability of the 
new pair is about the same as DP5(4)TM on an equal cost basis. A very unusual aspect of the 
new pair is tha t  we provide two fourth-order formulas so as to obtain two independent estimates 
of the local error and enhance the robustness of error control. These and other improvements are 
obtained by going to a pair tha t  involves seven stages. Subsequently, other authors [7] recognized 
the advantages of using one more than the minimal number of stages. 

A Runge-Kutta  formula starts with an approximate solution of the differential equation at a 
point x~, and computes an approximation at xn+l  = xn  + h. It is possible to derive a family 
of Runge-Kutta  formulas depending on a parameter a such that  the member corresponding to a 
provides an approximate solution at xn ÷ ah,  an "interpolant." By reusing the stages formed in 
the course of the basic step to Xn+l,  at most a few additional stages are needed for the evaluation 
of all members of the family. Horn [8] derived such a scheme for F(4,5). One practical issue 
is how smoothly the interpolant for [xn, Xn+l] connects with the interpolant for an adjacent 
interval [Xn+l,xn+2]. Horn's interpolant is not even continuous, but globally C 1 interpolants 
are now available [9]. Shampine and his coworkers [10,11], produced a number of interpolants 
for the Dormand-Prince pair, as did Dormand and Prince themselves [12]. At present, the best 
interpolant for tha t  pair appears to be that  of Calvo, Montijano and Randez [13]. The accuracy 
of these interpolants depends on the problem, but  there are interpolants [11] with an error at 
xn + a h  that  is a known multiple of the error at xn ÷ h independent  of the problem, at least 
asymptotically. Recent research [14] exploits such interpolants for control of the defect. We have 
derived an interpolant for the BS(4,5) pair that  has this very desirable property. 

In a section devoted to numerical tests we report some experiments of our own made with a 
version of the well-known code RKF45 [15] modified so that  we could compare several pairs of 
formulas. We also describe briefly some substantial experiments of Kraut  [16]. She compared the 
state-of-the-art suite of explicit Runge-Kutta codes RKSUITE [17-19], to codes in the NAG [20], 
and IMSL [21] libraries. The BS(4,5) pair is the standard choice in RKSUITE. Kraut 's  exper- 
iments and other experience have shown RKSUITE to be so effective that  it was added to the 
IMSL library, and it replaced the explicit Runge-Kutta code of the NAG library. In this sense, 
the BS(4,5) pair has been a very successful pair. 

2. P R E L I M I N A R I E S  

We consider the initial value problem for a system of ordinary differential equations 

y ' ( x )  = f ( x , y ( x ) ) ,  a < x < b, 

y(a)  given. 

(1) 
(2) 

A Runge-Kutta  process produces a sequence of approximations 9~ to y ( x n )  for a = x0 < xl  < 
• . .  < x n  = b. Each step from xn to xn+l = xn + h involves two approximations to y ( x n + l ) ,  

namely yn+l and Yn+I. The pair of formulas used for this purpose has the form 

8 

i =1  
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where the stages 

and 

8 

Yn+l = ~)n + h Z b~k~, 
i= l  

kl = f (Xn, Yn), 

ki = f xn + cih,!)n + h ai,3kj , 
3=1 

i : 2 , 3 , . . . , s ,  

(4) 

(5) 

i - I  

c i : - ~ ~ a i , j ,  i = 2 , 3 , . . . , s .  
j = l  

The local solution u(x) is the solution of (1) tha t  satisfies u(x,~) = ~),~. The local error of 

formula (3) at  (xn+l,  Yn+l) is Yn+l - u(xn + h). The closely related concept of local t runcation 
error refers to the solution y(x) of (12). For a Runge-Kut ta  formula, the local error is the local 
t runcat ion error associated with u(x), so we, like other authors, may use either te rm when dealing 
with the solution of (1). For smooth functions f ,  a Taylor series expansion of this error has the 
form 

Yn+i -- U(Xn "~- h) : ~ h j 

The analogous expansion for the local error of formula (4) is 

oo f~_~rj (j) r~(j) } 
YnTl -- U(X n ~- h) : ~-~ h j 

j=l  

The D (j) here are elementary differentials, sums of products of partial derivatives of components  

of f evaluated at (xn, Yn), and as such, they depend only on the problem. The  ~(J) and T (j), 
are the t runcat ion error coefficients of formulas (3) and (4), respectively; they depend only on 

the coefficients (ai,j, ci, bi, bi) defining the formulas. Explicit expressions for the truncation error 
coefficients are listed for k = 1 , . . . ,  6 in [5]. Bettis and Horn [22] list such expressions for k <_ 10, 
and provide a FORTRAN program to evaluate the coefficients for a given Runge-Kut ta  formula. 

A formula (3) of order five must satisfy the equations of condition 

~U)=O, k = 1 , 2  . . . .  , r j ,  j =1 ,2 ,3 ,4 ,5 ,  (8) 

and a formula (4) of order four must satisfy 

T (j) =0 ,  k = l , 2 , . . . , r j ,  j = 1 , 2 , 3 , 4 .  (9) 

When Yn+l is of order four and Yn+l is of order five, it is easy to see tha t  the difference Yn+l -~ln+l 
est imates the local error of the lower-order formula. 

In contrast  to the Dormand-Prince pair DP5(4)7M, the BS(4,5) pair tha t  we present here does 
not directly assume tha t  local extrapolation is done. In the derivation of the pair some choices 
were influenced by the intended mode of implementation, but the pair could be used efficiently 
in either mode. Derivation of an interpolant is different because, the mode of use affects the 
order of accuracy tha t  is appropriate  and the data  that  is available for the construction of the 
interpolant. As we feel tha t  formula pairs should be used in local extrapolat ion mode, the 
discussion and analysis of interpolants that  follows is based on this assumption. 

A novelty of our approach is tha t  we did not use the minimum number of stages (s -- 6) 
necessary for a formula of order five. Instead, we took s = 7 in the hope tha t  the additional 

C,~14WA 32-6-~ 
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flexibility would allow a new pair to be constructed that  would be more efficient than 6 stage 
pairs. Since our investigation, other authors [7] have recognized the advantages of an additional 
stage. A natural question at this point is, why just 7 stages, why not even more? Work on 
Runge-Kutta  formulas has concentrated on measures of quality that  are scaled by the cost of the 
formulas. Nevertheless, the absolute cost of a step must be considered. One reason for this is the 
cost of a failed step. A failed step with F(4,5) wastes 5 evaluations of f .  The DP5(4)7M pair 
gains a "free" stage, only when the step is a success, so that  the first evaluation of the next step 
is reused. On a failed step it wastes 6 evaluations of f ,  just like the BS(4,5) pair. In this situation 
the Fehlberg pair has a small advantage. (As a consequence, the "tuning" of codes based on the 
other pairs should place a little more emphasis on avoiding failed steps.) 

Another mat ter  is more difficult to quantify. To describe it in concrete terms, let us consider 
one of the situations investigated experimentally in [23]. There the efficiency of a basic pair was 
compared to the efficiency of a pair obtained from two steps with the basic pair. On an equal 
cost basis, the two pairs obviously have exactly the same behavior, but the absolute cost of a 
step with one pair is twice the cost of the other. Experiments show that  the pair involving more 
stages is considerably less efficient for two reasons. One is that  the step size is less frequently 
adapted to the behavior of the solution. The other is that  the pair involving more stages must 
take step sizes twice as big, hence, must predict the step size twice as far into the future. The 
predictions are not as good for the pair involving more stages, so it has more failed steps. This 
is already less efficient, but  it is aggravated by the large difference in the cost of a failed step. 
These experiments and related ones, support  the plausible argument that  even when two pairs 
have comparable properties on an equal cost basis, if one pair involves many more stages than 
the other pair, it will be less satisfactory in practice. It is these considerations of absolute cost 
tha t  prevent us from adding many stages with a view to increasing efficiency. The difference in 
absolute cost between the Fehlberg and Dormand-Prince pairs has not in our experience led to 
practical differences of the kind described, and we anticipate that  the same will be true of the 
small difference in cost of our pair. 

The  principal goals in the derivation of a Runge-Kutta pair are efficiency and stability. There 
is no question that  stability is important,  but in the typical computation the steps are chosen 
to yield accuracy rather than stability. For this reason we aimed to derive a pair that  would be 
significantly more accurate than DP5(4)7M, but might be only comparable in terms of stability. 
With 7 stages it is possible to construct a formula of order six, so there is no question that  we can 
construct formulas of order five that  are as accurate as we wish. What  is not clear is whether we 
can find accurate formulas with acceptable stability or that  there will be an embedded acceptable 
fourth-order formula. We proceeded as follows. We started with a family of 7 stage formulas 
of order five that  includes formulas of order six. There are many free parameters. To narrow 
the search for an accurate formula, we started from a formula of order six. There is a family of 
such formulas, and we first searched for an accurate, stable formula. On finding that  there is a 
formula of order six in the family that  has a stability comparable to that  of the DP5(4)7M pair 
on an equal cost basis, we had reason to expect that  we could find a formula of order five with 
the properties desired that  had parameters not too different from those of the formula of order 
six. In point of fact, the fifth-order formula was constructed by modifying the sixth-order one. 
The result is described in the next section; here we describe the family and the search for our 
starting po in t - - the  sixth-order formula. 

We followed the procedure of Butcher [24] to obtain a family of sixth-order, seven stage formulas 
with four free parameters, which we chose to be c2, c3, c5 and c6. (We use bars to distinguish 
quantities associated with the sixth-order formula.) We want to choose these parameters so 
that  the formula will be very accurate. Because the local error (67) depends on the problem, 
no formula can minimize it for all problems. To get a formula that  is "usually" accurate, it 
is conventional to minimize some norm of the vector of the truncation error, coefficients of the 
leading term of the local error. This is all somewhat vague, but the approach can be interpreted 
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rigorously as minimizing (to leading order) a bound on the local error [11]. Other measures of 
quality involve higher-order terms, and their size is measured in the same way. Like Dormand 
and Prince, we use a Euclidean norm, hence, concern ourselves with 

Other authors have used different norms in this context, but it seems to mat ter  little, provided 
that  they are used consistently. 

When an explicit Runge-Kutta method is applied to the test equation y' -- Ay with step size h, 
9,~+1 = P(z)gn where z = Ah. When Re(A) < 0, the equation is stable. The Runge-Kutta  
method is also stable in that  portion of the complex plane where Re(A) <_ 0 and IP(z)] < 1, the 
absolute stability region of the method. For a method of order p, the stability condition can be 
writ ten in terms of the coefficients defining the formula as 

zJ + Z wjz j <1, 
-~" j=p+ l 

',~o) 

where 
1 

Wj = T(r~ ) + ~. = ~ "'" bm, a m l , m 2 a m 2 , m 3 " " a m ~ _ 2 , m j _  1Cmj_ 1 . 
Vnl=l  m j - l = l  

It turns out that  in the case of the sixth-order formulas of seven stages considered, the only 
undetermined quantity in (10) is 727, and this quantity has the simple form 

53 (1 - 353) 
'~7 = 720 (15532 - 1063 + 1)' 

Note tha t  w7 depends only on one of the four free parameters available in the sixth-order formula. 
Searching among the values of 63 we found that  if wT ~ 1/5040 (63 ~ 2/9 or 63 ~ 1/4), then on 
an equal cost basis (rescaling the region by a factor of 6/7), the stability region is almost exactly 
the same as that  of the fifth-order formula of DP5(4)7M, except that  near the imaginary axis it 
is somewhat better. This was an important result since it gave us a good reason to think that 
we could find a more accurate formula than that  of Dormand and Prince, which is of at least 
comparable stability. With simplicity of coefficients in mind, we further investigated the two 
possibilities 63 = 2/9 and 63 = 1/4. A search for parameters that  minimize T7 led to choosing 
the former value along with 52 = 1/6, 65 = 2/3, and 66 = 3/4. These values correspond to 
T7 ~ 2.133 x 10 -4. 

3. THE BS(4,5) PAIR 

With a stable and accurate sixth-order formula, we can consider "spoiling" it to obtain a fifth- 
order formula, and furthermore, developing a companion fourth-order formula for the control of 
error. The pair of our choice is presented in the subroutine CONST of [17]. In this section, we 
discuss the criteria we considered in developing the new pair and some of its properties. 

The major objectives we had in mind when looking for a fifth-order formula were that: 

(i) its accuracy had to be significantly better than that of DP5(4)7M, and 
(ii) its absolute stability region had to be comparable. 

An important associated task is to provide an interpolant. It is a little awkward to discuss 
this issue. Although we have chosen to describe interpolation in a separate section, it is not 
independent of the construction of the basic pair--we considered other pairs with nearly the 
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same properties tha t  we discarded because they were less well suited to interpolation. One of the 
minor goals considered might be mentioned at this point; we wanted to avoid large coefficients. 
The quanti ty D -- max([aijI ,  I/hi, Ibil, Icil) displayed in Table 1 for the three pairs shows that  
we were quite successful in this respect. 

Although the goals (i) and (ii) seem straightforward, the first involves fundamental issues of 
quality. We cannot use T6 alone to measure how well goal (i) is satisfied, because it can be made 
arbitrarily small. The  difficulty caused by an extremely small value of T6 is that  the leading term 
of the truncation error then dominates only for very small step sizes h; for all practical purposes 
the formula is of sixth-order. To reveal this situation, we examine more than the leading term 
in the truncation error expansion. We concentrated on the ratio 97/96, which we insist not 
to be too large, so that  the formula is genuinely of fifth-order. It is necessary to specify an 
acceptable value for this ratio, and we chose to do this by adopting the corresponding value for 
DP5(4)7M, namely 9.9. Our fifth-order formula has 97/96 ~ 9.6. Still higher-order terms were 
also investigated. Table 1 displays 9s and T9, for all three pairs. For our pair, these quantities are 
similar in size to 97, which we take to mean that  the size of the leading term 96, is a reasonable 
measure of accuracy of the new formula. 

Table 1. A comparison of three Runge-Kutta pairs of orders 5 and 4. 

s ~'6 ~'7 T8 T9 B2 C2 D 

BS(4,5) 7 .000022 .00021 .00035 .00042 1.27 1.19 1.16 

DP5(4)TM 6 .00040 .0040 .0043 .0042 1.54 1.67 11.6 

F(4,5) 6 .0034 .0068 .0081 .0080 3.16 1.36 8.00 

The formula presented in [17] has T6 ~ 2.22 x 10 -5, as compared to 9 DR ~ 3.99 x 10 -4 
and 9 F ,~ 3.36 x 10 -3. Here we use "DP" and "F," to identify quantities associated with the 
DP5(4)7M and F(4,5) pairs, respectively. One way of comparing the efficiency of formulas is 
to compare the step sizes that  would yield a given accuracy c, taking the cost of each step into 
account (cf. [6], where this is referred to as the "second measure of efficiency"). As we have 
observed, the Taylor series expansion (6) shows that  the errors behave in a different way not 
just because the truncation error coefficients are different for the formulas considered, but also 
because these coefficients are weighted by the problem-dependent elementary differentials. To 
make it possible to compare the formulas' efficiency without having to refer to a specific problem, 
it is conventionally assumed that  "on average" the errors are proportional to the norms of the 
leading local truncation error coefficients: 96, 9 ° B ,  and 9 E for the methods considered here. 
This assumption implies that  the step size yielding the accuracy e is proportional to (e/96) 1/6, 
(e/TDP) 1/6, and (e /TF)  1/6, respectively. It was stated in [6] that  the ratio of step size per unit 
cost for DP5(4)TM and F(4,5) is 

9gp/ 1.4a, 

which shows a large gain in efficiency for the formula of Dormand and Prince, compared to the 
one of Fehlberg. This gain has been confirmed in numerical tests, and the DP5(4)TM pair has 
become widely accepted as the most effective pair at these orders. Comparing our pair to the 
Dormand-Prince pair in the same way after scaling for equal cost, we find 

(9~P~ 1/6 
(11) 

When accuracy determines the step size, as it usually does, this rough comparison suggests an 
improvement over DP5(4)TM comparable to the improvement that  DP5(4)7M offers over F(4,5). 
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In constructing the fifth-order formula of [17], we were able to retain the stability properties 
of the sixth-order formula used as a start ing point, but we were not able to improve them. The 
absolute stability region is defined by (10) with 

17291 269 
w6 - and w7 - - -  

12418560 1379840 

When scaled for equal cost, the region closely matches tha t  of the fifth-order formula of Dormand 

and Prince, for most angles arg(A) in the second and third quadran t s - - the  radius is never smaller 
by more than  2%, and may be greater by as much as 4%. This is the situation for most  angles, 
but near the imaginary axis, the new formula is much bet ter  (up to about  40%). The regions are 
so similar tha t  a plot contrasting them is not helpful. 

We now proceed to the construction of the fourth-order companion used for error estimation. 
Having already chosen the values c~ and ai,j, only one degree of freedom remains for the deter- 

mination of bl, b3, b4, b5, and b6. (Constraints on the family require that  b2 = 0 and b7 =/~7 .) 
Prince and Dormand [25] list some measures of quality for the companion and the error estima- 
tor. Just  as with the fifth-order formula, we want to avoid a large value of B2 = T6/T5. As we 

observed earlier, a large value means that  the leading term in the truncation error dominates 
only for very small step sizes. It  is this leading term that  is est imated for the control of error, so 

when B2 is large, we anticipate that  the error est imate might be unreliable when the step size is 
(5) r~5) not very small. The quantity T5 measures only the general size of the coefficients T 1 . . . .  , . 

I f  one of the coefficients should vanish, there would be a class of problems for which the leading 
te rm of the truncation error vanishes and the formula is of order five. Obviously, we must avoid 
zero coefficients, but we went farther and a t tempted  to make the coefficients all of about  the same 
size so tha t  the formula would have a uniform behavior. To assess this we computed the ratio of 

the largest irk(5) I to the smallest. The value of 18 for the BS(4,5) pair is rather bet ter  than the 
value of 64 for F(4,5), and 74 for DP5(4)TM; this gives us reason to hope tha t  its behavior will be 
a little more uniform. The error estimate itself has a Taylor series expansion that  we obtain from 
the difference of the expansions of the local truncation error for the two formulas. The quanti ty 

20 [40  _  6/12 E~=, - ~k j 
02---- 

% 

measures the dominance of the leading te rm of the error in the expansion of the estimate.  A 
large value of 6'2 implies that  the error estimate might be unreliable when the step size is not 
very small. 

The  criteria listed so far still leave us with a lot of freedom, especially when deciding how 

accurate we want to make the fourth-order formula. Although these criteria prevent us from 
minimizing the leading error term, there is no limitation with respect to increasing it. If  we make 
it "large," we get a small value of B2 and a leading term in the truncation error expansion tha t  
strongly dominates subsequent terms. We have already described this as desirable, and now we 
need to explain why it should not be carried to an extreme. There are two common ways of 
measuring efficiency tha t  are discussed in [6]. We have mentioned comparing the step sizes that  
would yield a given accuracy e, the "second measure of efficiency." The "first measure" compares 
the largest step sizes tha t  would satisfy a tolerance of e on the local error. These measures are 
different when local extrapolation is done. The accuracy achieved is determined by the formula 
used to advance the step, the fifth-order formula when local extrapolation is done. The local error 
controlled is tha t  of the lower-order formula, the fourth-order formula. When B2 is exceptionally 
small, the other criteria imply tha t  the fifth-order formula is very much more accurate than  the 
fourth-order formula. Used in local extrapolation mode, this implies tha t  the error of ~)n+l is 
very much smaller than  the error tolerance. A pair of Zonneveld [26] is shown by Shampine and 
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Watts [6] to behave in just this way. It is preferable to have a closer connection between the 
input tolerance and the accuracy achieved. Depending on how efficiency is measured, a very 
small value of B2 can mean an inefficient pair. Indeed, it has been argued [6] that  the DPS(4)7M 
pair is unduly conservative in this regard. Despite this argument, in our search for a fourth-order 
formula, we insisted that  our pair have the same relation to DP5(4)7M in both measures of 
efficiency. Thus, we insisted that  

which requires that  we construct our fourth-order formula so that  

1.06 × 10- ' .  (12) 

The  final selection of the fourth-order formula coefficients was made taking the stability prop- 
erties into account. In local extrapolation mode it is not crucial to make the lower-order formula 
very stable, but  it is desirable to match the regions reasonably well. The stability regions of the 
fourth- and fifth-order formulas of our pair are almost identical. 

The  fourth-order formula discussed here provides an error estimate of high quality, without 
requiring any function evaluations beyond those already needed for the fifth-order formula. How- 
ever, the constraint b7 = b7 implies that  the error estimate Yn+l - ~)n+l depends on function 
evaluations at cl, c3, c4, e5 and c6, which range from 0 to 0.75, but not at c7 = 1. If the solution 
should have a sharp change between xn + 0.75h and the end of the step, this might not be "no- 
ticed" by the error estimate. The matter  is much more serious when solving stiff problems [27] 
because quasidiscontinuities are not unusual in that  context. Still, we would like our method to 
be robust in the presence of discontinuities in f ,  and as was observed by Gollwitzer, the present 
error estimate can be deceived then. To enhance the robustness of the method, we decided to 
supplement the pair with an additional fourth-order formula, 

Yn+i=yn+h(~-'~biki+bsf(xn+l'~)n+i)) ' i = 1  

and a corresponding error estimate that  takes account of the solution at the end of the step. 
Because the BS(4,5) pair is not itself FSAL, we have at our disposal the first evaluation of the 
next  step for this purpose. Notice that  here we must specify that  local extrapolation is to be 
done. When selecting the values of bi (see [17]), we were guided by the same criteria as those 
considered during the selection of the values b~. In particular, the truncation error coefficients of 
the new formula also satisfy (12), with both ratios B2 and C2 approximately equal 1.04. Also, 
the stability region of the formula closely matches those of the other formulas developed here. 

As implemented in RKSUITE, two error estimates are formed at every step. The first error 
estimate is yn+l - ~n+l. If the estimated error is too large, the step is rejected and this estimate 
is used for the selection of a step size for another try. If the first error test is passed, the step is 
completed and the second error estimate, Yn+I - ~n+l, formed. The step is accepted or rejected 
and the next step size selected using this estimate. As always with FSAL, a failed step costs a 
function evaluation, but  this is even less likely than usual for the BS(4,5) method because for a 
smooth problem, a failed step is almost certain to be recognized by the first estimate. 

4 .  I N T E R P O L A T I O N  

We now wish to construct a family of formulas depending on a parameter a such that  the re- 
sult Yn+a approximates y(xn+a) where xn+q = Xn + ah. It  is permissible for xn+a to lie outside 
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the interval [xn, Xn+l], but the formula is usually much less accurate then, so we restrict our at- 
tention to 0 < a < 1. Providing for "interpolation" complicates considerably the development of 
Runge-Kutta  methods, and there are a number of questions about the goals and compromises that  
must be made. When we derived the BS(2,3) pair [28], we found that  the "natural" interpolant 
has a remarkable property. Namely, to leading order the relative accuracy of the intermediate 
results is independent of the problem. More precisely, the accuracy at Xn+a is related to the local 
error controlled by the code in a known way that  is independent of the problem, and the error is 
never worse than the local error controlled at each step. Along with its interpolant, the BS(2,3) 
method provides a C 1 [a, b] solution that  can be substituted into the differential equation to define 
its residual, or defect. Higham [14] shows that  if a Runge-Kutta method has a C 1 interpolant 
that  has an error independent of the problem, it is possible to derive a robust, inexpensive control 
of the defect. In this section, we derive an interpolant for the BS(4,5) pair with properties similar 
to tha t  of the BS(2,3) pair. Indeed, we go much further here because the interpolant maintains 
the accuracy of the higher-order result of the pair. RKSUITE implements three pairs of formulas 
of which only two have interpolants, namely BS(2,3) and BS(4,5). This is the only major explicit 
Runge-Kutta  code with interpolants to which Higham's approach to error control is applicable. 

One issue to be addressed in the construction of interpolants is how smoothly the interpolant 
for one interval connects with those of adjacent intervals. The family of formulas is constructed 
from the stages formed in taking the step from xn to xn + h with the pair (34), and possibly 
additional stages that  result in a total of s* stages. The member corresponding to a is 

8" 

= 9 .  + o h  (13) 
i=1 

Here the k~ are defined as in (5), except for the indices i running from s + 1 to s*. The important  
point is tha t  none of the stages depends on a, so that  the cost in evaluations of f of constructing 
this family is independent of the number of points xn+~ at which answers are desired. By 
restricting the bi(a) of (13) to be polynomials of degree at most 5, the right hand side of (13) is 
a polynomial in a, and we shall describe it as the "interpolant" for the pair. Just as with (6), for 
a specific a the local error of the formula (13) can be expanded as 

% (a) n (j . (14) 
j = l  ~,k=l 

For the interpolant (13) to be of order p*, the truncation error coefficients ~-(J) 'k (a) have to satisfy 
the appropriate equations of condition 

~(J)(a) = 0, k = 1 , 2  . . . .  , r j ,  j = 1 , 2 , . . . , p * ,  (15) 

which are related in a simple manner to (8), cf. [12]. 
It has become generally accepted that  the interpolant should be globally C 1. To accomplish 

this, it is obviously necessary that  the slope at the end of the step be included among the extra 
stages 

ks = f (Xn+i ,  Yn+l)  , 

(hence, cs =: 1, and as,i = bi for i = 1, 2 , . . . ,  7). Just as with the FSAL technique, this stage 
is "free" when the integration is continued because it is the first stage of the next step. One 
difference, though, is that  interpolation is only done after a successful step, so there is no waste 
on failed steps as with FSAL. For the interpolant to be globally C 1, the polynomials bi(a) must 
satisfy [29] 

bi(1) = /h ,  (16) 

$, + = 

where 6ij  is the usual Kronecker delta, and bi = 0 for i = 8 , . . . ,  s*. 
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Naturally, we do not want to add any more stages than necessary to do interpolation, but we 
should not be too concerned about  the cost of extra stages: extra  stages are formed only on steps 
where interpolation is done, and it is not likely tha t  there will be a large number of such steps. 
Further,  the extra  stages are formed only once per step, regardless of the number of interpolations 
to be done at points in the span of the step. I t  is natural  to ask, what  is the smallest number 
of extra  stages tha t  will provide an interpolant of acceptable quality? It  turns out tha t  with no 
extra  stages, the highest-order possible is four. Some authors favor interpolants of this order of 
accuracy for general use with a (4,5) pair. Although we favor order five because we want to relate 
the accuracy of the interpolant to the accuracy of the result used to advance the integration, we 

have derived a "free" fourth-order interpolant for use when the accuracy of intermediate solution 
values is not critical (for details see [30]). 

Adding a ninth stage to the pair in [17] permits the derivation of fifth-order interpolants. 
Unfortunately, the accuracy of these interpolants is not very good. When the formulas have the 
same order p, the accuracy of the formula producing ~)n+= can be compared to that  of the basic 
formula producing Yn+l in the conventional way. Thus, we introduce 

~k=l 

and look at  ib6(a)/T6 to assess the accuracy of the interpolant. The error of Yn-I-1 is est imated and 
the step rejected if this error is bigger than a specified tolerance. The step size is then adjusted 
so tha t  the predicted error of the next t ry  will be smaller than, but comparable to, the tolerance, 
and the step is repeated until it succeeds. By relating the accuracy of the interpolated value Yn+~ 
to tha t  of an accepted solution yn+l, we can assess the accuracy at points interior to the span 
of the step. For this reason we do not want to have a ratio tha t  is much bigger than  1 for any a 
in [0, 1]. There is no point being too fastidious about  this though, because the way we compare 

accuracy is very rough, and the relative accuracy certainly depends on the problem. With s* -- 9 
we were able to construct interpolants for which 

[e6 (o)] 
max 

O<a<l ~%6 

is about  12, and this is the best tha t  can be done. With s* = 10 the most accurate interpolants 
we found have a ratio of about  3. We did not consider these interpolants to be sufficiently 
accurate,  hence, resorted to s* -- 11 to get a satisfactory interpolant. With this many  stages we 
can make an impor tant  qualitative improvement in the interpolant tha t  we explain in a moment.  
Considering the number  of stages required to get an acceptable interpolant with the other pairs 
and the extra  stage we have at our disposal, it was surprising to us tha t  so many  extra  stages 
appeared to be necessary. We at t r ibute  this to the greater demands placed on the accuracy of 
the interpolant by the extremely small t runcation error coefficients of our fifth-order formula. 

We would describe an "ideal" interpolant as one for which 

[l~9,~+~-u(x.÷~h)ll<_ll~9,~+x-u(x,~÷h)ll, for all 0 < a < 1. (17) 

Besides the obvious wish for accurate approximations, this proper ty  means that  the usual control 
of the error at  the end of the step controls the error of the interpolant as well. I t  seems unlikely 
tha t  (17) could hold for all problems and all h, but there are examples for which it is true asymp- 
totically, one of which is BS(2,3) [11]. Considering the crudity of the conventional comparison of 
relative accuracy, we consider this to be a very desirable property. None of the interpolants for 
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F(4,5) or DP5(4)TM have it. For (17) to hold to leading order it is necessary that  

= (18) 
: i ' 

where p(a) is a scalar function of a such that  Ip(a)l _< 1 for 0 < a < 1. We found that  with 
s* = 11, it is possible to construct an interpolant for the BS(4,5) pair that  does satisfy (17) to 
leading order. Even more is true; the error of ~)n+a is, to leading order, precisely [p(a)l times 
the error of 9n+z, and we know what p(a) is. The interpolant with s* = 11 is presented in the 
subroutine CONST of [17]. Recall that  the quantity D presented in Table 1 is a bound on the 
magnitude of the coefficients defining the basic pair. The  interpolant was constructed so that  
the coefficients bi(a) of (13) defining the interpolated value Yn+~ satisfy the same bound D. The 
quanti ty p(a) is plotted in Figure 1, where it can be seen that  the leading term of the error has 
a very smooth behavior throughout the step. Note that  p(a) does not vanish on (0, 1); if it did, 
the fifth-order interpolant would degenerate there to a formula of order six. 
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Figure 1. 

Throughout  this investigation we have been cautious about the assumption that  the leading 
term dominates in the truncation error expansion. To assess the effect of higher-order terms we 
resort to the crude comparison of accuracy in terms of the relative sizes of truncation error co- 
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efficients. Specifically, we considered the seventh-order terms by examining the ratio ~'7(a)lT6(a). 
The value of this ratio at a -- 1 is determined by the basic pair; it is about 9.6. We would like 
the ratio to be, not much larger for 0 < a < 1. A numerical investigation revealed no value of a 
where it is bigger than 9.6. This increases our confidence that  the interpolated value should be 
at least as accurate in the span of the step, as the result at the end of the step. 

5 .  N U M E R I C A L  T E S T S  

We believe that  understanding of the quality of Runge-Kutta formulas has progressed to the 
point tha t  the theoretical measures considered in the construction of our pair, do indicate how 
formulas will perform in practice. Of course, we claim only that  a rough assessment of relative 
efficiency is provided by the theory. Because efficiency depends on the problem and the quality of 
the implementation of the formulas, we consider the role of numerical tests to be a confirmation 
of the theoretical predictions. We report here two substantial sets of experiments that  are entirely 
consistent with our predictions. 

We carried out one set of experiments ourselves [31]. It is generally accepted that  F(4,5) is 
significantly less efficient than DP5(4)7M, so we compared these two pairs at the same time that  
we compared the Dormand-Prince pair to our own. The fact that  the comparison of F(4,5) to 
DP5(4)7M is consistent with a considerable body of experience increases our confidence in the 
numerical comparison of DP5(4)TM to BS(4,5). We used two sets of problems. Six problems 
from [32], II.10 make up one set. The second problem in this set is the two body problem with 
eccentricity 0.5. The two body problem with eccentricities 0.1, 0.3, 0.5, 0.7, and 0.9 form an 
important  family in the nonstiff DETEST test set of [1], so we added the other eccentricities as a 
second set of test problems. We modified the RKF45 code of Watts and Shampine [15] so that  any 
one of the Fehlberg, Dormand-Prince, or Bogacki-Shampine pairs might be used. With each pair 
all the problems were integrated with a pure absolute error control for tolerances 1 0 - 3 , . . . ,  10 -12. 

The maximum norm of the error at the end of the interval of integration was computed using 
"exact" values obtained with a high-order Runge-Kutta pair, and a tolerance of 10 -14. Plots of 
the efficiency of solution are found in [31]. To relate the computations to the theory, we want 
the relative cost of achieving a given error. Because the error achieved is not the same as the 
tolerance input, we had to interpolate the data  gathered to determine these costs. This presents 
some difficulties at both extremes of the range of tolerances, because all three pairs had to achieve 
the accuracy if we were to compute the relative costs. Table 2 presents the mean of the relative 
costs for all the tolerances where the computations were meaningful, and the standard deviation 
of these costs for the first set of problems. We would anticipate that  the relative efficiency of 
two pairs depends on the problem solved, but only weakly on the accuracy achieved for a given 
problem. As expected, there is an erratic dependence on the accuracy, especially at tolerances for 
which the absolute cost is small so that  a difference of even one step affects the results. Theoretical 
arguments and computational experience say that  the DP5(4)7M is significantly more efficient 
than F(4,5). The same theory says that  BS(4,5) is about equally more efficient than DP5(4)7M. 
The numerical results of Table 2 are consistent with these predictions. 

The very substantial tests of Kraut  [16] had a different goal. By the time of her tests the BS(4,5) 
pair had been implemented, along with a (2,3) pair and a (7,8) pair, in a suite of production- 
grade Runge-Kutta  codes called RKSUITE [17-19]. Her goal was to compare RKSUITE to the 
explicit Runge-Kutta  codes of the widely-used IMSL [21], NAG [20], and SLATEC [33] libraries. 
As it happens, the code in the SLATEC library is a variant of the RKF45 code used in our tests. 
Kraut  used the problems of our two test sets plus a discontinuous problem from [1], and two 
stiff problems from the stiff DETEST test set [34]. The last problems were added to those we 
used so as to investigate how well the codes responded to difficulties. She used a wider range of 
tolerances, part ly to investigate how well the codes cope with crude tolerances and very stringent 
tolerances. Kraut  also investigated the effectiveness of interpolation in the codes that  have the 



Table 2. 
BS(4,5). 

Runge-Kutta (4,5) Pair 

Relative cost to achieve a given accuracy with F(4,5), DP5(4)7M, and 

Problem nfeF /nfeD P nfeD P /nfeBS 

mean std mean std 

Jacobian elliptic functions 

Two body problem 

van der Pol equation 

Brusselator 

Hanging string 

Pleiades 

1.37 0.09 1.57 0.07 

1.48 0.06 1.45 0.42 

0.97 0.16 1.55 0.08 

1.55 0.11 1.95 0.21 

1.28 0.02 1.80 0.26 

1.27 0.18 1.11 0.06 
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capability. The various codes implement formulas of different orders, so Kraut drew conclusions 
for three ranges of tolerances. Full details of her tests can be found in [16]. Here it will suffice 
to quote her conclusion that "For moderate accuracy requests the BS(4,5) pair is more efficient 
than the corresponding codes in the NAG, SLATEC, and IMSL libraries . . . .  No code without 
an interpolation capability, and no formula pair like the PD(7,8) pair in RKSUITE can compete 
with pairs that do have this capability, like the BS(2,3) and BS(4,5) pairs, when dense output is 
required." Subsequently RKSUITE was added to the IMSL library and it replaced the explicit 
Runge-Kutta code of the NAG library. 
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