107 research outputs found

    A Probability-one Homotopy Algoithm for Non-Smooth Equations and Mixed Complementarity Problems

    Get PDF
    A probability-one homotopy algorithm for solving nonsmooth equations is described. This algorithm is able to solve problems involving highly nonlinear equations,where the norm of the residual has non-global local minima.The algorithm is based on constructing homotopy mappings that are smooth in the interior of their domains.The algorithm is specialized to solve mixed complementarity problems through the use of MCP functions and associated smoothers.This specialized algorithm includes an option to ensure that all iterates remain feasible.Easily satisfiable sufficient conditions are given to ensure that the homotopy zero curve remains feasible,and global convergence properties for the MCP algorithm are developed.Computational results on the MCPLIB test library demonstrate the effectiveness of the algorithm

    A smoothing Newton method based on the generalized Fischer-Burmeister function for MCPs

    Get PDF
    [[abstract]]We present a smooth approximation for the generalized Fischer-Burmeister function where the 2-norm in the FB function is relaxed to a general p-norm (p > 1), and establish some favorable properties for it, for example, the Jacobian consistency. With the smoothing function, we transform the mixed complementarity problem (MCP) into solving a sequence of smooth system of equations.

    Some recent advances in projection-type methods for variational inequalities

    Get PDF
    AbstractProjection-type methods are a class of simple methods for solving variational inequalities, especially for complementarity problems. In this paper we review and summarize recent developments in this class of methods, and focus mainly on some new trends in projection-type methods

    A new class of penalized NCP-functions

    Get PDF
    [[abstract]]In this paper, we consider a class of penalized NCP-functions, which includes several existing well-known NCP-functions as special cases. The merit function induced by the class of NCP-functions is shown to have bounded level sets and provide error bounds under mild conditions.

    Algorithmes de Newton-min polyédriques pour les problèmes de complémentarité

    Get PDF
    The semismooth Newton method is a very efficient approach for computing a zero of a large class of nonsmooth equations. When the initial iterate is sufficiently close to a regular zero and the function is strongly semismooth, the generated sequence converges quadratically to that zero, while the iteration only requires to solve a linear system.If the first iterate is far away from a zero, however, it is difficult to force its convergence using linesearch or trust regions because a semismooth Newton direction may not be a descent direction of the associated least-square merit function, unlike when the function is differentiable. We explore this question in the particular case of a nonsmooth equation reformulation of the nonlinear complementarity problem, using the minimum function. We propose a globally convergent algorithm using a modification of a semismooth Newton direction that makes it a descent direction of the least-square function. Instead of requiring that the direction satisfies a linear system, it must be a feasible point of a convex polyhedron; hence, it can be computed in polynomial time. This polyhedron is defined by the often very few inequalities, obtained by linearizing pairs of functions that have close negative values at the current iterate; hence, somehow, the algorithm feels the proximity of a "bad kink" of the minimum function and acts accordingly.In order to avoid as often as possible the extra cost of having to find a feasible point of a polyhedron, a hybrid algorithm is also proposed, in which the Newton-min direction is accepted if a sufficient-descent-like criterion is satisfied, which is often the case in practice. Global convergence to regular points is proved; the notion of regularity is associated with the algorithm and is analysed with care.L'algorithme de Newton semi-lisse est très efficace pour calculer un zéro d'une large classe d'équations non lisses. Lorsque le premier itéré est suffisamment proche d'un zéro régulier et si la fonction est fortement semi-lisse, la suite générée converge quadratiquement vers ce zéro, alors que l'itération ne requière que la résolution d'un système linéaire.Cependant, si le premier itéré est éloigné d'un zéro, il est difficile de forcer sa convergence par recherche linéaire ou régions de confiance, parce que la direction de Newton semi-lisse n'est pas nécessairement une direction de descente de la fonction de moindres-carrés associée, contrairement au cas où la fonction à annuler est différentiable. Nous explorons cette question dans le cas particulier d'une reformulation par équation non lisse du problème de complémentarité non linéaire, en utilisant la fonction minimum. Nous proposons un algorithme globalement convergent, utilisant une direction de Newton semi-lisse modifiée, qui est de descente pour la fonction de moindres-carrés. Au lieu de requérir la satisfaction d'un système linéaire, cette direction doit être intérieur à un polyèdre convexe, ce qui peut se calculer en temps polynomial. Ce polyèdre est défini par souvent très peu d'inégalités, obtenus en linéarisant des couples de fonctions qui ont des valeurs négatives proches à l'itéré courant; donc, d'une certaine manière, l'algorithme est capable d'estimer la proximité des "mauvais plis" de la fonction minimum et d'agir en conséquence.De manière à éviter au si souvent que possible le coût supplémentaire lié au calcul d'un point admissible de polyèdre, un algorithme hybride est également proposé, dans lequel la direction de Newton-min est acceptée si un critère de décroissance suffisante est vérifié, ce qui est souvent le cas en pratique. La convergence globale vers des points régulier est démontrée; la notion de régularité est associée à l'algorithme et est analysée avec soin

    Polyhedral Newton-min algorithms for complementarity problems

    Get PDF
    Abstract : The semismooth Newton method is a very efficient approach for computing a zero of a large class of nonsmooth equations. When the initial iterate is sufficiently close to a regular zero and the function is strongly semismooth, the generated sequence converges quadratically to that zero, while the iteration only requires to solve a linear system. If the first iterate is far away from a zero, however, it is difficult to force its convergence using linesearch or trust regions because a semismooth Newton direction may not be a descent direction of the associated least-square merit function, unlike when the function is differentiable. We explore this question in the particular case of a nonsmooth equation reformulation of the nonlinear complementarity problem, using the minimum function. We propose a globally convergent algorithm using a modification of a semismooth Newton direction that makes it a descent direction of the least-square function. Instead of requiring that the direction satisfies a linear system, it must be a feasible point of a convex polyhedron; hence, it can be computed in polynomial time. This polyhedron is defined by the often very few inequalities, obtained by linearizing pairs of functions that have close negative values at the current iterate; hence, somehow, the algorithm feels the proximity of a “negative kink” of the minimum function and acts accordingly. In order to avoid as often as possible the extra cost of having to find a feasible point of a polyhedron, a hybrid algorithm is also proposed, in which the Newton-min direction is accepted if a sufficient-descent-like criterion is satisfied, which is often the case in practice. Global convergence to regular points is proved

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte
    corecore