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Abstract. A probability-one homotopy algorithm for solving nonsmooth equations is described.
This algorithm is able to solve problems involving highly nonlinear equations, where the norm of the
residual has non-global local minima. The algorithm is based on constructing homotopy mappings
that are smooth in the interior of their domains. The algorithm is specialized to solve mixed comple-
mentarity problems through the use of MCP functions and associated smoothers. This specialized
algorithm includes an option to ensure that all iterates remain feasible. Easily satisfiable sufficient
conditions are given to ensure that the homotopy zero curve remains feasible, and global convergence
properties for the MCP algorithm are developed. Computational results on the MCPLIB test library
demonstrate the effectiveness of the algorithm.
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1. Introduction. The primary attraction of homotopy algorithms is that they
are able to reliably solve systems of equations involving highly nonlinear functions,
where the norm of the residual may have non-global local minima. This is because,
unlike line search or trust region methods, homotopy methods do not rely on descent
of a merit function. Instead, they work by following a path, which under certain
weak assumptions is known to lead to a solution. Standard probability-one homotopy
algorithms require that the system of equations involves only smooth (C2) functions.
This paper proposes a probability-one homotopy algorithm for solving nonsmooth
systems of equations, and specializes this algorithm to solve mixed complementarity
problems. The algorithm uses smoothing functions to construct a homotopy mapping
that is C2 in the interior of its domain. This allows the zero curve of the homotopy
mapping to be tracked using software from the HOMPACK90 suite of homotopy codes
[24]. A preliminary version of this algorithmwas presented at the Second International
Conference on Complementarity Problems [5]. The algorithm proposed here has two
significant improvements: first, a new end game strategy, which makes better use
of available information about the behavior of the homotopy zero curve; second, an
option for mixed complementarity problems that ensures that all iterates generated
by the algorithm are feasible. This is important because many applications involve
functions that are not defined outside of the feasible region. For the case of mixed
complementarity problems, new convergence results are presented, which establish
easily satisfiable sufficient conditions to ensure that the homotopy zero curve always
remains strictly feasible.

In order to describe the algorithm, a significant amount of background material
is needed. This is given in Section 2, which discusses notation, nonsmooth equations,
a generalized Newton method for nonsmooth equations (which will be used in the end
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game), probability-one homotopy methods, complementarity problems, and smooth-
ing functions. Section 3 describes a probability-one homotopy algorithm for nons-
mooth equations. This algorithm is then specialized to solve mixed complementarity
problems in Section 4. Section 5 addresses implementation details and computational
results, and Section 6 concludes.

2. Background.

2.1. Notation. When discussing vectors and vector-valued functions, subscripts
are used to indicate components, whereas superscripts are used to indicate the itera-
tion number or some other label. In contrast, for scalars or scalar-valued functions,
subscripts refer to labels so that superscripts can be used for exponentiation. The
vector of all ones is represented by e.

Unless otherwise specified, ‖·‖ denotes the Euclidean norm. For a set C ⊂ IRn,
πC(x) represents the orthogonal projection (with respect to the Euclidean norm) of x
onto C. The symbol IR+ refers to the nonnegative real numbers. The extended real
numbers are denoted by IR := IR

⋃
{−∞,+∞}.

Real-valued functions are denoted with lower-case letters like f or φ whereas
vector-valued functions are represented by upper-case letters like F or Φ. For a
function F : C ⊂ IRn → IRm, ∇F (x) is the m × n matrix whose i, jth element
is ∂Fi(x)/∂xj. Let D ⊂ IRm. Then F−1(D) is the set-valued inverse defined by
F−1(D) := {x | F (x) ∈ D }.

Given a function F : IRn → IRm, the directional derivative of F at x in the
direction d is denoted by F ′(x; d) := limt↓0 (F (x+ td)− F (x))/ t, provided the limit
exists.

2.2. Nonsmooth equations. This paper is concerned with solving equations
of the form F (x) = 0, where the function F : IRn → IRn is locally Lipschitzian,
but not necessarily continuously differentiable. Such nonsmooth equations provide a
unifying framework for the study of many important classes of problems, including
constrained optimization, finite-dimensional variational inequalities, complementarity
problems, equilibrium problems, generalized equations, partial differential equations,
and fixed point problems. The following definitions will be used throughout the paper.

By Rademacher’s theorem, since F is locally Lipschitzian, it is differentiable
almost everywhere. Let DF be the set where F is differentiable. Define the B-
subdifferential by

∂BF (x) :=

{
V

∣∣∣∣ ∃{xk} → x, xk ∈ DF , with V = lim
k→∞

∇F (xk)

}
.

The Clarke subdifferential ∂F (x) is the convex hull of ∂BF (x).
F is said to be semismooth [19] at x if it is directionally differentiable at x and

for any V ∈ ∂F (x+ h), h → 0,

V h− F ′(x; h) = o(‖h‖).

F is said to be strongly semismooth [10] if additionally,

V h− F ′(x; h) = O(‖h‖2).

A semismooth function F : IRn → IRn is BD-regular at x if all elements in ∂BF (x)
are nonsingular, and F is strongly regular at x if all elements in ∂F (x) are nonsingular.

2



2.3. Newton’s method for nonsmooth equations. One approach to solving
the nonsmooth equation F (x) = 0 is a generalization of Newton’s method to semis-
mooth equations, which was proposed by Qi [19]. Qi’s method is used together with
an Armijo line search in the end game of the homotopy algorithm proposed here. Qi’s
algorithm, which is discussed in detail in [3], is shown in Figure 2.1. θ in this algorithm
is the merit function defined by θ(x) := 1

2F (x)TF (x). Theorem 2.1, which is restated
from [19] and [10], shows that this algorithm has the same fast local convergence
properties as the standard (smooth) Newton’s method under natural generalizations
of the standard assumptions.

Fig. 2.1. Generalized damped newton method

Step 1 [Initialization] Select line search parameters α, σ ∈ (0, 1), a positive
integer mmax, a starting point x0 ∈ IRn, and a stopping tolerance
tol. Set k = 0.

Step 2 [Direction generation] Choose V k ∈ ∂BF (xk). If V k is singular, stop,
returning the point xk along with a failuremessage. Otherwise choose
the direction

dk = −(V k)−1F (xk).(2.1)

Step 3 [Step length determination] Let mk be the smallest nonnegative in-
teger m ≤ mmax such that

θ(xk + αmdk)− θ(xk) ≤ −σαmθ(xk).(2.2)

If no such mk exists, stop; the algorithm failed. Otherwise set xk+1 =
xk + αmkdk.

Step 4 [Termination check] If θ(xk+1) < tol stop, returning the point xk+1.
Otherwise, return to step 2, with k replaced by k + 1.

Theorem 2.1. Suppose that x∗ is a solution of F (x) = 0 and that F is semis-
mooth and BD-regular at x∗. Then the iteration method defined by xk+1 = xk + dk,
where dk is given by (2.1) is well defined and convergent to x∗ Q-superlinearly in a
neighborhood of x∗. If F is strongly semismooth at x∗, the iteration sequence converges
to x∗ Q-quadratically.

One consequence of this local convergence theorem is that within a neighborhood
of a BD-regular solution x∗, the line search criterion (2.2) will be satisfied by mk =
0. Thus, the inner algorithm will take full Newton steps and achieve the fast local
convergence rates specified by the theorem.

The damped Newton method described above works very well when started near
a solution, or when applied to problems that are nearly linear in the sense that their
merit functions do not contain local minima that are not solutions.

For highly nonlinear problems, the damped Newton method tends to fail without
a carefully chosen starting point. The reason, of course, is that unless started close
to a solution, the iterates may converge only to a local minimum of the merit func-
tion. This motivates the consideration of homotopy methods, which are truly globally
convergent.
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2.4. Homotopy methods. The main theory underlying the present homotopy
method is summarized in the following proposition from [5]. This proposition is similar
to results presented in [20] and [8, Theorem 2.4]; however, it does not assume F itself
to be differentiable. The path γa defined in the proposition “reaches a zero of F ” in
the sense that it contains a sequence {(λk, x

k)} that converges to (1, x̄), where x̄ is a
zero of F .

Proposition 2.2. Let F : IRn → IRn be a Lipschitz continuous function and
suppose there is a C2 map

ρ : IR
m×[0, 1)× IR

n → IR
n

such that
1. ∇ρ(a, λ, x) has rank n on the set ρ−1({0}),
2. the equation ρa(0, x) = 0, where ρa(λ, x) := ρ(a, λ, x), has a unique solution

xa ∈ IRn for every fixed a ∈ IRm,
3. ∇xρa(0, x

a) has rank n for every a ∈ IRm,
4. ρ is continuously extendible (in the sense of Buck [6]) to the domain

IRm×[0, 1]× IRn, and ρa(1, x) = F (x) for all x ∈ IRn and a ∈ IRm, and
5. γa, the connected component of ρ−1

a ({0}) containing (0, xa), is bounded for
almost every a ∈ IRm.

Then for almost every a ∈ IRm there is a zero curve γa of ρa, along which ∇ρa has
rank n, emanating from (0, xa) and reaching a zero x̄ of F at λ = 1. Further, γa does
not intersect itself and is disjoint from any other zeros of ρa. Also, if γa reaches a
point (1, x̄) and F is strongly regular at x̄, then γa has finite arc length.

Because γa is a smooth curve, it can be parameterized by its arc length away
from (0, xa). This yields a function (λ(s), x(s)), representing the point on γa of arc
length s away from (0, xa).

The construction of a globally convergent probability-one homotopy algorithm
entails: (1) constructing a map ρ according to Proposition 2.2, (2) choosing a ∈ IRm,
(3) finding xa solving ρa(0, x) = 0, and (4) tracking γa starting from (0, xa) until
λ = 1. Assuming an appropriate ρ exists, the theory guarantees that for almost all a
(in the sense of Lebesgue measure), γa exists and leads to a solution, hence the term
“probability-one”.

A simple (and occasionally useful in practice) homotopy mapping is ρ : IRn×
[0, 1)× IRn → IRn given by

ρ(a, λ, x) := λF (x) + (1− λ)(x− a).(2.3)

If F is C2 then ρ trivially satisfies properties (1), (2), (3), and (4) but not necessarily
(5) of Proposition 2.2. The following theorem gives conditions on F under which the
fifth condition is satisfied. This result will be generalized to nonsmooth functions in
Theorem 3.2.

Theorem 2.3. [22] Let F : IRn → IRn be a C2 function such that for some
x̃ ∈ IRn and r > 0,

(x− x̃)TF (x) ≥ 0 whenever ‖x− x̃‖ = r.(2.4)

Then F has a zero in a closed ball of radius r about x̃, and for almost every a in the
interior of this ball there is a zero curve γa of

ρa(λ, x) := λF (x) + (1− λ)(x− a),
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along which ∇ρa(λ, x) has full rank, emanating from (0, a) and reaching a zero x̄ of
F at λ = 1. Further, γa has finite arc length if ∇F (x̄) is nonsingular.

The actual statement of the theorem in [22] fixes x̃ = 0. However, the proof
can be modified trivially to yield the more general theorem above. (See the proof of
[5, Theorem 2.11] for the necessary modifications). It is interesting to note that in
many applications, (2.4) holds for all r sufficiently large (not just for some fixed r).
This makes the choice of x̃ irrelevant. Furthermore, in such cases, a can be chosen
arbitrarily, (instead of from some neighborhood of x̃), thus making the method truly
globally convergent (with probability one).

(2.4) will be referred to as the global monotonicity property. If a C2 function
F possesses this property, these theoretical results have some profound implications:
the guaranteed existence of a path between almost any starting point and a solution
x̄ to F (x) = 0, which has finite arc length if rank∇F (x̄) = n. In theory, to find a
solution, one must simply follow the path to a point of γa where λ = 1. In practice,
however, the task of constructing a ρ for which γa is short and smooth is very difficult,
although this has been done for large classes of problems.

Several packages exist to solve root finding problems using homotopy techniques
[24]. The implementation here uses the routine STEPNX from the HOMPACK90 suite
of software [23] [24, Section 3], which tracks the zero curve of a homotopy mapping
specified by the user.

2.5. Complementarity problems. Given a continuously differentiable func-
tion G : IRn → IRn, the nonlinear complementarity problem NCP(G) is to find some
x ∈ IRn so that

0 ≤ x ⊥ G(x) ≥ 0,(2.5)

where x ⊥ G(x) means that xTG(x) = 0.

Given a rectangular region IBl,u :=
∏n

i=1[li, ui] ⊂ IR n defined by two vectors,
l and u in IRn where −∞ ≤ l < u ≤ ∞, and a function G : IRn → IRn, the
mixed complementarity problem MCP(G, IBl,u) is to find an x ∈ IBl,u such that for
each i ∈ {1, . . . , n}, either 1) xi = li and Gi(x) ≥ 0, 2) Gi(x) = 0, or 3) xi =
ui and Gi(x) ≤ 0. This is equivalent to the condition that mid(x− l, x−u,G(x)) = 0,
where mid represents the componentwise median function. When these conditions
are satisfied, write G(x) ⊥ x and say that x is complementary to G(x). Assume
henceforth that G is C2.

It is well known that NCP(G) can be reformulated as a system of equations. This
was first shown by Mangasarian [16]. An excellent review of reformulations of NCP
can be found in [18]. To discuss such reformulations requires several definitions, which
are equivalent to the NCP function and the BVIP function defined in [18]:

Definition 2.4. A function φ : IR2 → IR is called an NCP function provided
φ(a, b) = 0 if and only if min(a, b) = 0.

Definition 2.5. A function ψ : IR
⋃
{−∞} × IR

⋃
{∞} × IR2 → IR is called an

MCP function provided ψ(l, u, a, b) = 0 if and only if mid(a− l, a− u, b) = 0.
It is useful to further distinguish NCP and MCP functions according to their

orientations:

Definition 2.6. An NCP function φ is called positively oriented if for all a, b ∈
IR,

sign(φ(a, b)) = sign(min(a, b)).
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An MCP function ψ is called positively oriented if

sign(ψ(l, u, a, b)) = sign(mid(a− l, a− u, b))

for all l ∈ IR
⋃
{−∞}, u ∈ IR

⋃
{∞}, l < u, and a, b ∈ IR.

An NCP function that has been very popular recently is the Fischer-Burmeister
function [13] φ : IR2 → IR, defined by

φFB(a, b) := a+ b−
√

a2 + b2.(2.6)

It is easily seen that φFB(a, b) = 0 if and only if 0 ≤ a ⊥ b ≥ 0. Thus, by defining the
function F : IRn → IRn by

Fi(x) := φFB(xi, Gi(x)),(2.7)

it is clear that x ∈ IRn solves NCP(G) if and only if F (x) = 0.
While φFB is not differentiable at the origin, (φFB)2 is continuously differentiable

everywhere. This property, together with the fact that φFB is semismooth, makes this
reformulation well suited for use in globalization strategies for nonsmooth Newton-
based methods (see, for example, [9]).

Given a positively oriented NCP function φ, and the convention that φ(∞, b) =
lima→∞ φ(a, b) and φ(a,∞) = limb→∞ φ(a, b), an MCP function ψ can be constructed
using the following formula, first proposed in [1]:

ψ(l, u, a, b) := φ(a− l,−φ(u− a,−b)).(2.8)

Constructing the function F : IRn → IRn by

Fi(x) := ψ(li, ui, xi, Gi(x)),(2.9)

yields a reformulation of the MCP(G, IBl,u); F (x) = 0 if and only if x is a solution to
MCP(G, IBl,u) [2].

Note that for the Fischer-Burmeister function, lima→∞ φFB(a, b) = b and
limb→∞ φFB(a, b) = a. Thus, for the MCP case, if li is finite, and ui = ∞, then
Fi(x) = φFB(xi − li, Gi(x)); if ui is finite and li = −∞, then Fi(x) = −φFB(ui −
xi,−Gi(x)); and if neither bound is finite, Fi(x) = Gi(x).

2.6. Smoothing operators. Consider the system F (x) = 0 where F is a nons-
mooth function, and suppose there exists a family of functions F µ parameterized by a
smoothing parameter µ so that lim

µ↓0
F µ = F in some sense. Under suitable conditions,

the solutions to the systems F µ(x) = 0 converge to a solution to F (x) = 0 along a
smooth trajectory [7].

Definition 2.7. Given a nonsmooth continuous function φ : IRp → IR, a
smoother for φ is a continuous function φ̃ : IRp× IR+ → IR such that

1. φ̃(x, 0) = φ(x), and
2. φ̃ is continuously differentiable on the set IRp× IR++.

If φ̃ is C2 on IRp× IR++, call φ̃ a C2-smoother.
For convenience, define φµ(x) := φ̃(·, µ). To define smoothers for functions F :

IRn → IRn, say that F µ : IRn × IR+ → IRn is a smoother for F if for each i ∈ {1 . . .n},
F µ
i is a smoother for Fi.

6



In the case of complementarity problems, the NCP functions and MCP functions
generally have well understood nonsmoothness structure, so C2-smoothers for these
functions can usually be easily constructed. As an example, the followingC2-smoother
for the Fischer-Burmeister function was proposed by Kanzow [15]:

φ̃K(a, b, µ) := a+ b−
√

a2 + b2 + 2µ,(2.10)

The following smoother is more useful here, since its partial derivative with respect
to µ is bounded near the origin.

φ̃BW (a, b, µ) := a + b−
√

a2 + b2 + µ2,(2.11)

Given a smoother φ̃ for a NCP function φ and the convention that φ̃(∞, b, µ) =
lima→∞ φ̃(a, b, µ) and φ̃(a,∞, µ) = limb→∞ φ̃(a, b, µ), a smoother ψ̃ for the MCP
function ψ defined by (2.8) can be constructed according to the formula:

ψ̃(l, u, a, b, µ) := φµ(a− l,−φµ(u− a,−b)).(2.12)

Smoothers for (2.7) and (2.9) are then given, respectively, by

F µ
i (x) := φµ(xi, Gi(x)), and(2.13)

F µ
i (x) := ψµ(li, ui, xi, Gi(x)).(2.14)

Note that for the smoother defined by (2.11), lima→∞ φ̃BW (a, b, µ) = b, and
limb→∞ φ̃BW (a, b, µ) = a. Thus, for the MCP case, if ui = ∞ and li is finite, then
F µ
i (x) = φ̃BW (xi− li, Gi(x), µ); if ui is finite and li = −∞, then F µ

i (x) = −φ̃BW (ui−
xi,−Gi(x), µ); and if neither bound is finite, then F µ

i (x) = Gi(x).

3. The algorithm. This section summarizes the probability-one homotopy al-
gorithm for solving nonsmooth equations. It contrasts with an earlier hybrid Newton-
homotopy method described in [2]. The earlier method begins by using a nonsmooth
version of a damped-Newton’s method to solve the root finding problem F (x) = 0.
If the Newton algorithm stalls, a standard homotopy method is invoked to solve a
particular smoothed version of the original problem, F µ(x) = 0, where µ is fixed. The
smoothing parameter µ is chosen based on the level of a merit function on F at the
last point x̂ generated by the Newton method. Starting from x̂, a homotopy method
is carried out until it produces a point that yields a better merit value than the pre-
vious Newton iterate. The Newton method is then started again and the process
repeats until a point is produced that is close enough to a solution or the homotopy
method fails. One key feature of that hybrid method is that each time the Newton
method stalls, a different homotopy map is constructed. The smoothing parameter µ
is chosen based on the level of the merit function when the Newton method stalls, so
the homotopy that is then used is

ρµa (λ, x) := λF µ(x) + (1− λ)(x− a).

An alternative approach, described here, is to adopt a pure probability-one ho-
motopy algorithm by fixing the homotopy map and tracking a single homotopy zero
curve into the Newton domain of convergence around a solution. Essentially, the idea
is to use a standard probability-one homotopy algorithm, but with a specially de-
signed “end game” near a solution. The key to this approach is to define a homotopy
mapping that couples the smoothing parameter with the homotopy parameter.
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3.1. The homotopy map. Given a function F and an associated C2-smoother
F µ, construct a homotopy mapping with F µ where the smoothing parameter µ is
a function of the homotopy parameter λ so that µ ↓ 0 as λ ↑ 1. If this homotopy
satisfies the conditions in Proposition 2.2, a well behaved path exists from almost any
starting point to a solution, and standard curve tracking techniques can reliably solve
the equation F (x) = 0.

Throughout this section, assume that F is a Lipschitz continuous function on IRn

and that F µ is a C2-smoother for F . Take µ : [0, 1] → IR+ to be a decreasing C2

function such that µ(λ) > 0 for λ < 1 and µ(1) = 0. For example,

µ(λ) := α(1− λ)(3.1)

for some parameter α > 0. Define the homotopy map ρa : [0, 1)×IRn → IRn, nonlinear
in λ, by

ρa(λ, x) := λF µ(λ)(x) + (1− λ)(x− a)(3.2)

and let γa be the connected component of the set ρ−1
a ({0}) that contains (0, a). Notice

that this mapping is a generalization of (2.3), since if F is C2, then F µ := F suffices.
In order to ensure that a well behaved zero curve exists, conditions on F and its

smoother are required so that Proposition 2.2 can be invoked. The following weak
assumption on the smoother will be useful in the theory that follows.

Assumption 3.1. There is a nondecreasing function η : IR+ → IR+ satisfying
lim
ν↓0

η(ν) = 0 such that for all x in IRn and all ν in IR+

‖F ν(x)− F (x)‖∞ ≤ η(ν).

Note (by [2, Proposition 2.14]) that if F ν is constructed by (2.14), with φµ defined
either by (2.10) or (2.11), Assumption 3.1 is satisfied with η(ν) := 3

√
2ν or η(ν) := 3ν,

respectively.
The following theorem [5, Theorem 2.11] is a generalization of Theorem 2.3.
Theorem 3.2. Let F : IRn → IRn be a Lipschitz continuous function such that

for some fixed r > 0 and x̃ ∈ IRn,

(x− x̃)TF (x) ≥ 0 whenever ‖x− x̃‖ = r,

and let F µ be a smoother for F satisfying Assumption 3.1. Further, suppose that the
smoothing parameter µ(λ) is such that

η(µ(λ)) <
1− λ

λ
M for 0 < λ ≤ 1(3.3)

for some M ∈ (0, r). Then γa is bounded for almost every a ∈ IRn such that ‖a− x̃‖ <
r̃ := r −M .

A direct application of Proposition 2.2 gives the main convergence theorem.
Theorem 3.3. Under the assumptions of Theorem 3.2, F has a zero in a closed

ball of radius r about x̃, and for almost every a in the interior of a ball of radius r̃
about x̃, there is a zero curve γa of

ρ(a, λ, x) := ρa(λ, x) := λF µ(λ)(x) + (1− λ)(x− a),

along which ∇ρa(λ, x) has full rank, emanating from (0, a) and reaching a zero x̄ of
F at λ = 1. Further, γa has finite arc length if F is strongly regular at x̄.

Observe that in applications, the r in Theorem 3.2 can be arbitrarily large, hence
so can r̃ = r −M , and thus ‖a− x̃‖ < r̃ is really no restriction at all.
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3.2. Tracking the zero curve. As discussed in Section 2.4, the zero curve can,
with probability one, be parameterized by arc length: let (λ(s), x(s)) be the point
on γa of arc length s away from (0, xa). Tracking the zero curve involves generating
a sequence of points {yk} ⊂ IRn+1, with y0 = (0, xa) that lie approximately on the
curve in order of increasing arc length. That is, yk ≈ (λ(sk), x(sk)), where {sk} is
some increasing sequence of arc lengths.

The subroutine STEPNX from HOMPACK90 [24] is used to handle the curve
tracking. At each iteration, STEPNX uses a predictor-corrector algorithm to gener-
ate the next point on the curve. The prediction phase requires for each iterate yk

the corresponding unit tangent vector to the curve, (y′)k ≈ (λ′(sk), x′(sk)). This
is accomplished by finding an element η of the null space of ∇ρa(y

k), and setting
(y′)k := ±η/ ‖η‖, where the sign is chosen so that (y′)k makes an acute angle with
(y′)k−1, for k > 0. On the first iterate, the sign is chosen so that the first component
(corresponding to λ) of (y′)0 is positive.

At each iteration after the first, STEPNX approximates the zero curve with a
Hermite cubic polynomial ck(s), which is constructed using the last two points yk−1

and yk, along with the associated unit tangent vectors (y′)k−1 and (y′)k. A step
of length h along this cubic yields the predicted point wk,0 := c(sk + h). The first
iteration uses a linear predictor instead, which is constructed using the starting point
y0 and its associated unit tangent vector.

Once the predicted point is calculated, a normal flow corrector algorithm [24] is
used to return to the zero curve. Starting with the initial point wk,0, the corrector
iterates wk,j, j = 1, . . . are calculated via the formula wk,j+1 := wk,j + zk,j, j =
0, 1, . . ., where the step zk,j is the unique minimum-norm solution to the equation

∇ρa(w
k,j)zk,j = −ρa(w

k,j).(3.4)

The corrector algorithm terminates when one of the following conditions is satisfied:
the normalized correction step zk,j

/(
1 +

∥∥wk,j
∥∥) is sufficiently small; some maximum

number of iterations (usually 4) is exceeded; or a rank-deficient Jacobian matrix is
encountered in (3.4). In the first case, set yk+1 := wk,j, calculate an optimal step
size h for the next iteration, and proceed to the next prediction step. In the second
case, discard the point and return to the prediction phase using a smaller step size if
possible; otherwise, terminate curve tracking with an error return. In the third case,
terminate the curve tracking, since rank∇ρa < n should theoretically not happen,
and indicates serious difficulty. The step size in h is also never reduced beyond relative
machine precision.

3.2.1. Step size control. At each iteration, STEPNX estimates an “optimal”
step size to be used in computing the predicted point. This calculation is governed by
several user-defined parameters. Successful termination of the corrector phase occurs
when the norm of the residual

∥∥ρ(wk,j)
∥∥ is sufficiently small. In some cases, this can

happen even when the converged point is not close to the true zero curve. As the
tracking progresses, the computed points may slowly drift farther and farther from
the zero curve, while continuing to meet the criterion on the norm of the residual.
Eventually, the iterates may leave the Newton domain of attraction, and the corrector
phase may fail to converge, no matter how small the predictor step is. To avoid such
difficulties, STEPNX calculates several quantities that measure the “quality” of the
step.

The first quantity is the contraction factor∥∥zk,1∥∥/∥∥zk,0∥∥ ,
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which measures how much the Newton step shrinks from the first corrector iteration
to the second. The second quantity is the residual factor∥∥ρa(wk,1)

∥∥/∥∥ρa(wk,0)
∥∥ .

The third quantity is the distance factor∥∥wk,1 − yk+1
∥∥/∥∥wk,0 − yk+1

∥∥ ,

which approximates how much the distance from the zero curve shrinks from the
first iteration to the second. Since Newton’s method has quadratic local convergence,
each of these quantities should be small when the predicted point is close to the
zero curve. Through the use of input parameters, the user is able to specify ideal
values (lideal, rideal, dideal, respectively) for each of these quantities. If the
quantities are smaller than the ideal, the step size will be increased; if the quantities
are larger than ideal, the step size will be decreased. The amount of increase or
decrease is also controlled by user-defined parameters. Generally, default values for
all of these parameters work very well. However, occasionally, it is necessary to choose
more conservative parameter values in order to avoid losing the zero curve.

As a final consideration, the default limit on the number of Newton iterations in
the corrector phase is 4 (a HOMPACK90 parameter). In some cases, increasing this
limit to 6 or 8 improved performance.

3.3. The end game. The standard homotopy method used by HOMPACK90
concludes the curve tracking with an end game strategy that zeros in on a point (λ, x)
on the zero curve with λ = 1. This end game strategy, which is a robust blend of
secant iterations with Newton corrections, is begun when a point (λ, x) is found on
the zero curve with λ > 1. However, this approach requires that ρ(λ, x) be defined for
λ > 1—a requirement that is not desirable here since the smoother F µ(λ) may not be
defined for λ > 1. Therefore the standard end game is replaced with the generalized
Newton method given in Figure 2.1, which is begun while λ < 1 still.

The Newton end game is invoked when one of the following criteria is satisfied:
1. The point generated by the cubic predictor (with step length h) has λ > 1.
2. A linear predictor with the same step length has λ > 1.
3. The corrector phase of the algorithm generates a point with λ > 1.

In all cases, a starting point for the Newton end game is the prediction of where the
zero curve crosses the hyperplane λ = 1. The precise details follow.

1. First, try to find a point (λc, xc) for which the cubic approximation has λc = 1.
If this point occurs within a step length shorter than 2h, then xc will be the
starting point.

2. Otherwise, find a point (λl, xl) for which the linear approximation has λl = 1.
Then xl will be the starting point.

If the curve tracking fails for any reason before the end game criteria are met,
then attempt the nonsmooth Newton’s method with the starting point x, where (λ, x)
is the last point found on the zero curve.

The starting point generated by the above procedure is usually quite good. How-
ever, in some cases, the Newton end game may fail to converge. In that event, simply
return to tracking the zero curve, picking up from the last point yk on γa, but with
the step size (computed by STEPNX) cut in half, and with the STEPNX tracking
tolerances abserr and relerr also reduced.

Note that this approach differs from the end game strategy described in [5], which
simply invoked the Newton end game with a starting point x whenever a point (λ, x)
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was found on the zero curve with λ sufficiently close to 1. The new end game strategy
has two main advantages over this earlier approach. First, using the cubic predictor
to estimate where the zero curve crosses λ = 1 results is a significantly more accurate
approximation for the solution as a starting point for Newton’s method. Second,
the new method takes better advantage of available information in determining when
to enter the end game. Specifically, on difficult problems, the Newton domain of
convergence near the final solution will be small, so it is desirable to track the zero
curve very close to λ = 1 before trying Newton’s method. This is exactly what
happens since, in this case, the step size will likely be very small. In contrast, for
easier problems, larger step sizes will be used, and the end game will be started
earlier. Again this is acceptable because the Newton domain of convergence around
the solution will likely be large.

In order to solve the system F (x) = 0, the nonsmooth Newton’s method requires
that F be semismooth. If, in addition, F is BD-regular at a solution x∗, Newton’s
method will converge superlinearly in some neighborhood about x∗. Theoretically, to
use the homotopy approach and guarantee the end game’s success, F should satisfy
the global monotonicity property and be strongly regular at every solution. This
guarantees that the homotopy’s zero curve crosses the hyperplane λ = 1 transversally
rather than tangentially, and ensures that the zero curve will have finite arc length.
For most homotopies used in practice in other contexts, even if the zero curve γa is
tangent to the hyperplane λ = 1, a point with λ > 1 near ρ−1

a ({0}) will be generated,
and the usual end game provided in HOMPACK90 will succeed (to modest accuracy,
since ∇F (x̄) is singular).

4. Solving mixed complementarity problems. This section specializes the
algorithm described above in order to solve mixed complementarity problems. The
approach taken here is to reformulate the MCP by defining the function F : IRn → IRn

according to (2.8) and (2.9), where φ is a positively oriented NCP function, and
defining a smoother for F according to (2.12) and (2.14), where φµ is a smoother
for φ. Once these functions are defined, the homotopy algorithm described in the
previous section can be used to find a zero of F , which corresponds to a solution
of MCP. Because of the special structure of these functions, stronger convergence
results are possible than for the general nonsmooth equations problem. The first
results presented in this section are tailored to particular choices of φ and φµ, namely
the Fischer-Burmeister NCP function (2.6), and the smoother (2.11). More general
results are given in Theorem 4.3 and Corollary 4.4. In describing these results it will
be useful to refer to the following index set:

Il,u = {i | −∞ < li < ui < ∞} .

That is, Il,u is the set of indices for which both the lower and upper bounds are finite.

Theorem 4.1. Let φ be the positively oriented NCP function in (2.6), and let φ̃
be the smoother for φ in (2.11). Let ψ be defined by (2.8) with associated smoother ψ̃
defined by (2.12). Choose a ∈ int IBl,u. Let F µ be defined by (2.14), where µ : [0, 1] →
IR+ is a decreasing C2 function satisfying µ(1) = 0 and

µ(λ)2 ≤ 2
1− λ

λ
(ui − ai)(ui − li) for all i ∈ Il,u, λ ∈ (0, 1].(4.1)

Define ρa : [0, 1) × IRn → IRn by (3.2), and let γa be the connected component of
ρ−1
a ({0}) containing (0, a). Then γa is contained in [0, 1)× (int IBl,u).
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Proof. Let (λ̂, x̂) be an arbitrary point on γa. If λ̂ = 0, then x̂ = a ∈ int IBl,u; so

assume 0 < λ̂ < 1. First suppose that x̂i ≤ li for some i. Then

0 = ρi(λ̂, x̂) = λ̂F
µ(λ̂)
i (x̂) + (1− λ̂)(x̂i − ai)

or

F
µ(λ̂)
i (x̂) = −1− λ̂

λ̂
(x̂i − ai) > 0,(4.2)

where the last inequality follows from x̂i ≤ li < ai, since a is interior to IBl,u. Also

F
µ(λ̂)
i (x̂) = φ̃(x̂i − li, ζ, µ), where ζ := −φ̃(ui − x̂i,−Gi(x̂), µ). Thus,

F
µ(λ̂)
i (x̂) = φ̃(x̂i − li, ζ, µ) ≤ φ(x̂i − li, ζ) ≤ 0,

contradicting (4.2). It follows that every point (λ, x) on γa satisfies l < x.
Now suppose x̂i ≥ ui for some i. Note that this implies that ui is finite. In this

case (analogous to (4.2)),

F
µ(λ̂)
i (x̂) = −1− λ̂

λ̂
(x̂i − ai) ≤ −1 − λ̂

λ̂
(ui − ai)(4.3)

and ζ = −φ̃(ui − x̂i,−Gi(x̂), µ) > 0 since µ(λ) > 0 for λ < 1. If li = −∞, then

F
µ(λ̂)
i (x̂) = ζ > 0, contradicting (4.3). If li is finite, then from (6) and (11), for any

α, β ∈ IR,

φ̃(α, β, µ)− φ(α, β) > − µ2

2
√

α2 + β2
.(4.4)

Then, using ζ > 0, x̂i ≥ ui, the monotonicity of φ̃, (4.4) and (4.1) gives

F
µ(λ̂)
i (x̂) = φ̃(x̂i − li, ζ, µ)

≥ φ̃(ui − li, 0, µ)

> φ(ui − li, 0)−
µ2

2
√

(ui − li)2

= − µ2

2(ui − li)

≥ −1− λ̂

λ̂
(ui − ai),

contradicting (4.3). Therefore every point (λ̂, x̂) on γa satisfies l < x̂ < u.
Note that if Il,u is empty, then the condition on µ(λ) in the above theorem is

achieved by any decreasing C2 function satisfying µ(1) = 0. If Il,u is not empty, the
condition is easily achieved by choosing a deep in the interior of the feasible region

IBl,u. For example, if ui − ai ≥ 1
2(ui − li) for all i ∈ Il,u, then

µ(λ) =

[
min
i∈Il,u

(ui − li)

]
(1− λ)
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suffices, since for 0 < λ ≤ 1,

µ(λ)2 =

[
min
i∈Il,u

(ui − li)

]2
(1− λ)2

≤ 2

[
min
i∈Il,u

(ui − ai)(ui − li)

]
(1− λ)2

≤ 2

[
min
i∈Il,u

(ui − ai)(ui − li)

]
(1 − λ)

λ
.

The above theorem has two important consequences. First, because γa always
stays in the feasible region, it is possible to implement the algorithm without ever
having to evaluate functions outside of the feasible region. This is important because
many applications involve functions that are not defined outside the feasible region.
The second consequence is the guarantee that when all bounds are finite, the zero
curve γa is bounded. The implications of this are stated in the following corollary.

Corollary 4.2. Let φ and φµ be defined by (2.6) and (2.11), respectively. As-
sume that all the bounds of the MCP are finite, choose κ ∈ (0,

√
2) and take

µ(λ) = κ
[
min
i

(ui − li)
]
(1− λ),(4.5)

Then for almost all a ∈ int IBl,u satisfying ui − ai ≥ κ2(ui − li)/2 for 1 ≤ i ≤ n and
ρa defined as in Theorem 4.1, there is a zero curve γa of ρa emanating from (0, a),
along which ∇ρa(λ, x) has full rank, that remains in [0, 1)×

(
int IBl,u

)
and reaches a

point (1, x̄), where x̄ solves the MCP. γa does not intersect itself, is disjoint from any
other zeros of ρa, and has finite arc length if F is strongly regular at x̄.

Proof. The first four hypotheses of Proposition 2.2 are satisfied trivially. The
choice of φµ, µ(λ), and the restrictions on a suffice to carry out the proof of Theo-
rem 4.1. Hence γa remains in [0, 1)×

(
int IBl,u

)
, and is bounded since IBl,u is bounded.

The remainder of this section generalizes the above results to other choices of φ
and φµ.

Theorem 4.3. Let φ be a positively oriented NCP function, and let φ̃ be a
C2-smoother for φ, monotone in its first two variables, satisfying

φ(α, β) ≥ φ̃(α, β, µ), for all α, β ∈ IR , µ > 0, and(4.6)

φ̃(α, 0, µ) > −cµp

α
, for µ > 0, 0 < α < ∞,(4.7)

where c and p are positive constants. Define ψ by (2.8) and the smoother ψ̃ by (2.12).
Choose a ∈ int IBl,u, and let µ : [0, 1]→ IR+ be a decreasing C2 function with µ(1) = 0
satisfying

µ(λ)p ≤ 1− λ

cλ
(ui − ai)(ui − li) for i ∈ Il,u, λ ∈ (0, 1].(4.8)

Define F µ by (2.14), define ρa : [0, 1)×IRn → IRn by (3.2), and let γa be the connected
component of ρ−1

a ({0}) containing (0, a). Then γa is contained in [0, 1)× (int IBl,u).
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Proof. The proof is identical to the proof of Theorem 4.1 except that in place of
(4.4), the inequality (4.7) is used. Then by similar arguments using (4.8),

F
µ(λ̂)
i (x̂) > − cµp

ui − li

≥ −1− λ̂

λ̂
(ui − ai),

contradicting (4.3).
Corollary 4.4. Let φ, φ̃, ψ, ψ̃, and F µ be defined as in Theorem 4.3. Assume

that all the bounds of the MCP are finite, choose κ ∈ (0, 1), and take

µ(λ) = κ

(
1− λ

c

)1/p [
min
i

(ui − li)
]2/p

Then for almost all a ∈ int IBl,u satisfying ui − ai ≥ κp(ui − li) for 1 ≤ i ≤ n and ρa
defined as in Theorem 4.1, there is a zero curve γa of ρa emanating from (0, a), along
which ∇ρa(λ, x) has full rank, that remains in [0, 1)×

(
int IBl,u

)
and reaches a point

(1, x̄), where x̄ solves the MCP. γa does not intersect itself, is disjoint from any other
zeros of ρa, and has finite arc length if F is strongly regular at x̄.

4.1. Ensuring feasibility. Since some MCP applications involve functions that
are not defined outside the feasible region, the algorithm includes an option to ensure
that all iterates are feasible. The followingdiscussion assumes that the MCP algorithm
is based on the particular choices of φ and φµ given by (2.6) and (2.11).

Feasibility of the path γa can be assured by Theorem 4.1, provided that the initial
point a and the function µ(λ) are chosen appropriately. The following procedure
achieves this while choosing the initial point a near the starting point x0 provided by
the user: define a by

ai :=




mid(li + νi, x
0
i , ui − νi), if i ∈ Il,u,

max(li + ν, x0
i ) for ui = ∞, li finite,

min(ui − ν, x0
i ) for li = −∞, ui finite,

x0
i if li = −∞, ui = ∞,

(4.9)

where νi := κ2
min(ui − li)/2 for i ∈ Il,u, and κmin ∈ (0, 1) and ν > 0 are constants

that ensure the strict feasibility of a. Next, define µ(λ) by (3.1), with α given by

α =

{
min

(
c, κ

[
mini∈Il,u(ui − li)

])
, if Il,u �= ∅,

c otherwise,
(4.10)

where c is some positive constant, and κ is defined as follows if Il,u �= ∅:

κ := min
i∈Il,u

√
2(ui − ai)

ui − li
.(4.11)

Note that if Il,u is not empty, this choice of a and κ ensures that κ ≥ κmin and
also that (4.1) is satisfied. Thus, the assumptions of Theorem 4.1 are satisfied, so
γa remains strictly within the feasible region. Feasibility is maintained by exploit-
ing STEPNX’s built-in logic for handling domain violations. Precisely, whenever a
STEPNX call to evaluate F (x) produces an infeasible point (either in the prediction
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phase or the correction phase), that domain violation is reported to STEPNX. The
result is that STEPNX cuts the step size in half (after sanity checks to prevent an
infinite loop) and calculates a new predicted point. Since the zero curve is strictly
feasible for λ < 1, eventually (assuming adequate machine precision) a feasible step
will be taken.

Finally, to ensure feasibility of the iterates generated in the end game, the gen-
eralized damped Newton method in Figure 2.1 is modified according to the general
descent framework described in [12]. Specifically, the Newton direction dk is projected
back onto the feasible region to produce the modified direction

d̃k := πIBl,u
(xk + dk)− xk.

Note that xk + d̃k is feasible. Step 3 in Figure 2.1 is then replaced with the following:
Step 3’ If θ(xk + d̃k) ≤ (1− σ)θ(xk), set xk+1 = xk + d̃k. Otherwise, take a

projected gradient step as follows: let mk be the smallest nonnegative
integer m ≤ mmax such that

θ(xk(αm)) ≤ θ(xk)− σ∇θ(xk)(xk − xk(αm)),(4.12)

where xk(t) := πIBl,u
(xk − t∇θ(xk)). If no such mk exists, stop; the

algorithm failed. Otherwise, set xk+1 = xk(αk).

Note that for any feasible x∗,
∥∥∥xk + d̃k − x∗

∥∥∥ ≤
∥∥xk + dk − x∗∥∥. This ensures,

by [12, Theorem 4.5] and Theorem 2.1, that in a neighborhood of a strongly regular
solution x̄, the iterates generated by the feasible end game strategy described above
converge Q-superlinearly to x̄.

The projected gradient step in the above algorithm requires that θ be differen-
tiable. This is true when φ is the Fischer-Burmeister function (2.6), but is not true
in general.

5. Solver implementation and testing. The MCP algorithm described in the
previous section was implemented using the Fischer-Burmeister NCP function for φ
and the smoother defined by (2.11). The nonsmooth Newton’s method described in
Figure 2.1 was used for the Newton end game. To construct the homotopy mapping
defined in (3.2), the parameter a was constructed according to (4.9), with κmin := 0.1,
and ν = 0.0001. The function µ(λ) was defined by (4.10), with c = 1.0, and κ defined
by (4.11).

The algorithm was implemented in C with a link to the Fortran 90 subroutine
STEPNX from HOMPACK90. The code is interfaced with the GAMS modeling
language, enabling it to be tested using the MCPLIB suite of GAMS test problems
[11, 4]. All linear algebra was performed using the LUSOL sparse factorization routine
[14] from MINOS [17].

Computational results on the MCPLIB problems are shown in Table 5.1. Many
of the problems in this test library include multiple runs, which vary the starting
point x0 or other parameters defining the problem. All of the problems were run
using default parameter settings, and the number of successes and failures over all
runs are reported in the third column of Table 5.1. The notation m(n) means that
the problem included m+n runs, and for those, there were m successes and n failures.
The default parameters were chosen as follows:

• Curve tracking parameters: abserr = relerr = 10−4. Maximum step size
hmax = 100, 000. The normal default for this parameter used by HOM-
PACK90 is hmax = 1. However, many problems in the MCPLIB test library
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were poorly scaled so had very long zero curves. The large value of hmax was
therefore used to allow these curves to be tracked in a reasonable number of
iterations. All other curve tracking parameters were the defaults chosen by
STEPNX.

• Newton parameters (See Figure 1): α = σ = 0.5. mmax = 20. Maximum
number of Newton iterations = 30.

• Stopping criteria: An iterate xk was considered to solve the problem when∥∥F (xk)
∥∥
∞

/ (
1 +

∥∥xk
∥∥
∞
)
< 10−6.

In cases where the problem was not solved by the default parameters, the algo-
rithm was restarted using more conservative parameters: abserr = relerr = 10−6,
dideal = 0.01, lideal = 0.01, rideal = 0.005, and hmax = max(.1, arclen/100),
where arclen is the arc length of the zero curve calculated using the default param-
eters. Results from these runs are shown in the fourth column of Table 5.1.

For the problems that were not solved by the conservative settings, the last column
of Table 5.1 describes the reason for failure. The notation “∞” indicates that the
zero curve appeared to go off to infinity. This behavior is common for problems that
do not satisfy the global monotonicity assumption. The notation “lost” indicates
that STEPNX was unable to continue tracking the zero curve. This is generally
due to a poorly conditioned Jacobian matrix. The notation “r” indicates failure due
to exceeding resource limits–either the limit of 5000 homotopy steps, or 1000 CPU
seconds. Finally, the notation “v” indicates failure due to domain violations.

While the algorithm failed to solve a number of problems that have been solved
by other algorithms, it is encouraging to note that it performed very well on some
problems that are generally regarded as very hard. Notable among these are the
billups, pgvon105, pgvon106, and simple-ex problems. Thus, the homotopy algorithm
should be viewed as an important supplement to other approaches.

It should also be noted that the algorithm solved several problems for which it was
not able to track the zero curve all the way to λ = 1. This occurred for the bert oc,
obstacle, opt cont* problems. However, for these problems the Newton end-game was
able to find the solution.

Except for the cases “v” and “r”, the failures are of two types: numerical instabil-
ity or unbounded homotopy zero curve γa. No attempt was made to scale, reformulate,
or precondition the test problems, or to tune the tracking parameters for a particular
problem. There is little doubt that a concerted pursuit of all these options would
have removed all the failures due to numerical instability. The unbounded zero curves
are a more fundamental problem, indicating that the default homotopy map (3.2)
is inadequate (which is no surprise, since in engineering practice the default map is
virtually never used). It is likely that replacing (3.2) by λF µ(λ)(x)+(1−λ)G(a, λ, x),
where G is carefully crafted for each problem, could remove the other failures. This
remains the topic of future work.

6. Conclusions. This paper described a probability-one homotopy algorithm
for solving nonsmooth systems of equations and complementarity problems. These
methods are an extension to nonsmooth equations of the probability-one homotopy
methods described in [8, 21, 23, 24] and they are attractive because they are able
to solve a qualitatively different class of problems than methods relying on merit
functions. This claim is justified both theoretically and computationally. The key
to success of the method is the global monotonicity assumption. When this is sat-
isfied, the zero curve is known to lead to a solution. This result is formalized in
Theorem 3.2. In the case of complementarity problems, an easily satisfiable condition
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Table 5.1

MCPLIB Test Problems

Problem Default Settings Conservative Settings
Name size Success(Failure) Success(Failure) Notes
badfree 5 1(0)
bert oc 5000 3(1) 3(1) r
bertsekas 15 5(1) 6(0)
billups 1 3(0)
bratu 5625 1(0)
choi 13 1(0)
colvdual 20 4(0)
colvnlp 15 6(0)
colvtemp 20 4(0)
cycle 1 1(0)
degen 2 1(0)
duopoly 63 0(1) 0(1) ∞
ehl k40 41 2(1) 3(0)
ehl k60 61 2(1) 3(0)
ehl k80 81 2(1) 3(0)
ehl kost 101 1(2) 1(2) lost
electric 158 0(1) 0(1) ∞
eta2100 296 0(1) 1(0)
explcp 16 1(0)
forcebsm 184 0(1) 0(1) ∞
forcedsa 186 0(1) 0(1) ∞
freebert 15 7(0)
gafni 5 3(0)
games 16 25(0)
hanskoop 14 10(0)
hydroc06 29 0(1) 0(1) ∞
hydroc20 99 0(1) 0(1) ∞
jel 6 2(0)
josephy 4 8(0)
kojshin 4 8(0)
lincont 419 0(1) 0(1) ∞
mathinum 3 6(0)
mathisum 4 7(0)
methan08 31 0(1) 0(1) ∞
multi-v 48 0(3) 0(3) lost
nash 10 4(0)
ne-hard 3 1(0)
obstacle 2500 7(1) 8(0)

was established, which ensures that the homotopy zero curve always remains strictly
feasible. This condition can always be enforced in the algorithm by choosing the ini-
tial point a properly. A simple consequence of this result is that for finitely bounded
mixed complementarity problems, the zero curve is bounded, and by Proposition 2.2,
is guaranteed to lead to a solution.
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Table 5.1

MCPLIB Test Problems (cont.)

Problem Default Settings Conservative Settings
Name size Success(Failure) Success(Failure) Notes
olg 249 0(1) 0(1) lost
opt cont127 4096 1(0)
opt cont 288 1(0)
opt cont255 8192 1(0)
opt cont31 1024 1(0)
opt cont511 16384 1(0)
pgvon105 105 4(0)
pgvon106 106 5(1) 6(0)
pies 42 0(1) 1(0)
powell 16 5(1) 5(1) ∞
powell mcp 8 6(0)
qp 4 1(0)
romer 214 0(2) 0(2) lost
scarbsum 40 1(1) 2(0)
scarfanum 13 4(0)
scarfasum 14 1(3) 1(3) v
scarfbnum 39 0(2) 2(0)
scarfbsum 40 1(1) 2(0)
shubik 30 7(41) 13(35) r
simple-ex 17 1(0)
simple-red 13 1(0)
sppe 27 3(0)
tinloi 146 10(54) 64(0)
tobin 42 4(0)
trade12 600 1(1) 1(1) lost
trafelas 2376 0(2) 0(2) r

REFERENCES

[1] S. C. Billups, Algorithms for Complementarity Problems and Generalized Equations, PhD
thesis, University of Wisconsin–Madison, Madison, Wisconsin, Aug. 1995.

[2] , A homotopy based algorithm for mixed complementarity problems, UCD/CCM Report
No. 124, Department of Mathematics, University of Colorado at Denver, Denver, Colorado,
1998.

[3] , Improving the robustness of descent-based mehtods for semi-smooth equations using
proximal perturbations, Mathematical Programming, 87 (2000), pp. 153–176.

[4] S. C. Billups, S. P. Dirkse, and M. C. Ferris, A comparison of large scale mixed com-
plementarity problem solvers, Computational Optimization and Applications, 7 (1997),
pp. 3–25.

[5] S. C. Billups, A. L. Speight, and L. T. Watson, Nonmonotone path following methods for
nonsmooth equations and complementarity problems, in Applications and Algorithms of
Complementarity, M. C. Ferris, O. L. Mangasarian, and J.-S. Pang, eds., Kluwer Academic
Publishers, forthcoming.

[6] C. Buck, Advanced Calculus, McGraw–Hill, New York, NY, 3rd ed., 1978.
[7] B. Chen and X. Chen, A global and local superlinear continuation-smoothing method for P0

+ R0 NCP or monotone NCP, SIAM Journal on Optimization, 9 (1999), pp. 624–645.
[8] S.-N. Chow, J. Mallet-Paret, and J. A. Yorke, Finding zeros of maps: homotopy meth-

ods that are constructive with probability one, Mathematics of Computation, 32 (1978),
pp. 887–899.

18



[9] T. De Luca, F. Facchinei, and C. Kanzow, A semismooth equation approach to the solution
of nonlinear complementarity problems, Mathematical Programming, 75 (1996), pp. 407–
439.

[10] , A theoretical and numerical comparison of some semismooth algorithms for comple-
mentarity problems, Computational Optimization and Applications, forthcoming, (1999).

[11] S. P. Dirkse and M. C. Ferris, MCPLIB: A collection of nonlinear mixed complementarity
problems, Optimization Methods and Software, 5 (1995), pp. 319–345.

[12] M. C. Ferris, C. Kanzow, and T. S. Munson, Feasible descent algorithms for mixed com-
plementarity problems, Mathematical Programming, 86 (1999), pp. 475–497.

[13] A. Fischer, A special Newton–type optimization method, Optimization, 24 (1992), pp. 269–284.
[14] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, Maintaining LU factors of a

general sparse matrix, Linear Algebra and Its Applications, 88/89 (1987), pp. 239–270.
[15] C. Kanzow, Some equation–based methods for the nonlinear complementarity problem, Opti-

mization Methods and Software, 3 (1994), pp. 327–340.
[16] O. L. Mangasarian, Equivalence of the complementarity problem to a system of nonlinear

equations, SIAM Journal on Applied Mathematics, 31 (1976), pp. 89–92.
[17] B. A. Murtagh and M. A. Saunders, MINOS 5.0 user’s guide, Technical Report SOL 83.20,

Stanford University, Stanford, California, 1983.
[18] L. Qi, Regular pseudo-smooth NCP and BVIP functions and globally and quadratically conver-

gent generalized Newton methods for complementarity and variational inequality problems,
Mathematics of Operations Research, 24 (1999), pp. 440–471.

[19] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Mathematical Programming, 58
(1993), pp. 353–368.

[20] L. T. Watson, An algorithm that is globally convergent with probability one for a class of
nonlinear two-point boundary value problems, SIAM Journal on Numerical Analysis, 16
(1979), pp. 394–401.

[21] , A globally convergent algorithm for computing fixed points of C2 maps, Applied Math-
ematics and Computation, 5 (1979), pp. 297–311.

[22] , Solving the nonlinear complementarity problem by a homotopy method, SIAM Journal
on Control and Optimization, 17 (1979), pp. 36–46.

[23] L. T. Watson, S. C. Billups, and A. P. Morgan, Algorithm 652: HOMPACK: A suite of
codes for globally convergent homotopy algorithms, ACM Transactions on Mathematical
Software, 13 (1987), pp. 281–310.

[24] L. T. Watson, R. C. Melville, A. P. Morgan, and H. F. Walker, Algorithm 777: HOM-
PACK90: A suite of FORTRAN 90 codes for globally convergent homotopy algorithms,
ACM Transactions on Mathematical Software, 23 (1997), pp. 514–549.

19


