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A smoothing Newton method based on the generalized
Fischer-Burmeister function for MCPs

June 5, 2009

Abstract. We present a smooth approximation for the generalized Fischer-Burmeister

function where the 2-norm in the FB function is relaxed to a general p-norm (p > 1), and

establish some favorable properties for it, for example, the Jacobian consistency. With

the smoothing function, we transform the mixed complementarity problem (MCP) into

solving a sequence of smooth system of equations.

Key Words. Mixed complementarity problem, the generalized FB function, smoothing

approximation.

1 Introduction

The mixed complementarity problem (MCP) arises in many applications including the

fields of economics, engineering, and operations research [11, 17, 18, 21] and has attracted

much attention in last decade [1, 2, 16, 23, 24, 25]. A collection of nonlinear mixed com-

plementarity problems called MCPLIB can be found in [13] and two excellent books

[14, 15] are good sources for seeking theoretical backgrounds and numerical methods.

Let li ∈ IR∪{−∞} and ui ∈ IR∪{+∞} be given lower and upper bounds with li < ui
for i = 1, 2, . . . , n. Define l = (l1, l2, . . . , ln)T and u = (u1, u2, . . . , un)T . Given a mapping

F : [l, u]→ IRn with F = (F1, F2, . . . , Fn)T . The MCP is to find a vector x∗ ∈ [l, u] such

that each component x∗i satisfies exactly one of the following implications:

x∗i = li =⇒ Fi(x
∗) ≥ 0,

x∗i ∈ (li, ui) =⇒ Fi(x
∗) = 0,

x∗i = ui =⇒ Fi(x
∗) ≤ 0.

(1)

It is not hard to see that, when li = −∞ and ui = +∞ for all i = 1, 2, . . . , n, the MCP

(1) is equivalent to solving the nonlinear system of equations

F (x) = 0; (2)

whereas when li = 0 and ui = +∞ for all i = 1, 2, . . . , n, it reduces to the nonlinear

complementarity problems (NCP) which is to find a point x ∈ IRn such that

x ≥ 0, F (x) ≥ 0, 〈x, F (x)〉 = 0. (3)
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In fact, from Theorem 2 of [12], the MCP (1) is also equivalent to the famous variational

inequality problem (VIP) which is to find a vector x∗ ∈ [l, u] such that

〈F (x∗), x− x∗〉 ≥ 0 ∀x ∈ [l, u]. (4)

In the rest of this paper, we assume the mapping F to be continuously differentiable.

It is well-known that NCP functions play an important role in the design of algorithms

for the MCP (1). With an NCP function φ, the MCP (1) can be reformulated as a non-

smooth system of equations Φ(x) = 0, and consequently nonsmooth Newton methods

or smoothing Newton methods can be applied for solving the system Φ(x) = 0. Among

others, the latter is based on a smooth approximation of φ. In the past two decades,

many smooth approximation functions and Newton-type methods using smoothing NCP

functions for complementarity problems have been developed [3, 4, 9, 10, 19, 20, 23].

Most of these methods focus on the Chen-Mangasarian class of smoothing functions of

the minimum NCP function or the smoothing function of the Fischer-Burmeister NCP

function.

Recently, an extension of the Fischer-Burmeister (FB) NCP function was considered

in [5, 6, 7] by two of the authors. Specifically, they define the generalized FB function by

φp(a, b) := ‖(a, b)‖p − (a+ b) ∀a, b ∈ IR, (5)

where p is an arbitrary fixed real number from the interval (1,+∞) and ‖(a, b)‖p denotes

the p-norm of (a, b), i.e., ‖(a, b)‖p = p
√
|a|p + |b|p. In other words, in the function φp,

they replace the 2-norm of (a, b) involved in the FB function by a more general p-norm.

The function φp is still an NCP-function, that is, it satisfies the equivalence

φp(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (6)

Moreover, it turns out that φp possesses all favorable properties of the FB function; see

[5, 6, 7]. For example, φp is strongly semismooth and its square is continuously differen-

tiable everywhere on IR2.

In this paper, we are concerned with the smoothing Newton method [10] based on the

generalized FB function. In Section 2, we review some definitions and preliminary results

to be used in the subsequent analysis. In Section 3, we present a smooth approximation

function of the generalized FB function, and studied some favorable properties for it,

including the Jacobian consistency property. In Section 4, we make concluding remarks.

Throughout this paper, IRn denotes the space of n-dimensional real column vectors

and ei means a unit vector with ith component being 1 and the others being 0. For a

differentiable mapping F , F ′(x) and ∇F (x) denote the Jacobian of F at x and the trans-

posed Jacobian of F , respectively. Given an index set I, the notation [F ′(x)]II denotes
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the submatrix consisting of the ith row and the jth column of F ′(x) with i ∈ I and j ∈ I.

2 Preliminary

In this section, we review some basic concepts and results that will be used in subsequent

analysis. We start with introducing the concept of generalized Jacobian of a mapping. Let

G : IRn → IRm be a locally Lipschitz continuous mapping. Then, G is almost everywhere

differentiable by Rademacher’s Theorem (see [8]). In this case, the generalized Jacobian

∂G(x) of G at x (in the Clarke sense) is defined as the convex hull of the B-subdifferential

∂BG(x) :=
{
V ∈ IRm×n ∣∣ ∃{xk} ⊆ DG : {xk} → x and G′(xk)→ V

}
,

where DG is the set of differentiable points of G. In other words, ∂G(x)= conv∂BG(x).

If m = 1, we call ∂G(x) the generalized gradient of G at x. The calculation of ∂G(x) is

usually difficult in practice, so Qi proposed so-called C-subdifferential of G:

∂CG(x)T := ∂G1(x)× ∂G2(x)× · · · × ∂Gm(x) (7)

which is easier to compute than the generalized Jacobian ∂G(x). Here, the right-hand side

of (7) denotes the set of matrices in IRn×m whose i-th column is given by the generalized

gradient of the i-th component function Gi. In fact, by Proposition 2.6.2 of [8],

∂G(x)T ⊆ ∂CG(x)T . (8)

In addition, we also need the P -functions and P -matrices in the subsequent sections.

Definition 2.1 Let F = (F1, F2, . . . , Fn)T with Fi : IRn → IR for i = 1, 2, . . . , n. Then,

(a) the mapping F is monotone if

〈x− y, F (x)− F (y)〉 ≥ 0 for all x, y ∈ IRn

(b) the mapping F is strictly monotone if

〈x− y, F (x)− F (y)〉 > 0 for all x, y ∈ IRn and x 6= y

(c) the mapping F is strong monotone with modulus µ > 0 if

〈x− y, F (x)− F (y)〉 ≥ µ‖x− y‖2 for all x, y ∈ IRn

(d) the mapping F is called a P0-function if for all x, y ∈ IRn and x 6= y, there is an

index i ∈ {1, 2, . . . , n} such that

xi 6= yi and (xi − yi)(Fi(x)− Fi(y)) ≥ 0
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(e) the mapping F is called a P -function if for all x, y ∈ IRn and x 6= y, there is an

index i ∈ {1, 2, . . . , n} such that

(xi − yi)(Fi(x)− Fi(y)) > 0

(f) the mapping F is called a uniform P -function with modulus µ > 0 if there is an index

i ∈ {1, 2, . . . , n} such that

(xi − yi)(Fi(x)− Fi(y)) ≥ µ‖x− y‖2 for all x, y ∈ IRn.

From above definition, we know that

F is strong monotone ⇒ F is strictly monotone ⇒ F is monotone

⇓ ⇓ ⇓
F is uniform P -function ⇒ F is P -function ⇒ F is P0-function

Definition 2.2 A matrix M ∈ IRn×n is called an

(a) P0-matrix if each of its principal minors is nonnegative.

(b) P -matrix if each of its principal minors is positive.

From above definition, we know that

M is P -matrix⇒ M is P0-matrix

From Definition 2.1 and 2.2, we see that a continuously differentiable mapping F is a

P0-function if and only if ∇F (x) is P0-matrix for all x ∈ IRn. For the P0-matrix, we also

have the following important property.

Lemma 2.1 A matrix M ∈ IRn×n is a P0-matrix if and only if for every nonzero vector

x, there exists an index i such that xi 6= 0 and xi(Mx)i ≥ 0.

Next we present some favorable properties of φp whose proofs can be found in [5, 6, 7].

Lemma 2.2 Let φp : IR× IR→ IR be defined by (5). Then, the following results hold.

(a) φp is a strongly semismooth NCP-function.

(b) Given any point (a, b) ∈ IR2, each element in the generalized gradient ∂φp(a, b) has

the representation (ξ − 1, ζ − 1) where, if (a, b) 6= (0, 0),

(ξ, ζ) =

(
sgn(a) · |a|p−1

‖(a, b)‖p−1
p

,
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

)
,

and otherwise (ξ, ζ) is an arbitrary vector in IR2 satisfying |ξ|
p

p−1 + |ζ|
p

p−1 ≤ 1.
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(c) The square of φp is a continuously differentiable NCP function.

(d) If {(ak, bk)} ⊆ IR2 satisfies (ak → −∞) or (bk → −∞) or (ak → ∞ and bk → ∞),

then we have |φp(ak, bk)| → ∞ as k →∞.

Lemma 2.3 Let φp : IR× IR→ IR be defined by (5). Then, the following limits hold.

(a) lim
li→−∞

φp (xi − li, φp(ui − xi,−Fi(x))) = −φp (ui − xi,−Fi(x)).

(b) lim
ui→∞

φp (xi − li, φp(ui − xi,−Fi(x))) = φp (xi − li, Fi(x)).

(c) lim
li→−∞

lim
ui→∞

φp (xi − li, φp(ui − xi,−Fi(x))) = −Fi(x).

Proof. Let {ak} ⊆ IR be any sequence converging to +∞ as k →∞ and b ∈ IR be any

fixed number. We will prove lim
k→∞

φp(a
k, b) = −b, and part (a) then follows by continuity

arguments. Without loss of generality, assume that ak > 0 for each k. Then,

φp(a
k, b) =

(
|ak|p + |b|p

)1/p − (ak + b)

= ak
(
1 + (|b|/ak)p

)1/p − ak − b
= ak

[
1 +

1

p

(
|b|
ak

)p
+

1− p
2p2

(
|b|
ak

)2p

+ · · ·+

(1− p) · · · (1− pn+ p)

n!pn

(
|b|
ak

)np
+ o

((
|b|
ak

)pn)]
− ak − b

=
1

p

|b|p

(ak)p−1
+

1− p
2p2

|b|2p

(ak)2p−1
+ · · ·+ (1− p) · · · (1− pn+ p)

n!pn
|b|np

(ak)np−1

+
(ak)|b|np

(ak)np
o
((
|b|/ak

))pn
(|b|/ak)pn

− b

where the third equality is using the Taylor expansion of the function (1 + t)1/p and the

notation o(t) means limt→0 o(t)/t = 0. Since ak → +∞ as k →∞, we have
|b|np

(ak)np−1
→ 0

for all n. This together with the last equation implies limk→∞ φp(a
k, b) = −b. This proves

part (a). Part (b) and (c) are direct by part (a) and the continuity of φ
FB

. 2

Lemma 2.4 [22, 1.3]Let x ∈ IRn and 1 < p1 < p2. Then

‖x‖p2 ≤ ‖x‖p1 ≤ n(1/p1−1/p2)‖x‖p2 .
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3 The smoothing function and its properties

For convenience, in the rest of this paper, we adopt the following index sets:

Il := {i ∈ {1, 2, . . . , n} | −∞ < li < ui = +∞} ,
Iu := {i ∈ {1, 2, . . . , n} | −∞ = li < ui < +∞} ,
Ilu := {i ∈ {1, 2, . . . , n} | −∞ < li < ui < +∞} ,
If := {i ∈ {1, 2, . . . , n} | −∞ = li < ui = +∞} .

(9)

With the generalized FB function, we define a operator Φp : IRn → IRn componentwise as

Φp,i(x) :=


φp(xi − li, Fi(x)) if i ∈ Il,
−φp(ui − xi,−Fi(x)) if i ∈ Iu,
φp(xi − li, φp(ui − xi,−Fi(x))) if i ∈ Ilu,
−Fi(x) if i ∈ If ,

(10)

where the minus sign for i ∈ Iu and i ∈ If is motivated by Lemma 2.3. In fact, all results

of this paper would be true without the minus sign. Using the equivalence (6), it is not

hard to verify that the following result holds.

Proposition 3.1 x∗ ∈ IRn is a solution of the MCP (1) if and only if x∗ solves the

nonlinear system of equations Φp(x) = 0.

Since φp is not differentiable at the origion, the system Φp(x) = 0 is nonsmooth. In

this paper, we will find a solution of nonsmooth system Φp(x) = 0 by solving a sequence

of smooth approximations Ψp(x, ε) = 0, where ε > 0 is a smoothing parameter and the

operator Ψp : IRn × (0,∞)→ IRn is defined componentwise as

Ψp,i(x, ε) :=


ψp(xi − li, Fi(x), ε) if i ∈ Il,
−ψp(ui − xi,−Fi(x), ε) if i ∈ Iu,
ψp (xi − li, ψp(ui − xi,−Fi(x), ε), ε) if i ∈ Ilu,
−Fi(x) if i ∈ If ,

(11)

with

ψp(a, b, ε) := p
√
|a|p + |b|p + |ε|p − (a+ b). (12)

In what follows, we concentrate on the favorable properties of the smoothing function

ψp and the operator Ψp. First, let us state the favorable properties of ψp.

Lemma 3.1 Let ψp : IR3 → IR be defined by (12). Then, the following result holds.

(a) For any fixed ε > 0, ψp(a, b, ε) is continuously differentiable for all (a, b) ∈ IR2 with

−2 <
∂ψp(a, b, ε)

∂a
< 0, −2 <

∂ψp(a, b, ε)

∂b
< 0. (13)
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(b) For any fixed (a, b) ∈ IR2, ψp(a, b, ε) is continuously differentiable, strictly increasing

and convex with respect to ε > 0. Moreover, for any 0 ≤ ε1 ≤ ε2,

0 ≤ ψp(a, b, ε2)− ψp(a, b, ε1) ≤ ε2 − ε1. (14)

In particular, |ψp(a, b, ε)− φp(a, b)| ≤ ε for all ε ≥ 0.

(c) For any fixed (a, b) ∈ IR2, let ψ0
p(a, b) := lim

ε↓0

(
∂ψp(a, b, ε)

∂a
,
∂ψp(a, b, ε)

∂b

)
. Then,

lim
h=(h1,h2)→(0,0)

φp(a+ h1, b+ h2)− φp(a, b)− ψ0
p(a+ h1, b+ h2)

Th

‖h‖
= 0.

(d) For any given ε > 0, if ψp(a, b, ε) = 0, then a > 0, b > 0, min{a, b} ≤ ε
p
√

2p − 2
.

In particular, if ψp(a, b, ε) = 0, then a > 0, b > 0, ab ≤ ε2

2
when p ≥ 2.

Proof. (a) Using an elementary calculation, we immediately obtain that

∂ψp(a, b, ε)

∂a
=

sgn(a)|a|p−1(
p
√
|a|p + |b|p + |ε|p

)p−1 − 1,

∂ψp(a, b, ε)

∂b
=

sgn(b)|b|p−1(
p
√
|a|p + |b|p + |ε|p

)p−1 − 1. (15)

For any fixed ε > 0, since
∂ψp(a, b, ε)

∂a
and

∂ψp(a, b, ε)

∂b
are continuous at every (a, b) ∈ IR2,

we have that ψp(a, b, ε) is continuously differentiable for all (a, b) ∈ IR2. Noting that∣∣∣∣∣∣∣
sgn(a)|a|p−1(

p
√
|a|p + |b|p + εp

)p−1

∣∣∣∣∣∣∣ < 1 and

∣∣∣∣∣∣∣
sgn(b)|b|p−1(

p
√
|a|p + |b|p + εp

)p−1

∣∣∣∣∣∣∣ < 1,

we readily get the inequality (13).

(b) For any ε > 0, from an elementary calculation, we have that

∂ψp(a, b, ε)

∂ε
=

εp−1(
p
√
|a|p + |b|p + εp

)p−1 > 0,

∂2ψp(a, b, ε)

∂ε2
=

(p− 1)εp−2

( p
√
|a|p + |b|p + εp)p−1

(
1− εp

|a|p + |b|p + εp

)
≥ 0.

7



Therefore, for any fixed (a, b) ∈ IR2, ψp(a, b, ε) is continuously differentiable, strictly

increasing and convex with respect to ε > 0. By the mean-value theorem, for any

0 < ε1 ≤ ε2, there exists some ε0 ∈ (ε1, ε2) such that

ψp(a, b, ε2)− ψp(a, b, ε1) =
∂ψp
∂ε

(a, b, ε0)(ε2 − ε1).

Together with ∂ψp

∂ε
(a, b, ε0) ≤ 1, we have that (14) holds for all 0 < ε1 ≤ ε2. Letting

ε1 ↓ 0, the desired result then follows.

(c) Using the formula (15), it is easy to calculate that

lim
ε↓0

∂ψp(a, b, ε)

∂a
=


sgn(a)|a|p−1(

p
√
|a|p + |b|p

)p−1 − 1 if (a, b) 6= (0, 0),

−1 if (a, b) = (0, 0);

lim
ε↓0

∂ψp(a, b, ε)

∂b
=


sgn(b)|b|p−1(

p
√
|a|p + |b|p

)p−1 − 1 if (a, b) 6= (0, 0),

−1 if (a, b) = (0, 0).

(16)

From this, we see that ψ0
p(a, b) =

(
∂φp(a,b)

∂a
, ∂φp(a,b)

∂b

)
at (a, b) 6= (0, 0). Therefore, we only

need to check the case (a, b) = (0, 0). The desired result follows by

φp(h1, h2)− φp(0, 0)− ψ0
p(h1, h2)

Th

= p
√
|h1|p + |h2|p −

|h1|p + |h2|p

( p
√
|h1|p + |h2|p)p−1

= p
√
|h1|p + |h2|p − p

√
|h1|p + |h2|p

= 0.

(d) From the definition of ψp(a, b, ε), clearly, ψp(a, b, ε) = 0 implies a + b ≥ 0, and

hence a ≥ 0 or b ≥ 0. In addition, from the monotonicity of p-norm, if a ≥ 0, b ≤ 0 or

a ≤ 0, b ≥ 0, we have

p
√
|a|p + |b|p + εp > p

√
|a|p + |b|p ≥ max{|a|, |b|} ≥ a+ b,

which implies ψp(a, b, ε) > 0. The two sides show that for any given ε > 0, ψp(a, b, ε) = 0

implies a > 0 and b > 0. Without loss of generality, we let 0 < a ≤ b. For any fixed a > 0,

consider the function f(t) = (t+ a)p − tp − ap − εp (t ≥ 0). It is easy to verify that f is

strictly increasing on [0,+∞). Moreover, since ψp(a, b, ε) = 0, we have f(b) = 0. Hence

f(a) = (2p − 2)ap − εp ≤ 0, we get that a ≤ ε
p
√

2p − 2
. Therefore, min{a, b} ≤ ε

p
√

2p − 2
.

Moreover, if p ≥ 2, let x = (a, b, ε) ∈ IR3, by lemma 2.4 we have ‖x‖p ≤ ‖x‖2. Hence

a+ b = p
√
|a|p + |b|p + εp ≤

√
|a|2 + |b|2 + ε2

⇒ (a+ b)2 ≤ a2 + b2 + ε2

⇒ ab ≤ ε2

2
.
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The proof is thus complete. 2

Using Lemma 3.1 and the expression of Ψp, we readily obtain the following result.

Proposition 3.2 Let Ψp : IRn × (0,∞)→ IRn be defined by (11). Then,

(a) for any fixed ε > 0, Ψp(x, ε) is continuously differentiable on IRn with

∇xΨp(x, ε) = Da(x, ε) +∇F (x)Db(x, ε),

where Da(x, ε) and Db(x, ε) are n×n diagonal matrices with the diagonal elements

(Da)ii(x, ε) and (Db)ii(x, ε) defined as follows:

(a1) For i ∈ Il,

(Da)ii(x, ε) =
sgn(xi − li)|xi − li|p−1

‖(xi − li, Fi(x), ε)‖p−1
p

− 1,

(Db)ii(x, ε) =
sgn(Fi(x))|Fi(x)|p−1

‖(xi − li, Fi(x), ε)‖p−1
p

− 1.

(a2) For i ∈ Iu,

(Da)ii(x, ε) =
sgn(ui − xi)|ui − xi|p−1

‖(ui − xi, Fi(x), ε)‖p−1
p

− 1,

(Db)ii(x, ε) =
−sgn(Fi(x))|Fi(x)|p−1

‖(ui − xi, Fi(x), ε)‖p−1
p

− 1.

(a3) For i ∈ Ilu,

(Da)ii(x, ε) = ai(x, ε) + bi(x, ε)ci(x, ε) and (Db)ii(x, ε) = bi(x, ε)di(x, ε)

with

ai(x, ε) =
sgn(xi − li)|xi − li|p−1

‖(xi − li, ψp(ui − xi,−Fi(x), ε), ε)‖p−1
p

− 1,

bi(x, ε) =
sgn(ψp(ui − xi,−Fi(x), ε))|ψp(ui − xi,−Fi(x), ε)|p−1

‖(xi − li, ψp(ui − xi,−Fi(x), ε), ε)‖p−1
p

− 1,

ci(x, ε) = −sgn(ui − xi)|ui − xi|p−1

‖(ui − xi, Fi(x), ε)‖p−1
p

+ 1,

di(x, ε) =
sgn(Fi(x))|Fi(x)|p−1

‖(ui − xi, Fi(x), ε)‖p−1
p

+ 1.
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(a4) For i ∈ If , (Da)ii(x, ε) = 0 and (Db)ii(x, ε) = −1.

Moreover, −2 < (Da)ii(x, ε) < 0 and −2 < (Db)ii(x, ε) < 0 for all i ∈ Il ∪ Iu and

−6 < (Da)ii(x, ε) < 0 and −4 < (Db)ii(x, ε) < 0 for all i ∈ Ilu.

(b) For any given ε1 ≥ 0 and ε2 ≥ 0, we have

‖Ψp(x, ε2)−Ψp(x, ε1)‖ ≤
√
n(

p
√

2 + 1)|ε2 − ε1|, ∀x ∈ IRn.

Particularly, for any given ε ≥ 0,

‖Ψp(x, ε)− Φp(x)‖ ≤
√
n(

p
√

2 + 1)ε, ∀x ∈ IRn.

To show that the smoothing operator Ψp satisfies the Jacobian consistency property,

we need the following characterization of the generalized Jacobian ∂CΦp(x), which is

direct by Lemma 2.2 (b).

Proposition 3.3 For any given x ∈ IRn, we have ∂CΦp(x)T = {Da(x) +∇F (x)Db(x)},
where Da(x), Db(x) are n×n diagonal matrices whose diagonal elements are given below:

(a) For i ∈ Il, if (xi − li, Fi(x)) 6= (0, 0), then

(Da)ii(x) =
sgn(xi − li) · |xi − li|p−1

‖(xi − li, Fi(x))‖p−1
p

− 1,

(Db)ii(x) =
sgn(Fi(x)) · |Fi(x)|p−1

‖(xi − li, Fi(x))‖p−1
p

− 1,

and otherwise

((Da)ii(x), (Db)ii(x)) ∈
{

(ξ − 1, ζ − 1) ∈ IR2 | |ξ|
p

p−1 + |ζ|
p

p−1 ≤ 1
}
.

(b) For i ∈ Iu, if (ui − xi,−Fi(x)) 6= (0, 0), then

(Da)ii(x) =
sgn(ui − xi) · |ui − xi|p−1

‖(ui − xi,−Fi(x))‖p−1
p

− 1,

(Db)ii(x) = − sgn(Fi(x)) · |Fi(x)|p−1

‖(ui − xi,−Fi(x))‖p−1
p

− 1,

and otherwise

((Da)ii(x), (Db)ii(x)) ∈
{

(ξ − 1, ζ − 1) ∈ IR2 | |ξ|
p

p−1 + |ζ|
p

p−1 ≤ 1
}
.
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(c) For i ∈ Ilu, (Da)ii(x) = ai(x) + bi(x)ci(x) and (Db)ii(x) = bi(x)di(x) , where if

(xi − li, φp(ui − xi,−Fi(x))) 6= (0, 0), then

ai(x) =
sgn(xi − li) · |xi − li|p−1

‖(xi − li, φp(ui − xi,−Fi(x))‖p−1
p

− 1,

bi(x) =
sgn (φp(ui − xi,−Fi(x))) · |φp(ui − xi,−Fi(x))|p−1

‖(xi − li, φp(ui − xi,−Fi(x))‖p−1
p

− 1,

and otherwise

(ai(x), bi(x)) ∈
{

(ξ − 1, ζ − 1) ∈ IR2 | |ξ|
p

p−1 + |ζ|
p

p−1 ≤ 1
}

;

and if (ui − xi,−Fi(x)) 6= (0, 0), then

ci(x) =
−sgn(ui − xi) · |ui − xi|p−1

‖(ui − xi,−Fi(x))‖p−1
p

+ 1,

di(x) =
sgn (Fi(x)) · |Fi(x)|p−1

‖(ui − xi,−Fi(x))‖p−1
p

+ 1,

and otherwise

(ci(x), di(x)) ∈
{

(ξ + 1, ζ + 1) ∈ IR2 | |ξ|
p

p−1 + |ζ|
p

p−1 ≤ 1
}
.

(d) For i ∈ If , (Da)ii(x) = 0 and (Db)ii(x) = −1.

Proposition 3.4 Let Ψp be defined by (11). Then, for any fixed x ∈ IRn,

lim
ε↓0

dist(∇xΨp(x, ε)
T , ∂CΦp(x)) = 0.

Proof. For the sake of notation, for any given x ∈ IRn, we define the index sets:

β1(x) := {i ∈ Il | (xi − li, Fi(x)) = (0, 0)},
β̄1(x) := {i ∈ Il | (xi − li, Fi(x)) 6= (0, 0)},
β2(x) := {i ∈ Iu | (ui − xi, Fi(x)) = (0, 0)},
β̄2(x) := {i ∈ Iu | (ui − xi, Fi(x)) 6= (0, 0)}, (17)

β3(x) := {i ∈ Ilu | (xi − li, φp(ui − xi,−Fi(x))) = (0, 0)},
β̄3(x) := {i ∈ Ilu | (xi − li, φp(ui − xi,−Fi(x))) 6= (0, 0)},
β4(x) := {i ∈ β̄3(x) | (ui − xi, Fi(x)) = (0, 0)},
β̄4(x) := {i ∈ β̄3(x) | (ui − xi, Fi(x)) 6= (0, 0)}.

We proceed the arguments by the cases i ∈ Il ∪ Iu, i ∈ Ilu and i ∈ If , respectively.
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Case 1: i ∈ Il ∪ Iu. When i ∈ β1(x) ∪ β2(x), it is easy to see that

(Da)ii(x, ε) = −1 and (Db)ii(x, ε) = −1.

From Proposition 3.2 (a1) and (a2), it then follows that

∇xΨp,i(x, ε)
T = −eTi − F ′i (x) for all ε > 0.

Since

(−1,−1) ∈
{

(ξ − 1, ζ − 1) ∈ IR2 | |ξ|
p

p−1 + |ζ|
p

p−1 ≤ 1
}
, (18)

by Proposition 3.3 (a) and (b) we get ∇xΨp,i(x, ε)
T ∈ ∂CΦp,i(x). When i ∈ β̄1(x)∪ β̄2(x),

lim
ε↓0

(Da)ii(x, ε) = (Da)ii(x) and lim
ε↓0

(Db)ii(x, ε) = (Db)ii(x),

which by Proposition 3.2 (a1) and (a2) implies

lim
ε↓0
∇xΨp,i(x, ε)

T = (Da)ii(x)eTi + (Db)ii(x)F ′i (x) ∈ ∂CΦp,i(x).

Since Il ∪ Iu = β1(x) ∪ β2(x) ∪ β̄1(x) ∪ β̄2(x), the last two subcases show that

lim
ε↓0
∇xΨp,i(x, ε)

T ∈ ∂CΦp,i(x), ∀ i ∈ Il ∪ Iu. (19)

Case 2: i ∈ Ilu. When i ∈ β3(x), clearly, ai(x, ε) = −1. Notice that φp(ui−xi,−Fi(x)) =

0 and xi − li = 0 imply ui − xi > 0 and Fi(x) = 0. Therefore,

lim
ε↓0

bi(x, ε)

= lim
ε↓0

sgn(ψp(ui − xi,−Fi(x), ε))|ψp(ui − xi,−Fi(x), ε)|p−1

‖(xi − li, ψp(ui − xi,−Fi(x), ε), ε)‖p−1
p

− 1

= lim
ε↓0

ψp(ui − xi, 0, ε)p−1

‖(0, ψp(ui − xi, 0, ε), ε)‖p−1
p

− 1

= lim
ε↓0

1(
p

√
1 +

(
ε

ψp(ui − xi, 0, ε)

)p)p−1 − 1

= −1

where the last equality is by

lim
ε↓0

ε

ψp(ui − xi, 0, ε)

= lim
ε↓0

( p
√

(ui − xi)p + εp)p−1

εp−1

= ∞
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which used L’Hospital’s rule and

lim
ε↓0

ci(x, ε) = 0, di(x, ε) = 1 and ci(x) = 0, di(x) = 1.

From Proposition 3.2 (a3) and Proposition 3.3 (c) and (18), it follows that

lim
ε↓0
∇xΨp,i(x, ε)

T = −eTi − F ′i (x) ∈ ∂CΦp,i(x), i ∈ β3(x).

When i ∈ β̄3(x), we have limε↓0 ai(x, ε) = ai(x) and limε↓0 bi(x, ε) = bi(x). Also,

ci(x, ε) = 1, di(x, ε) = 1 for i ∈ β4(x)

and

lim
ε↓0

ci(x, ε) = ci(x), lim
ε↓0

di(x, ε) = di(x) for i ∈ β̄4(x).

Using Proposition 3.3 (c) and noting that

(1, 1) ∈
{

(ξ + 1, ζ + 1) ∈ IR2 | |ξ|
p

p−1 + |ζ|
p

p−1 ≤ 1
}
,

we get limε↓0∇xΨp,i(x, ε)
T ∈ ∂CΦp,i(x) for i ∈ β̄3(x). Along with the above discussions,

lim
ε↓0
∇xΨp,i(x, ε)

T ∈ ∂CΦp,i(x) for i ∈ Ilu. (20)

Case 3: i ∈ If . By Proposition 3.2 (a4) and Proposition 3.3 (d), it is obvious that

lim
ε↓0
∇xΨp,i(x, ε)

T ∈ ∂CΦp,i(x) for i ∈ If . (21)

Now the desired result follows from (19)–(21) and {1, 2, . . . , n} = If ∪ Il ∪ Iu ∪ Ilu. 2

In order to use Newton method, we need the Jacobian matrix of Ψp is nonsingular.

Proposition 3.5 For any fixed ε > 0, the Jacobian matrix of Ψp at any x ∈ IRn is non-

singular if F is a P0-function and the submatrix [F ′(x)]If If is nonsingular. Particularly,

if If = ∅, the Jacobian matrix of Ψp at any x ∈ IRn is nonsingular if and only if F is a

P0-function.

Proof. For any given ε > 0, the Jacobian matrix of Ψp at any x ∈ IRn is

∇xΨp(x, ε)
T = Da(x, ε) +Db(x, ε)F

′(x)

whereDa(x, ε) andDb(x, ε) are n×n diagonal matrices whose diagonal elements (Da)ii(x, ε)

and (Db)ii(x, ε) are negative for i ∈ Il ∪ Iu ∪ Ilu, and (Da)ii(x, ε) = 0, (Db)ii(x, ε) = −1

for i ∈ If . Now suppose that ∇xΨp(x, ε)
T z = 0. Then,

zi = − (Db)ii(x, ε)

(Da)ii(x, ε)
(F ′(x)z)i , for i ∈ Il ∪ Iu ∪ Ilu (22)
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and

(F ′(x)z)i = 0, for i ∈ If . (23)

Since F is a continuously differentiable P0-function, F ′(x) is a P0-matrix. From Lemma

2.1, we get zi = 0 for i ∈ Il ∪ Iu ∪ Ilu. Substituting this into (23) then gives

[F ′(x)If If ]zIf = 0,

where zIf is a vector consisting of zi with i ∈ If . This along with the nonsingularity of

[F ′(x)]If If implies zi = 0 for i ∈ If . Thus, we prove z = 0, and consequently the first

part of the conclusions follows. The second part is implied by the above arguments. 2

Remark 3.1 We want to point out when p → +∞, the diagonal elements (Da)ii(x, ε)

and (Db)ii(x, ε) for i ∈ Il ∪ Iu ∪ Ilu will tend to 0, though (Da)ii(x, ε) + (Db)ii(x, ε) < 0.

This implies that for a larger p the nonsingularity of ∇Ψp(x, ε) actually requires stronger

conditions than those given by Proposition 3.5.

The boundedness of level sets of ‖Φp(x)‖ is also important since it ensures that the

sequences generated by a descent method has at least one accumulation point. The

following proposition is to prove that

L(γ) := {x ∈ IRn | ‖Φp(x)‖ ≤ γ} (24)

are bounded.

Proposition 3.6 The level sets L(γ) are bounded for all γ > 0 if one of the following

two conditions is satisfied:

(a) If li and ui are bounded for all i ∈ {1, 2, . . . , n}.

(b) F is a uniform P -function.

Proof. Under the condition (a), we have {1, 2, . . . , n} = Ilu. The result is clear by the

definition of Φp and Lemma 2.2 (d). Next we prove the boundedness of L(γ) under the

condition (b). Suppose that there exists some γ > 0 such that L(γ) is unbounded, i.e.,

there exists a sequence {xk} ⊆ L(γ) such that ‖xk‖ → ∞. Define the index set

J :=
{
i ∈ {1, 2, . . . , n} | {xki } is unbounded

}
.

Then J 6= ∅. We choose a bounded sequence yk with

yki =

{
0 if i ∈ J,
xki otherwise.
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Since F is a uniform P -function, there is a constant µ > 0 such that

µ‖xk − yk‖2 ≤ max
1≤i≤n

(xki − yki )(Fi(x
k)− Fi(yk))

= max
i∈J

(xki )(Fi(x
k)− Fi(yk))

≤ |xkj0||Fj0(x
k)− Fj0(yk)|

where j0 is an index from {1, 2, · · · , n} for which the maximum is attained. Here we

have, without loss of generality, assumed to be independent of k. Clearly, j0 ∈ J , which

means that {xkj0} is unbounded. Consequently, there exists a subsequence, assumed to

be {xkj0} without loss of generality, such that |xkj0| → ∞. Notice that

‖xk − yk‖2 ≥ |xkj0 − y
k
j0
|2 = |xkj0|

2 for each k.

Therefore, µ|xkj0 |
2 ≤ |xkj0||Fj0(x

k)− Fj0(yk)| and

µ|xkj0 | ≤ |Fj0(x
k)− Fj0(yk)| ≤ |Fj0(xk)|+ |Fj0(yk)|,

which implies |Fj0(xk)| → ∞ as |xkj0 | → ∞. Thus, we prove that

|xkj0| → +∞ and |Fj0(xk)| → +∞.

Using the last equation and Lemma 2.2 (d), we have |Φp,j0(x
k)| → +∞ from the

definition of Φp. This contradicts the fact that {xk} ⊆ L(γ). 2

4 Conclusions

In this paper, we have studied the smoothing Newton method [10] based on the smooth

approximation ψp of the generalized FB function, and smooth operator Ψp is shown to

possess the Jacobian consistence. We also believe both Proposition 3.5 and Proposition

3.6 may be useful in general smoothing algorithms for MCP.
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