214 research outputs found

    Enhancing Cyber-Resiliency of DER-based SmartGrid: A Survey

    Full text link
    The rapid development of information and communications technology has enabled the use of digital-controlled and software-driven distributed energy resources (DERs) to improve the flexibility and efficiency of power supply, and support grid operations. However, this evolution also exposes geographically-dispersed DERs to cyber threats, including hardware and software vulnerabilities, communication issues, and personnel errors, etc. Therefore, enhancing the cyber-resiliency of DER-based smart grid - the ability to survive successful cyber intrusions - is becoming increasingly vital and has garnered significant attention from both industry and academia. In this survey, we aim to provide a systematical and comprehensive review regarding the cyber-resiliency enhancement (CRE) of DER-based smart grid. Firstly, an integrated threat modeling method is tailored for the hierarchical DER-based smart grid with special emphasis on vulnerability identification and impact analysis. Then, the defense-in-depth strategies encompassing prevention, detection, mitigation, and recovery are comprehensively surveyed, systematically classified, and rigorously compared. A CRE framework is subsequently proposed to incorporate the five key resiliency enablers. Finally, challenges and future directions are discussed in details. The overall aim of this survey is to demonstrate the development trend of CRE methods and motivate further efforts to improve the cyber-resiliency of DER-based smart grid.Comment: Submitted to IEEE Transactions on Smart Grid for Publication Consideratio

    On the assessment of cyber risks and attack surfaces in a real-time co-simulation cybersecurity testbed for inverter-based microgrids

    Get PDF
    The integration of variable distributed generations (DGs) and loads in microgrids (MGs) has made the reliance on communication systems inevitable for information exchange in both control and protection architectures to enhance the overall system reliability, resiliency and sustainability. This communication backbone in turn also exposes MGs to potential malicious cyber attacks. To study these vulnerabilities and impacts of various cyber attacks, testbeds play a crucial role in managing their complexity. This research work presents a detailed study of the development of a real-time co-simulation testbed for inverter-based MGs. It consists of a OP5700 real-time simulator, which is used to emulate both the physical and cyber layer of an AC MG in real time through HYPERSIM software; and SEL-3530 Real-Time Automation Controller (RTAC) hardware configured with ACSELERATOR RTAC SEL-5033 software. A human–machine interface (HMI) is used for local/remote monitoring and control. The creation and management of HMI is carried out in ACSELERATOR Diagram Builder SEL-5035 software. Furthermore, communication protocols such as Modbus, sampled measured values (SMVs), generic object-oriented substation event (GOOSE) and distributed network protocol 3 (DNP3) on an Ethernet-based interface were established, which map the interaction among the corresponding nodes of cyber-physical layers and also synchronizes data transmission between the systems. The testbed not only provides a real-time co-simulation environment for the validation of the control and protection algorithms but also extends to the verification of various detection and mitigation algorithms. Moreover, an attack scenario is also presented to demonstrate the ability of the testbed. Finally, challenges and future research directions are recognized and discussed

    A critical review of cyber-physical security for building automation systems

    Full text link
    Modern Building Automation Systems (BASs), as the brain that enables the smartness of a smart building, often require increased connectivity both among system components as well as with outside entities, such as optimized automation via outsourced cloud analytics and increased building-grid integrations. However, increased connectivity and accessibility come with increased cyber security threats. BASs were historically developed as closed environments with limited cyber-security considerations. As a result, BASs in many buildings are vulnerable to cyber-attacks that may cause adverse consequences, such as occupant discomfort, excessive energy usage, and unexpected equipment downtime. Therefore, there is a strong need to advance the state-of-the-art in cyber-physical security for BASs and provide practical solutions for attack mitigation in buildings. However, an inclusive and systematic review of BAS vulnerabilities, potential cyber-attacks with impact assessment, detection & defense approaches, and cyber-secure resilient control strategies is currently lacking in the literature. This review paper fills the gap by providing a comprehensive up-to-date review of cyber-physical security for BASs at three levels in commercial buildings: management level, automation level, and field level. The general BASs vulnerabilities and protocol-specific vulnerabilities for the four dominant BAS protocols are reviewed, followed by a discussion on four attack targets and seven potential attack scenarios. The impact of cyber-attacks on BASs is summarized as signal corruption, signal delaying, and signal blocking. The typical cyber-attack detection and defense approaches are identified at the three levels. Cyber-secure resilient control strategies for BASs under attack are categorized into passive and active resilient control schemes. Open challenges and future opportunities are finally discussed.Comment: 38 pages, 7 figures, 6 tables, submitted to Annual Reviews in Contro

    Conundrum

    Get PDF

    Cyber-Resilient Self-Triggered Distributed Control of Networked Microgrids Against Multi-Layer DoS Attacks

    Get PDF
    Networked microgrids with high penetration of distributed generators have ubiquitous remote information exchange, which may be exposed to various cyber security threats. This paper, for the first time, addresses a consensus problem in terms of frequency synchronisation in networked microgrids subject to multi-layer denial of service (DoS) attacks, which could simultaneously affect communication, measurement and control actuation channels. A unified notion of Persistency-of-Data-Flow (PoDF) is proposed to characterise the data unavailability in different information network links, and further quantifies the multi-layer DoS effects on the hierarchical system. With PoDF, we provide a sufficient condition of the DoS attacks under which the consensus can be preserved with the proposed edgebased self-triggered distributed control framework. In addition, to mitigate the conservativeness of offline design against the worst-case attack across all agents, an online self-adaptive scheme of the control parameters is developed to fully utilise the latest available information of all data transmission channels. Finally, the effectiveness of the proposed cyber-resilient self-triggered distributed control is verified by representative case studies

    Cybersecurity Research: Challenges and Course of Action

    Get PDF

    Cybersecurity Stovepiping

    Get PDF
    I. Introduction II. The Concept of Stovepiping III. Stovepiping in Cybersecurity ... A. Policy Making, Complexity, and Change ... B. Complex Passwords: A Case Study ... 1. Fundamentals of Password Complexity ... 2. “Guessability”—the False Assumption ... a. Password Guessing via Authentication (Login) Interfaces ... b. Password Guessing via Unprotected/Unsanitized Service ... c. Offline Password Attacks ... 3. “Defense in Depth”—Measuring Marginal Benefit IV. Implications of the Stovepiping Disjuncture ... A. Addressing the Same Question … B. Overcoming Policy Entrenchment ... C. Risk-Analytic Framework for Cybersecurity V. Conclusio
    • …
    corecore