1,380 research outputs found

    A Faithful Distributed Implementation of Dual Decomposition and Average Consensus Algorithms

    Full text link
    We consider large scale cost allocation problems and consensus seeking problems for multiple agents, in which agents are suggested to collaborate in a distributed algorithm to find a solution. If agents are strategic to minimize their own individual cost rather than the global social cost, they are endowed with an incentive not to follow the intended algorithm, unless the tax/subsidy mechanism is carefully designed. Inspired by the classical Vickrey-Clarke-Groves mechanism and more recent algorithmic mechanism design theory, we propose a tax mechanism that incentivises agents to faithfully implement the intended algorithm. In particular, a new notion of asymptotic incentive compatibility is introduced to characterize a desirable property of such class of mechanisms. The proposed class of tax mechanisms provides a sequence of mechanisms that gives agents a diminishing incentive to deviate from suggested algorithm.Comment: 8 page

    Backpressure meets taxes: Faithful data collection in stochastic mobile phone sensing systems

    Get PDF
    The use of sensor-enabled smart phones is considered to be a promising solution to large-scale urban data collection. In current approaches to mobile phone sensing systems (MPSS), phones directly transmit their sensor readings through cellular radios to the server. However, this simple solution suffers from not only significant costs in terms of energy and mobile data usage, but also produces heavy traffic loads on bandwidth-limited cellular networks. To address this issue, this paper investigates cost-effective data collection solutions for MPSS using hybrid cellular and opportunistic short-range communications. We first develop an adaptive and distribute algorithm OptMPSS to maximize phone user financial rewards accounting for their costs across the MPSS. To incentivize phone users to participate, while not subverting the behavior of OptMPSS, we then propose BMT, the first algorithm that merges stochastic Lyapunov optimization with mechanism design theory. We show that our proven incentive compatible approaches achieve an asymptotically optimal gross profit for all phone users. Experiments with Android phones and trace-driven simulations verify our theoretical analysis and demonstrate that our approach manages to improve the system performance significantly (around 100%) while confirming that our system achieves incentive compatibility, individual rationality, and server profitability

    Truthful and Faithful Monetary Policy for a Stablecoin Conducted by a Decentralised, Encrypted Artificial Intelligence

    Get PDF
    The Holy Grail of a decentralised stablecoin is achieved on rigorous mathematical frameworks, obtaining multiple advantageous proofs: stability, convergence, truthfulness, faithfulness, and malicious-security. These properties could only be attained by the novel and interdisciplinary combination of previously unrelated fields: model predictive control, deep learning, alternating direction method of multipliers (consensus-ADMM), mechanism design, secure multi-party computation, and zero-knowledge proofs. For the first time, this paper proves: - the feasibility of decentralising the central bank while securely preserving its independence in a decentralised computation setting - the benefits for price stability of combining mechanism design, provable security, and control theory, unlike the heuristics of previous stablecoins - the implementation of complex monetary policies on a stablecoin, equivalent to the ones used by central banks and beyond the current fixed rules of cryptocurrencies that hinder their price stability - methods to circumvent the impossibilities of Guaranteed Output Delivery (G.O.D.) and fairness: standing on truthfulness and faithfulness, we reach G.O.D. and fairness under the assumption of rational parties As a corollary, a decentralised artificial intelligence is able to conduct the monetary policy of a stablecoin, minimising human intervention

    Incentivizing Truth-Telling in MPC-based Load Frequency Control

    Full text link
    We present a mechanism for socially efficient implementation of model predictive control (MPC) algorithms for load frequency control (LFC) in the presence of self-interested power generators. Specifically, we consider a situation in which the system operator seeks to implement an MPC-based LFC for aggregated social cost minimization, but necessary information such as individual generators' cost functions is privately owned. Without appropriate monetary compensation mechanisms that incentivize truth-telling, self-interested market participants may be inclined to misreport their private parameters in an effort to maximize their own profits, which may result in a loss of social welfare. The main challenge in our framework arises from the fact that every participant's strategy at any time affects the future state of other participants; the consequences of such dynamic coupling has not been fully addressed in the literature on online mechanism design. We propose a class of real-time monetary compensation schemes that incentivize market participants to report their private parameters truthfully at every time step, which enables the system operator to implement MPC-based LFC in a socially optimal manner

    Backpressure Meets Taxes: Faithful Data Collection in Stochastic Mobile Phone Sensing Systems

    Get PDF
    The use of sensor-enabled smart phones is considered to be a promising solution to large-scale urban data collection. In current approaches to mobile phone sensing systems (MPSS), phones directly transmit their sensor readings through cellular radios to the server. However, this simple solution suffers from not only significant costs in terms of energy and mobile data usage, but also produces heavy traffic loads on bandwidth-limited cellular networks. To address this issue, this paper investigates cost-effective data collection solutions for MPSS using hybrid cellular and opportunistic short-range communications. We first develop an adaptive and distribute algorithm OptMPSS to maximize phone user financial rewards accounting for their costs across the MPSS. To incentivize phone users to participate, while not subverting the behavior of OptMPSS, we then propose BMT, the first algorithm that merges stochastic Lyapunov optimization with mechanism design theory. We show that our proven incentive compatible approaches achieve an asymptotically optimal gross profit for all phone users. Experiments with Android phones and trace-driven simulations verify our theoretical analysis and demonstrate that our approach manages to improve the system performance significantly while confirming that our system achieves incentive compatibility, individual rationality, and server profitability
    • …
    corecore