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Abstract—The use of sensor-enabled smart phones is con-
sidered to be a promising solution to large-scale urban data
collection. In current approaches to mobile phone sensing systems
(MPSS), phones directly transmit their sensor readings through
cellular radios to the server. However, this simple solution suffers
from not only significant costs in terms of energy and mobile data
usage, but also produces heavy traffic loads on bandwidth-limited
cellular networks. To address this issue, this paper investigates
cost-effective data collection solutions for MPSS using hybrid
cellular and opportunistic short-range communications. We first
develop an adaptive and distribute algorithm OptMPSS to
maximize phone user financial rewards accounting for their costs
across the MPSS. To incentivize phone users to participate, while
not subverting the behavior of OptMPSS, we then propose BMT,
the first algorithm that merges stochastic Lyapunov optimization
with mechanism design theory. We show that our proven in-
centive compatible approaches achieve an asymptotically optimal
gross profit for all phone users. Experiments with Android phones
and trace-driven simulations verify our theoretical analysis and
demonstrate that our approach manages to improve the system
performance significantly (around 100%) while confirming that
our system achieves incentive compatibility, individual rationality,
and server profitability.

I. INTRODUCTION

Ubiquitous sensor-rich smartphones are beginning to play
an increasingly important role in the evolution of the urban
Internet of Things (IoTs), which bridge the digital space to
the physical world at a societal scale. Their powerful comput-
ing and communication capacities, huge market proliferation,
and inherent mobility makes Mobile Phone Sensing Systems
(MPSS) [1] a much more flexible and cost-effective sensing
solution compared with traditional static sensor networks. In
turn this has motivated the design of novel sensing applications
[1], [2], covering urban environmental monitoring [3], smart
transportation [4], and safety [5].

Most of current MPSSs transmit mobile sensor data to
the server through cellular networks. When MPSS becomes
popular, this simple solution will suffer from not only sig-
nificant battery [6], [7] and 3G/4G financial costs [8] to the
phone users, but also will produce heavy traffic load on the
underlying bandwidth-limited cellular networks, especially for
MPSS applications that require continuous sensing with fine
granularity (e.g. [9]).

Besides the expensive cellular communications, current
smartphones are being equipped with more and more short-
range wireless technologies such as WiFi, WiFi direct, and
Bluetooth 4.0, which enable opportunistic phone-to-phone and
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phone-to-server communications (e.g. through WiFi routers).
Due to their low energy and financial costs, it is promising to
exploit the potential of short-range communications in MPSSs,
especially for delay-tolerant mobile sensing applications [7].
For instance, without using its own cellular radio, a phone can
report its sensor data to the server, through another proximity
phone with a cheaper cellular cost (e.g. unlimited mobile data)
or when it passes a free WiFi router. However, to build such a
MPSS with hybrid cellular and short-range communications,
the following research issues must be addressed:

Networking Issues. It is a challenge to perform the sensing
and opportunistic multi-hop data transmission tasks that are
adaptive to the time-varying and potentially unpredictable
network states, including fluctuating wireless channel quality;
intermittent connectivity caused by phone user movement;
heterogeneous transmission and sensing costs across mobile
phones; 3G/4G mobile data costs; and the opportunistic avail-
ability of nearby free Internet access points.

Economic Issues. To encourage the phone users to partic-
ipate the MPSS, they should be properly rewarded to cover
sensing and transmission costs [10]-[12]. In addition, the
self-interest phone users may try to maximize their benefits
strategically by misreporting their local state parameters. For
instance, in order to prolong battery lifetime, a phone user
may hide that she is connected to a free WiFi router to avoid
relaying other nearby phone data to the server. This would
result in significant performance degradation of the system.
Therefore, incentivization is a key issue for MPSS with this
new networking paradigm, which is much more challenging
compared to pure cellular networks.

A. Our Approach

In this paper, we present theoretical and practical studies to
address above two issues. Our contributions are summarized
as follows:

1. We formulate a finite-horizon stochastic optimization
problem for continuous data collection in MPSS using hybrid
cellular and opportunistic short-range communications. The
objective of the formulated problem is to maximize the global
gross profit, i.e. the total financial rewards of all phone users
after costs incurred by performing the sensing and transmis-
sion tasks are deducted.

2. We develop a lightweight joint sensing rate control
and dynamic routing algorithm, OptMPSS to solves the data



collection problem in a fully distributed and therefore scalable
way. We prove that OptMPSS is an asymptotically optimal
solution to the formulated problem.

3. We propose a fully distributed mechanism, Backpressure
Meet Taxes (BMT), to incentivize phone users to faithfully
implement OptMPSS, by imposing taxes or providing subsi-
dies for each phone user, depending on her impact on the rest
of phone users in the MPSS. We prove that BMT manages
to achieve asymptotic incentive compatibility [13]. To our
knowledge, BMT is the first approach that integrating algo-
rithmic mechanism design theory [14], [15] to the stochastic
Lynapunov optimization framework [16]. Besides MPSS, this
method developed for BMT also has a great potential to be
applies to other stochastic distributed systems with self-interest
and strategic users.

4. Through experiments with WiFi-direct-enabled Android
devices and extensive simulations with real human mobility
trace [17], we demonstrate that system performance can be
significantly improved by exploiting low-cost short-range com-
munications, in terms of global social profits and phone users’
costs. Evaluation results also show that each phone user can
always get a positive net profit (i.e. gross profit plus subsidies
or minus taxes) and the server never incurs a deficit (i.e.
the server always obtain a positive profit). Furthermore, each
phone user cannot increase her net profit improvement by lying
about her private parameters. These results demonstrate that
BMT can achieve individual rationality, server profitability,
and incentive compatibility (faithful implementation) in prac-
tice.

B. Related Work

Recently, several incentive-based mechanisms have been
proposed for MPSS [10]-[12], [18]. [11] develops platform-
centric and user-centric schemes based on a Stackelbergy game
and auction theory respectively. [12] proposes a mechanism
based on a Bayesian game to minimize participation costs
while ensuring certain service qualities, by determining the
level of user participation (i.e. sensing rate). However, all of
these schemes focus on MPSS with pure cellular radios only,
which cannot be directly used in MPSS with hybrid cellular
and multi-hop short-range communications.

The explosive growth of cellular traffic has motivated an
increase in research into cellular traffic offload using other
forms of opportunistic connectivity, including WiFi [19]-[21]
and Bluetooth [22]. However, none of these focus on MPSS.
EffSense [7], considers MPSS with the same hybrid wireless
networks as us. However, this heuristic-based scheme does not
provide any performance guarantees, and does not consider
incentivisation for the strategic and self-interest phone users.

Stochastic Lyapunov optimization [16], [23]-[26] provides
elegant and powerful theoretical tools to derive backpressure
style cross-layer network optimization and control algorithms.
Due to their adaptiveness to network dynamics, several back-
pressure rate control and routing schemes [23]-[25] have
been proposed for opportunistic mobile networks. However,
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Fig. 1. An illustrative example of a MPSS with hybrid cellular and short-range
communications, consisting of 4 phones and a server.

again none of them focus on MPSS nor do they account for
incentivisation and the strategic behaviors of phone users.

Mechanism design [14], [15] is concerned with how to
make a global decision with desirable properties in systems
consisting of strategic self-interest individuals who have pri-
vate information. Recent theoretical work [13], [27] on dis-
tributed Vickrey-Clarke-Groves (VCG) mechanisms enables
the faithful implementation of algorithms producing desired
outcomes (such as dual decomposition and average consensus)
in a distributed way. However, these approaches focus on de-
terministic rather than stochastic systems. Our work combines
threads of all the above works in a novel way.

C. Paper Organization

The next section presents the system model and design
objectives. Section III describes the OptMPSS algorithm.
Mechanism design models are established in Section IV. Sec-
tion V presents the BMT algorithm, then Section VI discusses
the performance evaluation. Finally, we conclude the paper in
Section VIIL

II. SYSTEM MODEL AND OBJECTIVES

As shown in Fig. 1, we consider a MPSS that consists of a
server S and a set of mobile phones N collecting urban sens-
ing data. The MPSS operates during a finite time horizon (e.g.
a week) with discrete time slots ¢ = {1, 2, ...,tend}, tend <
+o00. Every phone can communicate with the server S through
3G/ 4G cellular radios, or through the low-cost WiFi when it
passes a WiFi router (slots 1-3 in Fig. 1). In addition, phones in
immediate proximity can communicate with each other, using
short-range communications such as WiFi direct (slot 2) and
Bluetooth 4.0 (slot 3).

A. Sensing and Communication Models

At each time slot ¢, each phone 4 produces 0 < r;(t) <
I'max Sensor data packets, where the finite sensing rate upper
bound rp,x < oo is defined by the specific mobile sensing
application. Let y; ;(t) > 0 be the channel capacity from a
phone i € N to a phone j € N or to the server j = S



at slot ¢, i.e. the maximum (integer) number of data packets
that can be successfully transmitted from ¢ to j during slot
t. It can be seen that y; ;(¢) may vary significantly over the
time slots, due to the stochastic phone user movement and
wireless channel qualities. In practice, all possible channel
capacities (i.e. p; ;(t),Vi, j, t) must have an finite upper
bound p™?** < oo, determined by the finite data rate of the
wireless transceivers .

Each phone ¢ maintains a time-varying temporary neighbor
table N;(t), consisting of the server S (if currently connected)
and the phones in proximity at slot ¢:

Ni(t) :={j:j € NU{S}, pi;(t) > 0} (1)

In practice, N;(t) can be established by using neighbor
discovery schemes such as [28]. Denote 0 < f; ;(t) < p; ;(t)
as the amount of forwarded data from phone ¢ to its current
neighbor j € N;(¢) at slot t. We use a vector

xi(t) = (ri(t), fi;(t), j € Ni(t)) )

to represent the sensing and data forwarding actions of a phone
i €N atslot ¢.

B. Queue Dynamics

Each phone ¢ maintains a data queue with size Q;(¢) > 0
to store the sensing data collected by itself and received
from other phones. Considering sensing and data forwarding
dynamics, the queue backlog of each phone ¢ updates as
follows:

Qi(t+1) =1Qi(t) = [ M)+ + () + £i" (1) )
where for any real number a, the operator |a|ly = a if

a > 0; |al4 = 0 otherwise. fP"'(t) = 3>, n (s fii(D),
and f"(t) = > e, r) J5.i(t) represent the total numbers of
outgoing and incoming packets of phone ¢ at slot ¢ respectively.
It is worth noting that the queue backlog of the server S is

always zero, i.e. Qg(t) = 0, V¢, since it is the destination of
all sensor data packets.

C. Costs of Phones

At each slot ¢, each phone incurs costs due to sensing and
data transmission. Let pj(t) > 0 be the per packet sensing
price of phone 7 at slot ¢ . Therefore, the sensing cost of
phone 4 at slot ¢ is pi(t)r;(¢). In practice, the sensing price
pi(t) depends on both MPSS application requirements, and
the available resources that phone ¢ has at time ¢ such as
remaining battery energy. Denote pij (t) as the per packet
transmission price for phone 7 to send a sensor data packet to a
temporary neighbor j. If j is the server S, then p; j (t) depends
on financial cellular costs, the availability of a nearby WiFi
router, and the remaining battery level of phone ¢. Specifically,
price pij(t) are normally significantly smaller when 7 sends
data to the server through WiFi than through cellular radios.
If j is another phone, the transmission price p} ;(¢) mainly
depends on battery concerns of the users of phones ¢ and j.
We can see that the data transmission price is highly dynamic
and heterogeneous across different wireless transmission links.

It is worth noting that although sensing and transmission
prices are influenced by various practical aspects, they can be
all normalized to monetary values (e.g. US dollar or credits
per packet), estimated by each phone user herself rather then
the server. The detailed estimation in practice is out of the
scope of this paper, but our BMT scheme can guarantee that
faithful estimation is the best strategy for each self-interest
phone user.

For a given slot ¢, the total cost of each phone i € N can
be computed as

costi(t) = p,;(t)x] (t) 4)

where the vector

pi(t) = (1), pi;(t), 7€ Ni(t) (5)
characterizes the price profile of phone ¢ at slot .

D. Revenue and Gross Profit Maximization

During the complete time horizon, the server obtains totally
tend Y _;en Vi(Ts) amount of monetary revenue (i.e. global
social revenue), by selling the collected mobile sensing date
to externa MPSSI users. Here, 7; represents the average
sensing rate of phone ¢ over the time horizon [1,tenq], and
the revenue function v;(7;) can be any concave (includes
linear), differentiable, and non-decreasing function of 7;. The
revenue function may differ across mobile phones, depending
on specific sensing applications and the Quality of Information
(Qol) of sensor data produced by each phone ¢ [12], [29].
Therefore, v;(7;) indicates the time-average contribution level
of phone ¢ to the MPSS.

At slot teng, the server computes v;(7;) and makes a
payment atenqv;(T;) to each phone ¢ (shown in Fig. 1), where
the system parameter 0 < o < 1 is the percentage of the
global social revenue tena ) ;c\ vi(T;) that is allocated to
all phones. As a result, the time-average gross profit of each
phone user is given by:

Y = Oé’Ui(Fi) 7@1, Vi € N (6)

where cost; is the time-average of cost;(t) over time horizon
1 <t < tena.

We call the time-average aggregated gross profit of all
mobile phones »._\ v, as the global gross profit. The
MPSS aims to maximize the global gross profit by solving
the following finite-horizon stochastic problem:

maximize b = ; 7
%1 (0),1EN D i @
ieN

s.t.
rz(t) < I'max; 1€ N 1 <t< tend (8)

fi,j(t) é Ni,j(t)a 1 S Nv] S M(t), 1 S 4 S tend (9)

m T =T =0, ieN (10)

where ;" and ﬁom are the time-averages of f/™(t) and
f2Ut(t) over time horizon 1 < ¢ < tenq respectively. Con-
straint (10) states the flow conservation law, i.e. the average



total incoming and outgoing data rate should be equal for
each phone. This constraint also ensures that the server will
know the average sensing rate 7; for each phone i € N
at slot tenq. Section III will develop OptMPSS, an optimal
distributed solution to problem (7)-(10). However, because
each phone owner ¢ is only interested in maximizing her
own profit ¢; rather than the global gross profit of the
system @, the optimal solution to problem (7)-(10) cannot be
implemented without proper incentivization mechanism that
encourages phone owners to apply the OptMPSS. All variables
regarding the incentivization mechanism such as net profit will
be defined in Section IV.

E. Objective

The objective of this paper is to develop an algorithm that
can achieve the following desired properties:
1. Global Gross Profit Optimality. The algorithm should be
the optimal solution to problem (7)-(10).

2. Adaptiveness. The algorithm should be adaptive to all
possible dynamic network states, including time-varying and
heterogeneous sensing and transmission cost across phones;
wireless link qualities; and network connectivity (e.g. includ-
ing extremely dense networks where all phones can always
communicate with each other, to extremely sparse networks
where short-range communication is rare or not available).

3. No Prediction Requirement. The desired algorithm is
based on the current system state only, and does not require
the prediction of any future MPSS information.

4. Distributed and Real-time Operations. The computational
and communication overheads of the algorithm should be
lightweight for real-time operations of each phone.

5. Individual Rationality. Each participating phone user
should obtain a non-negative net profit, which is formally
defined in Equation (18).

6. Server Profitability. The server S should not incur a deficit,
which means a non-negative server profit (formally defined in
Equation (19)) should be achieved.

7. Incentive Compatibility. Adopting the action suggested by
the proposed algorithm should be the best strategy for each
phone user, regardless others’ actions. An important corollary
of incentive compatibility is that using hybrid cellular and
(opportunistic) short-range communications will always result
in a same or increased net profit for each phone, compared
with using the cellular communications alone.

III. THE OPTMPSS ALGORITHM

In this section, we develop an fully distributed algorithm,
OptMPSS to optimize global gross profit (7), by controlling
the action x] (¢) of each phone ¢ € N at every slot 1 <t <
tend: its sensing rate r;(¢) and the data forwarding rate f; ;(¢)
to each of its temporary neighbors 7 € N;(t). Initially, in
this section, we assume that all phone users are willing to
truthfully implement the OptMPSS algorithm. We will relax
this assumption in later sections.

A. Distributed Operations of OptMPSS

At each slot 1 < ¢ < tenq, €ach phone 7 € N operates as
follows:

1. Sensing Rate Control. Phone i sets its sensing rate
r;(t) as

Qi(t) +Vpi(t)
V
where vg_l() represents the inverse function of revenue func-
tion v;()’s first derivative, and V' > 0 is a system parameter
defined by the server.
2. Opportunistic Routing and Data forwarding. Phone
i computes a weight w; ;(t) for each temporary neighbors j €

N;(t) as
wi (1) = (Qi(t) — Qj(t))pi; (t) — Vi ;(t)

Based on w; ;(t), ¢ sets the forwarding rate f; ;(¢) for each of
its temporary neighbor j € N;(t) as:

Fii(t) = {Mz}j(t) if w; ;(t) >0

0 otherwise

) (1D

ri(t) = min(rmax, owg_l(

12)

13)

Remark 1. Since every node i € N requires only the

information of its temporary neighbors in A, (t), OptMPSS
algorithm is fully distributed. In addition, OptMPSS requires
current knowledge of the network only for slot ¢ and does not
require any future knowledge after slot t. At each slot, each
phone broadcasts a one-hop beacon message to communicate
its queue backlog to its current temporary neighbors and
performs simple arithmetic calculations. Therefore, the per slot
per node communication of OptMPSS is O(1) with respect to
the network size |N.

B. Asymptotical Optimality

To prove the optimality of OptMPSS, We divide the time
horizon of the MPSS, 1 <t < teng, into K successive frames
with size T slots (i.e. tenq = K7T). We assume that there
exists an ideal algorithm operating at the first slot of each
frame ¢t = (k — 1)T+ 1,1 < k < K, which can obtain full
information regarding the dynamics of the MPSS for future
T slots (which is impossible in practice). Based on future
knowledge, the ideal algorithm solves problem (7)-(10) over
each frame [(k — 1)T + 1,kT], 1 < k < K rather than
the whole horizon [1,tenq] . Note that when T' = tepq, the
ideal algorithm becomes the optimal solution of the original
problem (7)-(10) . Let ®*@%!(k T') denote the optimal global
gross profit computed by the ideal algorithm over each frame
1<k<K.

Theorem 1. The time-average global gross profit computed by
OptMPSS satisfies:

MT

K
1 .
OptM PSS ~, ideal _
o > k§:1<1> (k1) - = (14)

where M = |N|(tmax + fimax)?/2 is a constant value.
Proof. Theorem 1 can be proved by using sample-path based



Lyapunov optimization theory. Due to page limits, we present
the details this proof in appendix (https://db.tt/NBeUB9DZ).
0.

Inequality (14) shows that parameter V' can be set as large
as desired to force MT/V to be arbitrarily small. Specifically,
Theorem 1 also demonstrates that when 7' = t,4, the optimal
average global gross profit can be asymptotically achieved by
OptMPSS, as V — oo.

We can see that OptMPSS manages to attain the desired
properties 1-4, listed in Subsection II-E. We will discuss how
to achieve the other properties in later sections.

IV. MECHANISM DESIGN FOR FAITHFUL MPSS

A key property of MPSS is that all parameters local to each
phone are private and not observable to other phones and the
server. Consequently, this provide the phone users with the
opportunity to subvert the system by miscommunicating their
local parameters. In this section, we briefly discuss algorithmic
mechanism design [15], which studies faithful implementation
of an intended algorithm in a system with a center and
a set of individuals with private parameters. MPSS can be
viewed as such a system where the center is a server S and
the individuals are mobile phones, and we aim to design a
mechanism to faithfully implement the intended OptMPSS
algorithm.

A. Centralized Mechanism Design

Although we focus on distributed mechanism design, for
readability, we first discuss direct revelation (centralized)
mechanisms [27] in the context of MPSS.

1) Efficient Social Decision: For each phone i, define its
private type (parameters) as

ai = (pi(t)a,ui,j(t)vj € M(t)71 <t< 136nd) S @i

where O, represents the set of all possible types 6;. Denote
the private types of all phones as 8 = (01, ..., O)n(t)) €
(©1%,... X Op) = O, where the type space © represents
the set of all possible 6.

Let x(0) represent the joint rate control and routing deci-
sions of the MPSS during the whole time horizon 1 < ¢t <

tend~

(xi(t)7 (RS N7 1<t < tend)

= (ri(t)vfi7,j(t)7i€~/\/‘>jGM(t);lgtStend)
e X

X =

where X’ represents the set of all possible rate control and
routing decisions. It is easy to see that the gross profit of
each phone ¢;, i € N depends on its private type 6; and
the decision x. Therefore, we can rewrite p; as ¢;(x,6;). In
mechanism theory, The function x : @ — X’ is called a social
decision.

Definition 1 [Efficient Social Decision] A decision Xop: is
said to be efficient if

D ilXopts 05) = Y pilx,0;)

iEN iEN

(15)

for all 8 € O and for all x € X. According to Theorem
1, it can be seen that the sensing rate control and routing
decisions made by OptMPSS is the efficient social decision
when V' — oo. .

In order to make an efficient social decision x(0) in a
centralized way, each phone is asked to report its type, denoted
as 0;,

é\i = (i’\z(t)haz](t)m] € -/i\/'z(t)v 1<t< tend) S @i

to the server S, where € © represents the reported types of
all phones.

Since each phone user i exhibits strategic behaviors in
reality, he or she may be untruthful and report a type value
¢; that is different from the real type (i.e. 0; # 0;), in order
to derive an alternative social decision x'(6) that results in a
better gross profit ;(x'(6),0;) > ©;(Xopt, 6;).

2) Tax, Subsidy, Net Profit, and Server Profit: In order
to make an efficient social decision, server S introduces a
monetary transfer function A : @ — RWV

to encourage the phone users to report their true types. Based
on the announcement of a phone i’s type 0;(t), the function
Ai(0;), where this is negative this represents a fax that is
imposed on phone i, or where positive a subsidy is paid to <.
The combined social decision and monetary transfer function
(x(6),(0)) is referred to as the social choice function [14]:

g:0 = X xRWI a7)

(16)

As a result, the net profit of each phone user is defined as
ui(0:,%(0),\:(0)) = ¢i(x(8).6;) + Xi(B)  (18)

In our MPSS model, the time-average server profit ug
can be formally defined as

ug = (1 — Oé) Z Ui(Fi) — Z /\l(H)
ieN ieN
3) VCG Mechanisms: A direct revelation mechanism is
defined as (g, ®), with a strategy (type) space ® and social
choice function g. A mechanism defines a non-cooperative
game with incomplete information as each phone has no
knowledge of the types of other phones.

19)

Definition 2 [Incentive Compatibility] A direct revelation
mechanism ¢(0) is dominant strategy incentive compatible,
if the reported 0,;(t) is a dominant strategy for each phone

iEN:
Ui(g(ei,a—i),gi) > Ui(g(g)\i,9—i)79i),V9—i,9i,§i 7& 0;

, where 0_;(t) represents the types of all other phones j €
N — {i}. In this case we say the social choice function is
implemented in ex-post Nash equilibria.

The Vickrey-Clarke-Groves (VCG) mechanism is well-
known for the desired property of incentive compatibility [14].
The social decision rule of the VCG mechanism is given by

x"°9(6) = arg max Z ©i(x(6),6;) (20)
x(O)EX eN



and the monetary transfer function of each phone i € N is:

N9(0;) = i (x"9(8),0;) —
JFi -

(@) (b)

2D
where the term (a) corresponds to the gross profit of all
phones excluding ¢ (i.e. all phones in A" — {i}) when an
efficient social decision has been made, and term (b) represents
the maximum global gross profit achievable for all phones in
N — {i}, without i’s presence in the MPSS. Therefore, the
monetary transfer A;“9(6;) represents the impact (either loss
or increase) in value that is imposed on all other individuals
(i.e. marginal social impact) due to the social decision that has

been updated resulting from ¢’s presence in the MPSSs.

B. Distributed Mechanism Design

A distributed mechanism dM = (h,II; 4) [13], [27]
defines an outcome (i.e. decision and taxing) function h =
(hx, hx), a feasible strategy space IT = (II; x ... x IIjx)
(i.e. all possible sensing rate control and routing strategies
in our MPSS model), and intended distributed algorithm (i.e.
strategy) A = (A1, ..., Ajzr|), such as our OptMPSS algorithm.
A strategy s = (s1,...,5x) € II is a mapping from type
space to distributed actions including message transmission
and computation. The social choice function can be viewed
as g = hos(®) = (x,A). Fig. 2 illustrates the relationship
between directed and distributed mechanisms.

® A X x RWI
xn%zv(hx,h,\)

Fig. 2. The relations between direct and distributed mechanisms.

Definition 3 [Faithful Implementation]. A distributed mech-
anism dM = (h,I1, A) is an faithful implementation of the
social choice function g = h o A(0) € X x RV, when
the intended distributed algorithm (i.e. strategies for phones)
A= (A1,...,A|n|) is an ex post Nash equilibrium.

ui(h(Ai(0:), A—i(0-),0:) > ui(h(A}(0:), A—i(0-:),0;)

forallie N, A, # A;, 0;,0_,. In this case, the distributed
mechanism dM = (h,11, A) is also said to be incentive
compatible.

In our MPSS model, the intended distributed algorithm
A is OptMPSS. Due to the asymptotical optimality of our
OptMPSS, we define the asymptotic incentive compatibility
as follows:

Definition 4 [Asymptotic Incentive Compatibility]. A dis-
tributed mechanism dM = (h,I1, A) is asymprotically incen-
tive compatible, if

ui(h(Ai(0:), Ai(0-),0:) > ui(h(Ay(0:), A-i(02),0:) — (V)

foralli e N, AL #+ A;,0;,0.;, where e(V) > 0and (V) — 0
as V — oo.

V. THE BMT ALGORITHM

By applying distributed mechanism design to OptMPSS,
we develop BMT, an on-line and fully distributed algorithm
that calculates the marginal social impact (for computing the
VCG tax) of each phone. in parallel with the operations of
OptMPSS.

A. Distributed Operations of BMT

During the complete time horizon 1 < ¢t < t¢,q, the BMT
algorithm operates as follows:

1. Initialization. At beginning of slot £ = 1.

o The server: S broadcasts the set A/, revenue function
aw;(), and system parameters V' and r™** to each phone
ieN.

e Mobile phones: Besides storing its data queue holding
data, each phone 1 initializes a virtual queue length (a
non-negative integer number) Q; 7 (t) for each of all other
phones j € N, j # i, where Q;”’(t) means the queue
length of phone ¢ without phone j’s presence. The initial
lengths of all virtual queues are set as zero.

2. At each slot 1 <t < tguq

Distributed Sensing and Routing. Each phone i € A adopts
the OptMPSS algorithm for optimal distributed sensing and
data forwarding.

Distributed Marginal Social Impact Computation. In par-
allel, each phone i € N computes the virtual sensing rate
r; 7 (t) and the virtual cost cost;’(t) for each of all other
phones j € N, j # i based on the corresponding virtual
queue length Q; 7 (¢),

: () + ps(t
r () = min(rmax,avgfl(—Ql ( )V+ pil ))) (22)
and
cost; /() = i) () + Y filda®) @3
KEN;(t), k#j
where the virtual forwarding rate is
_; k() ifw () >0
—J t) = M’Luk( i,k 24
Jir {0 otherwise o
where for each k € N;(t), k # j, the virtual weight is
w1 = (@7 () — Q7 M)miw(t) = VHL(t)  @25)

The virtual queue lengths Q; I(t), Vj € N —{i} are updated
as

Q77 (t+1) = 1Q7M) — > fl®++r7(t)
kEN;(t)
+ > R

kEN;(t)



The average virtual sensing rates and virtual costs for all j #
i, j € N are updated as

T = (=)
(cost;” + (t — 1)cost;

)/t

cost,; I =
3. At slot ¢ = tepq.

o Each phone i reports the average virtual sensing rates
7,7 and virtual cost cost; T forall j € N, j # i to the
Server.

o The server The server can compute the VCG tax

A= N (awy(T; ) — cost; )
jeN—{i}
— Y (awy(Fy) — costy)
JEN—{i}

of each phone i € N. Finally, the server makes a payment
Of tend(av; (T;) + X;Y(6;)) to phone i.

From a global view of point, the BMT algorithm runs in
total one real and |N'| virtual OptMPSS algorithms in parallel
during the time horizon of the MPSS: the real OptMPSS
algorithm makes the actual sensing rate and routing decisions
at each slot, while |N| virtual OptMPSS algorithms simulate
N virtual marginal societies with absence of each phone
i € N to compute the final tax or subsidy for each phone
in a fully distributed way.

Remark 2. It worth noting that the |[N| — 1 virfual queue
lengths maintained in each phone are integer numbers rather
than real data packet queues, which results in negligible
storage overheads for mobile phones (e.g. only several KB
storage overhead for a MPSS with thousands of phones with
several GB RAMs). In addition, BMT requires each node to
transmit O(|\]) bytes of information (its real and maintained
virtual queue backlogs) to its current neighbors only, while
also performing O(|N|) simple arithmetic calculations. This
is still realistic for today’s smart phones using short-range
radios such as WiFi direct that can achieve up to 250Mbps
data transmission rate. Due to its distributed operations and
light overheads, BMT has a great potential to be applied in
large-scale MPSS.

B. Asymptotic Incentive Compatibility

In this subsection, we prove that BMT achieves asymptotic
incentive compatibility. We first introduce a new definition and
a supportuing lemma.
Definition 5 [Asymptotically Efficient Social Decision] For
a distributed mechanism dM = (h,I1, A), a social decision
hy(0) made by the suggested algorithm A is said to be
asymptotically efficient if

Zcplh o A0 nglh 0 A'(6),0;) —

ieN ieEN

for all 8 € © and for all A’ € 11, where (V) > 0 and
e(V)—=0as V — oo

Lemma 1. The social decision made by BMT algorithm, x*™*

e(V)

The server

Devices

e

Fig. 3. Experiment Prototype Illustration.

is asymptotically efficient.

Proof. Since the distributed social decision (e.g. sensing rate
control and routing decisions) made by BMT is the same
as that of OptMPSS, this Lemma obviously holds when
e(V) = MT/V and frame size T = tepq, according to
Theorem 1. U

Theorem 2. BMT achieves asymptotic incentive compatibility.

Proof. We prove Theorem 2 by contradiction. Consider a
distributed mechanism dM = (h,II, A¥™*), where A’ =
(Abmt A"’j\’}lt) is the distributed strategy of each phone
allocated by BMT algorithm. Suppose that BMT is not asymp-
totically incentive compatible, i.e. 3i € N, A, # A’ such
that

i (h(AF™(8:), AV7H(0-:),60:) + (V)
=(a) @i(hx(Agmt(ei);Abjgt( z))791)
(

hx, (AT (0), AV (0-:)) + (V)

=(b) ZSOZ AbMt (0:), Abmt(e i))0:)
ieEN
— max Z v +e(V)
J#i
< Z wi(h i), AP0 ) — max Z ©;

ieN
= i (hx(A7(0:), A% (0-4)., 0:) (26)
where equalities (a) and (b) follow the definitions of net profit

and VCG tax respectively. It can be seen that inequality (26)
implies that

ZSD’L By OAlﬂnt
iEN

J#i

Zaplh o A'(6),0;) —

1EN

(V)

where A’ = (All’mt,...,A;,...,Al"/('}f). This contradicts the
asymptotically social efficiency of BMT, i.e. Lemma 1. O
VI. EVALUATION

In this section, we evaluate the performance of the BMT
algorithm via both prototype experiments and simulations
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Fig. 4. Experiment results: (a) time-average global gross profits for the three
experiments. (b) and (c) shows the impact of device A’s cheating action on
the time-average individual gross and net profits of every device respectively.

using real human mobility traces.

A. Experiments Based on Android Device

We implemented the BMT algorithm in Android OS 4.3,
and developed an application called BMT App. We constructed
a proof-of-concept MPSS with three WiFi-direct enabled An-
droid devices (i.e. a Nexus 5 phone and two Nexus 7 tablets)
and a server implemented in NODE.JS (http://nodejs.org/), as
shown in Fig.3. The duration of a slot was set as two seconds
and the duration of each experiment was 10 minutes. At the
each slot, the BMT App run a discovery phase to update the
temporary neighbor table (e.g. the server and nearby devices),
and then performed the sensing, routing, and marginal social
impact computation tasks as defined by the BMT algorithm.
Each device was held by a researcher moved around our lab.

We use the revenue function v;(7;) = 41n(1+7;) for each
1 € N, and set the system parameters V = 100 and o = 0.5.
We use WiFi direct as the short-range radios. The channel
capacities of all wireless radios are set at 25 packets per slot.
The sensing prices and transmission prices (in credits per data
packet) for the data sent by WiFi direct were set as 0.1, for
all three Android devices A, B, and C. The 3G transmission
prices of A, B and C were set as 0.1, 1, and 1.5 respectively'.

As shown in Fig.4 (a), the time-average global gross profit
of MPSS using hybrid 3G and WiFi direct communications
is approximately twice of that using 3G radios alone, which
demonstrates that significant performance improvement can be
achieved by using hybrid cellular and short-range radio.

In addition, we also evaluated the incentive compatibility
of BMT. Since device A had a much lower 3G prices than B
and C, the routing decisions made by BMT would require
A to relay the sensor data packets collected by B and C'
(when A passed them) to the server, in order to maximize the
global gross profit. However, this would result in an individual
gross profits reduction for A (due to the relaying cost), and
therefore (the owner of) A may not want to faithfully adopt
the distributed routing actions suggested by BMT. To check

I'This implies that A may have an unlimited mobile data budget, while B
and C' may adopt a limited monthly contract or ’pay as you go’ tariff rate.

o —scenario 1 3 —scenario 1
5 - - scenario 2 o —scenario 2
8120 8
o »100
— S
2100 2
0 1}
2 @ 80
% 80 $
® ©
- 2
60
5% 1 days 2 3 0 1 days 2 3
(a) dynamic throughput (b) average throughput
200 Il global gross profits b3 8 [Ino cheating
[Iglobal net profits © ”| |IMcheating
150 [ Iserver profits o 6
g 2
8100 S4
]
50 HI HI 123 2 H |
0 H_I - ot-o -H ul [ H ol ull H
2 3 2 4 6 8 10
scenarios node ID

(c) global profits (d) incentive compatibility

Fig. 5. Simulation results of BMT.

whether BMT can avoid this, we mimic a quite intuitive
cheating behavior for A, i.e. disabling its WiFi direct radio.
Fig. 4 (b) shows that the individual gross profit for each
device before and after A’s cheating action. It can be seen
that this untruthful behavior can indeed improve A’s individual
gross profit, but results in a significant degeneration of global
gross profit for the whole system, as shown in Fig. 4(a).
As shown in Fig.4 (c), however, A eventually missed the
opportunity of obtaining approximately 36% more net profit
due to cheating. This means that A would be better off relaying
sensor data from other devices than misinforming the network.
This demonstrates that in practice BMT can achieve the highly
desired incentive compatibility property. In addition, the server
profit and net profit of each device and server profit were
positive in all experiments (These results are not plotted due
to page limits), which demonstrates that BMT can achieve
individual rationality and server profitability in practice.

B. Trace-driven Simulations

To evaluate the practical performance of BMT at scale, we
established simulations using the real human trace collected
from InfocomO05 (41 nodes for 3 days) [17]. In all simulations,
each phone has both 3G, WiFi, and WiFi direct radios. When
a phone meets a free WiFi router, it sends data through the
WiFi radio rather than 3G. In each simulation, a power-law
distributed random variable was assigned to each phone to
simulate the heterogeneous free WiFi access probability across
phones, observed from real human mobility traces [30], [31].
The sensing and WiFi/Wifi-direct transmission prices for each
phone were dynamically set between 0 and 0.01 for each slot
(representing channel quality variation) at each slot, while 3G
transmission price of each phone was randomly set between
0.1 and 0.5 at the beginning of each simulation and remained
constant over slots. We set r,,, = 5 and the duration of a



slot as one second. All other simulation parameters were set
the same as in the prototype experiment represented earlier.

We again run three simulations: MPSS with all wireless ra-
dios (scenario 1), MPSS without WiFi direct (scenario 2), and
cheating actions in MPSS with all wireless radios (scenario
3), where the users of phone 1 to 10 try to hide their WiFi
direct abilities. Fig. 5 (a) and (b) show the dynamic and time-
average throughput (i.e. total sensing data packets produced
by all phones at each slot) of MPSS respectively, which
demonstrate that the BMT algorithm is adaptive to network
dynamics (e.g. mobility) and manages to converge to the time-
average optimal. In addition, Figure 5 (c) and (d) demonstrate
that using multi-hop opportunistic short-range communica-
tions can significantly improve network performance and BMT
can achieve incentive compatibility, individual rationality, and
server profitability in practice.

VII. CONCLUSION

In this paper we investigate a cost-effective data collection
solution to Mobile Phone Sensing Systems (MPSS) that utilize
hybrid cellular and opportunistic short-range wireless com-
munications. We formulate a stochastic optimization problem
for mobile sensor data collection, and develop OptMPSS, a
scalable joint sensing rate control and routing algorithm to
solve the formulated optimization problem in a fully dis-
tributed and scalable way. In order to encourage phone users to
faithfully apply the OptMPSS algorithm’s control suggestions,
we propose BMT, a joint networking and taxing scheme, based
on combing Lyapunov stochastic optimization and distributed
mechanism design theories. We prove that BMT achieves
asymptotical optimality and incentive compatibility.

In order to evaluate the practical performance of BMT, we
developed BMT App, an Android application that implements
BMT algorithm for WiFi-direct-enabled devices. Trough ex-
periments and trace-driven simulations, we demonstrate that
BMT can efficiently exploit low-cost short-range communica-
tions, which significantly improves the global gross profit of
the MPSS (around 100%). Evaluation results show that the
networking actions suggested by BMT are the best choice
for each individual phone user. In addition, evaluation results
also demonstrate that our approach can achieve individual
rationality and server profitability in practice.
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