5 research outputs found

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio

    Equilibrium Modeling and Policy Analysis of a Biofuel Supply Chain with a Hydroelectric Reservoir

    Get PDF
    This research proposesd a game theoretic model of a biofuel supply chain (BSC) where a utility company supplies reservoir water to two farmers, located in downstream and upstream of a hydropower dam. The decision-making process of the model is formulated as a three-stage Stackelberg game. We analyze the equilibrium of the decentralized systems and the effect of the government subsidy on energy crop (switchgrass) production for cellulosic biofuel industries, with two forms of subsidy: (1) discriminated subsidies and (2) equalized subsidies. The results show that both forms of subsidy improve social welfare in the BSC unless the amount of subsidy exceeds certain limits, in which case there are negative margins for the farmers, and disappearance or monopoly of the markets. Increasing the subsidy to the upstream farmer is more efficient in improving social welfare than equalizing the subsidies to the two farmers. Increasing the subsidy to the downstream farmer shows the least efficiency in improving social welfare

    Game-Theoretic Frameworks for the Techno-Economic Aspects of Infrastructure Sharing in Current and Future Mobile Networks

    Get PDF
    RÉSUMÉ Le phénomène de partage d’infrastructure dans les réseaux mobiles a prévalu au cours des deux dernières décennies. Il a pris de l’ampleur en particulier pendant les deux dernières migrations technologiques, à savoir de la 2G à la 3G et de la 3G à la 4G et il sera encore plus crucial à très court terme avec l’avènement de la 5G. En permettant aux Opérateurs de Réseaux Mobiles (ORM) de faire face à la demande croissante des utilisateurs et à la baisse des revenus. Il n’est pas rare non plus que le partage d’infrastructure s’accompagne du partage du spectre, une ressource essentielle et de plus en plus rare pour les réseaux mobiles. Dans ce milieu, la communauté des chercheurs, parmis d’autres, a étudié les multiples aspects techniques du partage d’infrastructure parfois associés au partage du spectre. Entre autres, ces aspects techniques comprennent l’évaluation des performances en termes de métriques de réseau, de gestion de ressources et d’habilitateurs et d’architectures adaptées. Les aspects économiques ont également été abordés, mais généralement en se concentrant étroitement sur l’estimation des économies de coûts des dfférentes alternatives de partage d’infrastructure. Cependant, lorsqu’on considère le problème du partage d’infrastructure, et le cas échéant aussi du partage du spectre du point de vue d’un ORM, qui est une entité intéressée à maximiser le profit, il est important d’évaluer non seulement la réduction des coûts de cette infrastructure, et le cas échéant aussi le partage du spectre, mais aussi leur impact sur les performances du réseau et par conséquent sur les revenus de l’ORM. De ce point de vue, la viabilité du partage d’infrastructure ne doit pas être prise pour acquise ; afin d’étudier le problème stratégique d’un ORM concluant un accord de partage avec un ou plusieurs autres ORM, les aspects techniques et économiques doivent être pris en compte. Cette étude constitue le premier objectif de ce projet de recherche doctorale. Plus précisément, nous avons considéré plusieurs variantes résultant de deux cas où chaque variante a été abordée par un modèle mathématique approprié. Ces variantes répondent à un scénario 4G commun dans lequel il existe un ensemble de ORM avec des parts de marché données qui coexistent dans une zone géographique urbaine dense ; chaque ORM doit décider s’il faut déployer une couche de petites cellules dans la zone et, le cas échéant, s’il doit le faire lui-même ou en concluant un accord de partage en créant un réseau partagé avec certains, ou la totalité, des autres ORM, auquel cas une coalition est créée. Une caractéristique commune importante de ces variantes est le modèle de tarification de l’utilisateur défini comme une fonction linéaire du taux moyen perçu par l’utilisateur en fonction de la coalition dont fait partie l’ORM de l’utilisateur.----------ABSTRACT The phenomenon of infrastructure sharing in mobile networks has been prevalent over the last two decades. It has gathered momentum especially during the last two technology migrations, i.e., from 2G to 3G and from 3G to 4G and it will be even more crucial with the advent of 5G. The key rationale behind such phenomenon is cost reduction as a means for Mobile Network Operators (MNOs) to deal with an increasing user demand but declining revenues. It is also not unusual for infrastructure sharing to go hand in hand with sharing of spectrum, an essential and increasingly scarce resource for mobile networks. In this milieu, the research community (but not only) has addressed multiple technical aspects of infrastructure sharing sometimes combined with spectrum sharing. Among others, such technical aspects include performance evaluation in terms of network metrics, resource management and enablers and adapted architectures. Economic aspects have been addressed as well, but usually with a narrow focus on estimating the cost savings of the di˙erent infrastructure sharing alternatives. However, from the perspective of an MNO, which is a self-interested, profit-maximizing entity, it is important to assess not only the cost reduction that infrastructure sharing, and when applicable, also spectrum sharing bring about, but also their impact on the network performance and consequently on the MNO’s revenues. From this perspective, the viability of infrastructure sharing should not be taken for granted; in order to study the strategic problem of an MNO entering a sharing agreement with one or multiple other MNOs, both technical and economic aspects should be taken into account – such study has been the first objective of this doctoral research project. We have specifically considered multiple variants arising from two cases where each variant has been tackled by an appropriate mathematical model. These variants address a common 4G scenario in which there is a set of MNOs with given market shares that coexist in a given dense urban geographical area; each MNO has to decide whether to deploy a layer of small cells in the area and if so, whether to do that by itself or by entering a sharing agreement, i.e., building a shared network with a subset or all other MNOs (in which case a coalition is created). One key common feature of these variants is the user pricing model which is defined as a linear function of the average rate perceived by the user depending on the coalition joined by the user’s MNO; such pricing model allows us to capture the impact that infrastructure sharing, and, when applicable, also spectrum sharing have on the MNO’s revenues through a network performance metric. In turn, the two key outcomes of the models tackling these variants are the set of coalitions and the number of small cells they deploy
    corecore