2,329 research outputs found

    Reinforcement learning based multi core scheduling (RLBMCS) for real time systems

    Get PDF
    Embedded systems with multi core processors are increasingly popular because of the diversity of applications that can be run on it. In this work, a reinforcement learning based scheduling method is proposed to handle the real time tasks in multi core systems with effective CPU usage and lower response time. The priority of the tasks is varied dynamically to ensure fairness with reinforcement learning based priority assignment and Multi Core MultiLevel Feedback queue (MCMLFQ) to manage the task execution in multi core system

    On-Device Deep Learning Inference for System-on-Chip (SoC) Architectures

    Get PDF
    As machine learning becomes ubiquitous, the need to deploy models on real-time, embedded systems will become increasingly critical. This is especially true for deep learning solutions, whose large models pose interesting challenges for target architectures at the “edge” that are resource-constrained. The realization of machine learning, and deep learning, is being driven by the availability of specialized hardware, such as system-on-chip solutions, which provide some alleviation of constraints. Equally important, however, are the operating systems that run on this hardware, and specifically the ability to leverage commercial real-time operating systems which, unlike general purpose operating systems such as Linux, can provide the low-latency, deterministic execution required for embedded, and potentially safety-critical, applications at the edge. Despite this, studies considering the integration of real-time operating systems, specialized hardware, and machine learning/deep learning algorithms remain limited. In particular, better mechanisms for real-time scheduling in the context of machine learning applications will prove to be critical as these technologies move to the edge. In order to address some of these challenges, we present a resource management framework designed to provide a dynamic on-device approach to the allocation and scheduling of limited resources in a real-time processing environment. These types of mechanisms are necessary to support the deterministic behavior required by the control components contained in the edge nodes. To validate the effectiveness of our approach, we applied rigorous schedulability analysis to a large set of randomly generated simulated task sets and then verified the most time critical applications, such as the control tasks which maintained low-latency deterministic behavior even during off-nominal conditions. The practicality of our scheduling framework was demonstrated by integrating it into a commercial real-time operating system (VxWorks) then running a typical deep learning image processing application to perform simple object detection. The results indicate that our proposed resource management framework can be leveraged to facilitate integration of machine learning algorithms with real-time operating systems and embedded platforms, including widely-used, industry-standard real-time operating systems

    An architecture for intelligent task interruption

    Get PDF
    In the design of real time systems the capability for task interruption is often considered essential. The problem of task interruption in knowledge-based domains is examined. It is proposed that task interruption can be often avoided by using appropriate functional architectures and knowledge engineering principles. Situations for which task interruption is indispensable, a preliminary architecture based on priority hierarchies is described

    Assessing load-sharing within optimistic simulation platforms

    Get PDF
    The advent of multi-core machines has lead to the need for revising the architecture of modern simulation platforms. One recent proposal we made attempted to explore the viability of load-sharing for optimistic simulators run on top of these types of machines. In this article, we provide an extensive experimental study for an assessment of the effects on run-time dynamics by a load-sharing architecture that has been implemented within the ROOT-Sim package, namely an open source simulation platform adhering to the optimistic synchronization paradigm. This experimental study is essentially aimed at evaluating possible sources of overheads when supporting load-sharing. It has been based on differentiated workloads allowing us to generate different execution profiles in terms of, e.g., granularity/locality of the simulation events. © 2012 IEEE

    A fuzzy logic based dynamic reconfiguration scheme for optimal energy and throughput in symmetric chip multiprocessors

    Get PDF
    Embedded systems architectures have traditionally often been investigated and designed in order to achieve a greater throughput combined with minimum energy consumption. With the advent of reconfigurable architectures it is now possible to support algorithms to find optimal solutions for an improved energy and throughput balance. As a result of ongoing research several online and offline techniques and algorithm have been proposed for hardware adaptation. This paper presents a novel coarse-grained reconfigurable symmetric chip multiprocessor (SCMP) architecture managed by a fuzzy logic engine that balances performance and energy consumption. The architecture incorporates reconfigurable level 1 (L1) caches, power gated cores and adaptive on-chip network routers to allow minimizing leakage energy effects for inactive components. A coarse grained architecture was selected as to be a focus for this study as it typically allows for fast reconfiguration as compared to the fine-grained architectures, thus making it more feasible to be used for runtime adaption schemes. The presented architecture is analyzed using a set of OpenMP based parallel benchmarks and the results show significant improvements in performance while maintaining minimum energy consumption

    Mapping Framework for Heterogeneous Reconfigurable Architectures:Combining Temporal Partitioning and Multiprocessor Scheduling

    Get PDF

    Networks on Chips: Structure and Design Methodologies

    Get PDF
    corecore