29,697 research outputs found

    Model predictive control techniques for hybrid systems

    Get PDF
    This paper describes the main issues encountered when applying model predictive control to hybrid processes. Hybrid model predictive control (HMPC) is a research field non-fully developed with many open challenges. The paper describes some of the techniques proposed by the research community to overcome the main problems encountered. Issues related to the stability and the solution of the optimization problem are also discussed. The paper ends by describing the results of a benchmark exercise in which several HMPC schemes were applied to a solar air conditioning plant.Ministerio de Eduación y Ciencia DPI2007-66718-C04-01Ministerio de Eduación y Ciencia DPI2008-0581

    Fast Non-Parametric Learning to Accelerate Mixed-Integer Programming for Online Hybrid Model Predictive Control

    Full text link
    Today's fast linear algebra and numerical optimization tools have pushed the frontier of model predictive control (MPC) forward, to the efficient control of highly nonlinear and hybrid systems. The field of hybrid MPC has demonstrated that exact optimal control law can be computed, e.g., by mixed-integer programming (MIP) under piecewise-affine (PWA) system models. Despite the elegant theory, online solving hybrid MPC is still out of reach for many applications. We aim to speed up MIP by combining geometric insights from hybrid MPC, a simple-yet-effective learning algorithm, and MIP warm start techniques. Following a line of work in approximate explicit MPC, the proposed learning-control algorithm, LNMS, gains computational advantage over MIP at little cost and is straightforward for practitioners to implement

    Predictive control for energy management in all/more electric vehicles with multiple energy storage units

    Get PDF
    The paper describes the application of Model Predictive Control (MPC) methodologies for application to electric and hybrid-electric vehicle drive-train formats incorporating multiple energy/power sources. Particular emphasis is given to the co-ordinated management of energy flow from the multiple sources to address issues of extended vehicle range and battery life-time for all-electric drive-trains, and emissions reduction and drive-train torsional oscillations, for hybrid-electric counterparts, whilst accommodating operational constraints and, ultimately, generic non-standard driving cycles

    Least costly energy management for series hybrid electric vehicles

    Full text link
    Energy management of plug-in Hybrid Electric Vehicles (HEVs) has different challenges from non-plug-in HEVs, due to bigger batteries and grid recharging. Instead of tackling it to pursue energetic efficiency, an approach minimizing the driving cost incurred by the user - the combined costs of fuel, grid energy and battery degradation - is here proposed. A real-time approximation of the resulting optimal policy is then provided, as well as some analytic insight into its dependence on the system parameters. The advantages of the proposed formulation and the effectiveness of the real-time strategy are shown by means of a thorough simulation campaign
    corecore