1,643 research outputs found

    Optimal logistics scheduling with dynamic information in emergency response: case studies for humanitarian objectives

    Get PDF
    The mathematical model of infectious disease is a typical problem in mathematical modeling, and the common infectious disease models include the susceptible-infected (SI) model, the susceptible-infected-recovered model (SIR), the susceptible-infected-recovered-susceptible model (SIRS) and the susceptible-exposed-infected-recovered (SEIR) model. These models can be used to predict the impact of regional return to work after the epidemic. In this paper, we use the SEIR model to solve the dynamic medicine demand information in humanitarian relief phase. A multistage mixed integer programming model for the humanitarian logistics and transport resource is proposed. The objective functions of the model include delay cost and minimum running time in the time-space network. The model describes that how to distribute and deliver medicine resources from supply locations to demand locations with an efficient and lower-cost way through a transportation network. The linear programming problem is solved by the proposed Benders decomposition algorithm. Finally, we use two cases to calculate model and algorithm. The results of the case prove the validity of the model and algorithm

    Resilient Strategies and Sustainability in Agri-Food Supply Chains in the Face of High-Risk Events

    Full text link
    [EN] Agri-food supply chains (AFSCs) are very vulnerable to high risks such as pandemics, causing economic and social impacts mainly on the most vulnerable population. Thus, it is a priority to implement resilient strategies that enable AFSCs to resist, respond and adapt to new market challenges. At the same time, implementing resilient strategies impact on the social, economic and environmental dimensions of sustainability. The objective of this paper is twofold: analyze resilient strategies on AFSCs in the literature and identify how these resilient strategies applied in the face of high risks affect the achievement of sustainability dimensions. The analysis of the articles is carried out in three points: consequences faced by agri-food supply chains due to high risks, strategies applicable in AFSCs, and relationship between resilient strategies and the achievement of sustainability dimensions.Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS "Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems" (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCA-RISE-2015.Zavala-AlcĂ­var, A.; Verdecho SĂĄez, MJ.; Alfaro Saiz, JJ. (2020). Resilient Strategies and Sustainability in Agri-Food Supply Chains in the Face of High-Risk Events. IFIP Advances in Information and Communication Technology. 598:560-570. https://doi.org/10.1007/978-3-030-62412-5_46S560570598Gray, R.: Agriculture, transportation, and the COVID-19 crisis. Can. J. Agric. Econ. 68, 239–243 (2020)Queiroz, M.M., Ivanov, D., Dolgui, A., Fosso Wamba, S.: Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review. Ann. Oper. Res. (2020). https://doi.org/10.1007/s10479-020-03685-7Hobbs, J.: Food supply chains during the COVID-19 pandemic. Can. J. Agric. Econ. 68, 171–176 (2020)Shashi, P., Centobelli, P., Cerchione, R., Ertz, M.: Managing supply chain resilience to pursue business and environmental strategies. Bus. Strateg. Environ. 29(3), 1215–1246 (2019)Ivanov, D.: Predicting the impacts of epidemic outbreaks on global supply chains: a simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transp. Res. Part E Logist. Transp. Rev. 136, 101922 (2020)Mamani, H., Chick, S.E., Simchi-Levi, D.: A game-theoretic model of international influenza vaccination coordination. Manage. Sci. 59(7), 1650–1670 (2013)Liu, M., Zhang, D.: A dynamic logistics model for medical resources allocation in an epidemic control with demand forecast updating. J. Oper. Res. Soc. 67, 841–852 (2016)Hessel, L.: Pandemic influenza vaccines: meeting the supply, distribution and deployment challenges. Influenza Other Respir. Viruses 3, 165–170 (2009)Orenstein, W., Schaffner, W.: Lessons learned: role of influenza vaccine production, distribution, supply, and demand—what it means for the provider. Am. J. Med. 121, S22–S27 (2008)BĂŒyĂŒktahtakın, I., Des-Bordes, E., KıbÄ±ĆŸ, E.: A new epidemics–logistics model: Insights into controlling the Ebola virus disease in West Africa. Eur. J. Oper. Res. 26, 1046–1063 (2018)Anparasan, A., Lejeune, M.: Analyzing the response to epidemics: concept of evidence-based Haddon matrix. J. Humanit. Logist. Supply Chain Manag. 7, 266–283 (2017)Anparasan, A.A., Lejeune, M.A.: Data laboratory for supply chain response models during epidemic outbreaks. Ann. Oper. Res. 270, 53–64 (2018). https://doi.org/10.1007/s10479-017-2462-yAnparasan, A., Lejeune, M.: Resource deployment and donation allocation for epidemic outbreaks. Ann. Oper. Res. 283, 9–32 (2019). https://doi.org/10.1007/s10479-016-2392-0Ivanov, D., Dolgui, A.: Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak. Int. J. Prod. Res. 58, 2904–2915 (2020)Ivanov, D.: Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic. Ann. Oper. Res. (2020). https://doi.org/10.1007/s10479-020-03640-6Ekici, A., Keskinocak, P., Swann, J.: Modeling influenza pandemic and planning food distribution. Manuf. Serv. Oper. Manag. 16, 11–27 (2014)Miranda, R., Schaffner, D.: Virus risk in the food supply chain. Curr. Op. Food Sci. 30, 43–48 (2019)MagalhĂŁes, A., Rossi, A., Zattar, I., Marques, M., Seleme, R.: Food traceability technologies and foodborne outbreak occurrences. Br. Food J. 121, 3362–3379 (2019)Denyer, D., Tranfield, D.: Producing a systematic review. In: Buchanan, D., Bryman, A. (eds.) The Sage Handbook of Organizational Research Methods, pp. 671–689. SAGE Publications Ltd., London (2009)Christopher, M., Peck, H.: Building the resilient supply chain. Int. J. Logist. Manag. 15, 1–14 (2004)Dolgui, A., Ivanov, D., Sokolov, B.: Ripple effect in the supply chain: an analysis and recent literature. Int. J. Prod. Res. 56, 414–430 (2018)JĂŒttner, U., Peck, H., Christopher, M.: Supply chain risk management: outlining an agenda for future research. Int. J. Logist. Res. 6, 197–210 (2003)Behzadi, G., O’Sullivan, M., Olsen, T., Zhang, A.: Agribusiness supply chain risk management: a review of quantitative decision models. Omega (United Kingdom) 79, 21–42 (2018)Kleindorfer, P., Saad, G.: Managing disruption risks in supply chains. Pr. Op. Man. 14, 53–68 (2005)Vishnu, C., Sridharan, R., Gunasekaran, A., Ram Kumar, P.: Strategic capabilities for managing risks in supply chains: current state and research futurities. J. Adv. Manag. Res. 17(2), 173–211 (2019)Deaton, B., Deaton, B.: Food security and Canada’s agricultural system challenged by COVID-19. Can. J. Agric. Econ. 68(2), 143–149 (2020)Richards, T., Rickard, B.: COVID-19 impact on fruit and vegetable markets. C. J. Ag. Ec. 68(2), 189–194 (2020)Larue, B.: Labor issues and COVID-19. Can. J. Agric. Econ. Can. d’agroeconomie (2020). https://doi.org/10.1111/cjag.12233Hollnagel, E.: Epilogue: RAG: the resilience analysis grid. In: Hollnagel, E., Paries, J., Woods, D., Wreathall, J. (eds.) Resilience Engineering in Practice: A Guidebook. Ashgate Pr., pp. 275–296 (2011)Ponomarov, S., Holcomb, M.: Understanding the concept of supply chain resilience. Int. J. Logist. Manag. 20, 124–143 (2009)Wu, T., Huang, S., Blackhurst, J., Zhang, X., Wang, S.: Supply chain risk management: an agent-based simulation to study the impact of retail stockouts. IEEE Trans. Eng. Manag. 60, 676–686 (2013)Schmitt, A., Singh, M.: A quantitative analysis of disruption risk in a multi-echelon supply chain. Int. J. Prod. Econ. 139, 22–32 (2012)Vroegindewey, R., Hodbod, J.: Resilience of agricultural value chains in developing country contexts: a framework and assessment approach. Sustainability 10, 916 (2018)Behzadi, G., O’Sullivan, M., Olsen, T., Scrimgeour, F., Zhang, A.: Robust and resilient strategies for managing supply disruptions in an agribusiness supply chain. Int. J. Prod. Econ. 191, 207–220 (2017)Bottani, E., Murino, T., Schiavo, M., Akkerman, R.: Resilient food supply chain design: modelling framework and metaheuristic solution approach. Comput. Ind. Eng. 135, 177–198 (2019)Meuwissen, M., et al.: A framework to assess the resilience of farming systems. Agric. Syst. 176, 102656 (2019)Dutta, P., Shrivastava, H.: The design and planning of an integrated supply chain for perishable products under uncertainties: a case study in milk industry. J. Model. Manag. (2020). https://doi.org/10.1108/JM2-03-2019-0071Aboah, J., Wilson, M., Rich, M., Lyne, M.: Operationalising resilience in tropical agricultural value chains. Supply Chain Manag. 24, 271–300 (2019)Ravulakollu, A., Urciuoli, L., Rukanova, B., Tan, Y., Hakvoort, R.: Risk based framework for assessing resilience in a complex multi-actor supply chain domain. Supply Chain Forum 19, 266–281 (2018)Das, K.: Integrating lean, green, and resilience criteria in designing a sustainable food supply chain. Proc. Int. Conf. Ind. Eng. Oper. Manag. 2018, 462–473 (2018)Zhu, Q., Krikke, H.: Managing a sustainable and resilient perishable food supply chain (PFSC) after an outbreak. Sustainability 12, 5004 (2020)Rozhkov, M., Ivanov, D.: Contingency production-inventory control policy for capacity disruptions in the retail supply chain with perishable products. IFAC-PapersOnLine 51, 1448–1452 (2018)Yavari, M., Zaker, H.: Designing a resilient-green closed loop supply chain network for perishable products by considering disruption in both supply chain and power networks. Comput. Chem. Eng. 134, 106680 (2020)Ye, F., Hou, G., Li, Y., Fu, S.: Managing bioethanol supply chain resiliency: a risk-sharing model to mitigate yield uncertainty risk. Ind. Manag. Data Syst. 118, 1510–1527 (2018)Jabbarzadeh, A., Fahimnia, B., Sheu, J., Moghadam, H.: Designing a supply chain resilient to major disruptions and supply/demand interruptions. Transp. Res. Part B Methodol. 94, 121–149 (2016)O’Leary, D.: Evolving information systems and technology research issues for COVID-19 and other pandemics. J. Organ. Comput. Electron. Commer. 30, 1–8 (2020)Zavala-AlcĂ­var, A., Verdecho, M.-J., Alfaro-Saiz, J.-J.: A conceptual framework to manage resilience and increase sustainability in the supply chain. Sustainability 12(16), 6300 (2020)Fahimni, B., Jabbarzadeh, A.: Marrying supply chain sustainability and resilience: a match made in heaven. Transp. Res. Part E Logist. Transp. Rev. 91, 306–324 (2016)Verdecho, M.-J., AlarcĂłn-Valero, F., PĂ©rez-Perales, D., Alfaro-Saiz, J.-J., RodrĂ­guez-RodrĂ­guez, R.: A methodology to select suppliers to increase sustainability within supply chains. CEJOR (2020). https://doi.org/10.1007/s10100-019-00668-3Bai, C., Sarkis, J.: Integrating sustainability into supplier selection with grey system and rough set methodologies. Int. J. Prod. Econ. 124(1), 252–264 (2010)Bai, C., Sarkis, J.: Green supplier development: analytical evaluation using rough set theory. J. Clean. Prod. 18, 1200–1210 (2010)Valipour, S., Safaei, A., Fallah, H.: Resilient supplier selection and segmentation in grey environment. J. Clean. Prod. 207, 1123–1137 (2019)Zimmer, K., Fröhling, M., Schultmann, F.: Sustainable supplier management – a review of models supporting sustainable supplier selection, monitoring and development. Int. J. Prod. Res. 54, 1412–1442 (2016)Yang, S., Xiao, Y., Kuo, Y.: The supply chain design for perishable food with stochastic demand. Sustainability 9, 1195 (2017)Zahiri, B., Zhuang, J., Mohammadi, M.: Toward an integrated sustainable-resilient supply chain: a pharmaceutical case study. Transp. Res. Part E Logist. Transp. Rev. 103, 109–142 (2017)Duong, L., Chong, J.: Supply chain collaboration in the presence of disruptions: a literature review. Int. J. Prod. Res. 58, 3488–3507 (2020

    Extendsim-based research on transport process optimization of emergency Cold-chain Logistics

    Get PDF

    Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19

    Get PDF
    Pandemics cause chaotic situations in supply chains (SC) around the globe, which can lead towards survivability challenges. The ongoing COVID-19 pandemic is an unprecedented humanitarian crisis that has severely affected global business dynamics. Similar vulnerabilities have been caused by other outbreaks in the past. In these terms, prevention strategies against propagating disruptions require vigilant goal conceptualization and roadmaps. In this respect, there is a need to explore supply chain operation management strategies to overcome the challenges that emerge due to COVID-19-like situations. Therefore, this review is aimed at exploring such challenges and developing strategies for sustainability, and viability perspectives for SCs, through a structured literature review (SLR) approach. Moreover, this study investigated the impacts of previous epidemic outbreaks on SCs, to identify the research objectives, methodological approaches, and implications for SCs. The study also explored the impacts of epidemic outbreaks on the business environment, in terms of effective resource allocation, supply and demand disruptions, and transportation network optimization, through operations management techniques. Furthermore, this article structured a framework that emphasizes the integration of Industry 4.0 technologies, resilience strategies, and sustainability to overcome SC challenges during pandemics. Finally, future research avenues were identified by including a research agenda for experts and practitioners to develop new pathways to get out of the crisis.</jats:p

    Composite Monte Carlo Decision Making under High Uncertainty of Novel Coronavirus Epidemic Using Hybridized Deep Learning and Fuzzy Rule Induction

    Full text link
    In the advent of the novel coronavirus epidemic since December 2019, governments and authorities have been struggling to make critical decisions under high uncertainty at their best efforts. Composite Monte-Carlo (CMC) simulation is a forecasting method which extrapolates available data which are broken down from multiple correlated/casual micro-data sources into many possible future outcomes by drawing random samples from some probability distributions. For instance, the overall trend and propagation of the infested cases in China are influenced by the temporal-spatial data of the nearby cities around the Wuhan city (where the virus is originated from), in terms of the population density, travel mobility, medical resources such as hospital beds and the timeliness of quarantine control in each city etc. Hence a CMC is reliable only up to the closeness of the underlying statistical distribution of a CMC, that is supposed to represent the behaviour of the future events, and the correctness of the composite data relationships. In this paper, a case study of using CMC that is enhanced by deep learning network and fuzzy rule induction for gaining better stochastic insights about the epidemic development is experimented. Instead of applying simplistic and uniform assumptions for a MC which is a common practice, a deep learning-based CMC is used in conjunction of fuzzy rule induction techniques. As a result, decision makers are benefited from a better fitted MC outputs complemented by min-max rules that foretell about the extreme ranges of future possibilities with respect to the epidemic.Comment: 19 page

    Resource planning strategies for healthcare systems during a pandemic

    Get PDF
    We study resource planning strategies, including the integrated healthcare resources’ allocation and sharing as well as patients’ transfer, to improve the response of health systems to massive increases in demand during epidemics and pandemics. Our study considers various types of patients and resources to provide access to patient care with minimum capacity extension. Adding new resources takes time that most patients don't have during pandemics. The number of patients requiring scarce healthcare resources is uncertain and dependent on the speed of the pandemic's transmission through a region. We develop a multi-stage stochastic program to optimize various strategies for planning limited and necessary healthcare resources. We simulate uncertain parameters by deploying an agent-based continuous-time stochastic model, and then capture the uncertainty by a forward scenario tree construction approach. Finally, we propose a data-driven rolling horizon procedure to facilitate decision-making in real-time, which mitigates some critical limitations of stochastic programming approaches and makes the resulting strategies implementable in practice. We use two different case studies related to COVID-19 to examine our optimization and simulation tools by extensive computational results. The results highlight these strategies can significantly improve patient access to care during pandemics; their significance will vary under different situations. Our methodology is not limited to the presented setting and can be employed in other service industries where urgent access matters

    Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction

    Get PDF
    In the advent of the novel coronavirus epidemic since December 2019, governments and authorities have been struggling to make critical decisions under high uncertainty at their best efforts. In computer science, this represents a typical problem of machine learning over incomplete or limited data in early epidemic Composite Monte-Carlo (CMC) simulation is a forecasting method which extrapolates available data which are broken down from multiple correlated/casual micro-data sources into many possible future outcomes by drawing random samples from some probability distributions. For instance, the overall trend and propagation of the infested cases in China are influenced by the temporal–spatial data of the nearby cities around the Wuhan city (where the virus is originated from), in terms of the population density, travel mobility, medical resources such as hospital beds and the timeliness of quarantine control in each city etc. Hence a CMC is reliable only up to the closeness of the underlying statistical distribution of a CMC, that is supposed to represent the behaviour of the future events, and the correctness of the composite data relationships. In this paper, a case study of using CMC that is enhanced by deep learning network and fuzzy rule induction for gaining better stochastic insights about the epidemic development is experimented. Instead of applying simplistic and uniform assumptions for a MC which is a common practice, a deep learning-based CMC is used in conjunction of fuzzy rule induction techniques. As a result, decision makers are benefited from a better fitted MC outputs complemented by min–max rules that foretell about the extreme ranges of future possibilities with respect to the epidemic.University of Macau MYRG2016-00069-FSTFDCT Macau FDCT/126/2014/A32018 Guangzhou Science and Technology Innovation and Development of Special Funds201907010001EF003/FST-FSJ/2019/GSTI

    A Data-Driven Optimization Model for Medical Resource Allocation during the Pandemic

    Get PDF
    The outbreak of Covid-19 in recent years has once again brought the critical issue of medical resource allocation during a pandemic to the forefront of research and public attention. The dynamic and rapid nature of the pandemic has posed significant challenges in accurately predicting the demands for medical resources and developing effective strategies for their distribution. In this study, we aim to address these challenges by studying the medical resource allocation problem during a pandemic and proposing a data-driven optimization methodology that combines mathematical programming and machine learning techniques. To tackle the problem of demand prediction, we utilize a Long Short-Term Memory(LSTM) model to predict medical resource demand using historical pandemic time series data. Building upon the demand predictions, we develop a linear programming model to optimize the allocation of medical resources. The objective is to maximize the total accessibility of hospitals within each region while also ensuring a balanced distribution of accessibility across all regions. We also conducted a case study on the application of this framework to the Quebec, Canada, pandemic hospitalization case scenarios. The dataset we utilized consisted of hospitalization case numbers from 16 regions in Quebec, along with the geographical locations of 15 regions and their corresponding healthcare facilities. The prediction performance is evaluated by mean absolute error(MAE) and root mean square error(RMSE), which yielded average values of 3.079 and 5.491, respectively. And after optimizing, the total accessibility of all regions is 4.503. The results indicate the effectiveness of our proposed method in accurately predicting future hospitalization numbers and determining the necessary increase in bed capacity for each region, showcasing its potential to assist in resource planning and allocation during a pandemic
    • 

    corecore