197 research outputs found

    Analysis and Design of a 32nm FinFET Dynamic Latch Comparator

    Full text link
    Comparators have multifarious applications in various fields, especially used in analog to digital converters. Over the years, we have seen many different designs of single stage, dynamic latch type and double tail type comparators based on CMOS technology, and all of them had to make the tradeoff between power consumption and delay time. Meanwhile, to mitigate the short channel effects of conventional CMOS based design, FinFET has emerged as the most promising alternative by owning the tremendous gate control feature over the channel region. In this paper, we have analyzed the performance of some recent dynamic latch type comparators and proposed a new structure of dynamic latch comparator; moreover, 32nm FinFET technology has been considered as the common platform for all of the comparators circuit design. The proposed comparator has shown impressive performance in case of power consumption, time delay, power delay product and offset voltage while compared with the other recent comparators through simulations with LTspice.Comment: 6 pages, 13 figure

    Silicon Germanium BiCMOS Comparator Designed for Use in An Extreme Environment Analog to Digital Converter

    Get PDF
    This thesis demonstrates the process of creating a radiation hardened and extreme temperature operating comparator from start to finish in the 90 nm SiGe 9HP process node. This includes the entire design flow from examining comparator topologies, to designing the initial comparator circuits, to simulating the comparator over a temperature range of -196°C to 125°C, and finally the testing of the fabricated circuit. To verify the circuit would work at low temperatures, several new device models were created that could be used for simulations at -196°C. In addition to its properties as a standalone comparator, the circuit was also used as a building block in a SAR ADC that would be used for extreme environments

    Analysis of CMOS Comparator in 90nm Technology with Different Power Reduction Techniques

    Get PDF
    To reduce power consumption of regenerative comparator three different techniques are incorporated in this work. These techniques provide a way to achieve low power consumption through their mechanism that alters the operation of the circuit. These techniques are pseudo NMOS, CVSL (cascode voltage switch logic)/DCVS (differential cascode voltage switch) & power gating. Initially regenerative comparator is simulated at 90 nm CMOS technology with 0.7 V supply voltage. Results shows total power consumption of 15.02 μW with considerably large leakage current of 52.03 nA. Further, with pseudo NMOS technique total power consumption increases to 126.53 μW while CVSL shows total power consumption of 18.94 μW with leakage current of 1270.13 nA. More then 90% reduction is attained in total power consumption and leakage current by employing the power gating technique. Moreover, the variations in the power consumption with temperature is also recorded for all three reported techniques where power gating again show optimum variations with least power consumption. Four more conventional comparator circuits are also simulated in 90nm CMOS technology for comparison. Comparison shows better results for regenerative comparator with power gating technique. Simulations are executed by employing SPICE based on 90 nm CMOS technology

    Parallel-sampling ADC architecture for power-efficient broadband multi-carrier systems

    Get PDF

    A highly digital, reconfigurable and voltage scalable SAR ADC

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 109-112).Micropower sensor networks have a broad range of applications which include military surveillance, environmental monitoring, chemical detection and more recently, medical monitoring systems. Each node of the sensor network requires energy efficient circuits powered off small batteries or harvested energy. In such systems, a single reconfigurable analog-to-digital converter (ADC) is needed to digitize a wide range of signals with varying bandwidth and resolution requirements. This thesis describes the design of an ADC whose power scales exponentially with resolution and linearly with frequency to maximize the system lifetime. The proposed ADC has reconfigurable resolution from 5 to 10-bits and a scalable sample rate from 0 to 1-MS/s. The successive approximation register (SAR) architecture was chosen for its highly digital nature which enables low voltage operation. The supply voltage can be scaled from 1V down to 0.4V such that the ADC maintains a constant energy efficiency across all modes of operation when normalized with respect to sample rate and resolution. A capacitive digital-to -analog converter (DAC) in a split capacitor topology with a sub-DAC is used to minimize the DAC power and area. Top plate switches are used to decouple the MSB capacitors as resolution is scaled to avoid parasitic loading of the DAC. The DAC capacitors are laid out in a common-centroid configuration with edge effects minimized at each resolution mode to improve matching. A fully dynamic latched comparator is used to avoid static bias currents.(cont.) Power gating of the digital logic is used to reduce leakage power at low sample rates. Reconfigurability between single-ended or differential modes enables a power versus performance trade-off. Lastly, programmable sampling duration and internal bootstrapping is used to maintain sampling linearity at low voltages. The ADC has been submitted for fabrication in a low power 65nm digital CMOS process and simulation results are presented.by Marcus Yip.S.M

    Quadrature Phase-Domain ADPLL with Integrated On-line Amplitude Locked Loop Calibration for 5G Multi-band Applications

    Get PDF
    5th generation wireless systems (5G) have expanded frequency band coverage with the low-band 5G and mid-band 5G frequencies spanning 600 MHz to 4 GHz spectrum. This dissertation focuses on a microelectronic implementation of CMOS 65 nm design of an All-Digital Phase Lock Loop (ADPLL), which is a critical component for advanced 5G wireless transceivers. The ADPLL is designed to operate in the frequency bands of 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz. Unique ADPLL sub-components include: 1) Digital Phase Frequency Detector, 2) Digital Loop Filter, 3) Channel Bank Select Circuit, and 4) Digital Control Oscillator. Integrated with the ADPLL is a 90-degree active RC-CR phase shifter with on-line amplitude locked loop (ALL) calibration to facilitate enhanced image rejection while mitigating the effects of fabrication process variations and component mismatch. A unique high-sensitivity high-speed dynamic voltage comparator is included as a key component of the active phase shifter/ALL calibration subsystem. 65nm CMOS technology circuit designs are included for the ADPLL and active phase shifter with simulation performance assessments. Phase noise results for 1 MHz offset with carrier frequencies of 600MHz, 2.4GHz, and 3.8GHz are -130, -122, and -116 dBc/Hz, respectively. Monte Carlo simulations to account for process variations/component mismatch show that the active phase shifter with ALL calibration maintains accurate quadrature phase outputs when operating within the frequency bands 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz

    Digital Background Self-Calibration Technique for Compensating Transition Offsets in Reference-less Flash ADCs

    Get PDF
    This Dissertation focusses on proving that background calibration using adaptive algorithms are low-cost, stable and effective methods for obtaining high accuracy in flash A/D converters. An integrated reference-less 3-bit flash ADC circuit has been successfully designed and taped out in UMC 180 nm CMOS technology in order to prove the efficiency of our proposed background calibration. References for ADC transitions have been virtually implemented built-in in the comparators dynamic-latch topology by a controlled mismatch added to each comparator input front-end. An external very simple DAC block (calibration bank) allows control the quantity of mismatch added in each comparator front-end and, therefore, compensate the offset of its effective transition with respect to the nominal value. In order to assist to the estimation of the offset of the prototype comparators, an auxiliary A/D converter with higher resolution and lower conversion speed than the flash ADC is used: a 6-bit capacitive-DAC SAR type. Special care in synchronization of analogue sampling instant in both ADCs has been taken into account. In this thesis, a criterion to identify the optimum parameters of the flash ADC design with adaptive background calibration has been set. With this criterion, the best choice for dynamic latch architecture, calibration bank resolution and flash ADC resolution are selected. The performance of the calibration algorithm have been tested, providing great programmability to the digital processor that implements the algorithm, allowing to choose the algorithm limits, accuracy and quantization errors in the arithmetic. Further, systematic controlled offset can be forced in the comparators of the flash ADC in order to have a more exhaustive test of calibration

    DIGITALLY ASSISTED TECHNIQUES FOR NYQUIST RATE ANALOG-to-DIGITAL CONVERTERS

    Get PDF
    With the advance of technology and rapid growth of digital systems, low power high speed analog-to-digital converters with great accuracy are in demand. To achieve high effective number of bits Analog-to-Digital Converter(ADC) calibration as a time consuming process is a potential bottleneck for designs. This dissertation presentsa fully digital background calibration algorithm for a 7-bit redundant flash ADC using split structure and look-up table based correction. Redundant comparators are used in the flash ADC design of this work in order to tolerate large offset voltages while minimizing signal input capacitance. The split ADC structure helps by eliminating the unknown input signal from the calibration path. The flash ADC has been designed in 180nm IBM CMOS technology and fabricated through MOSIS. This work was supported by Analog Devices, Wilmington,MA. While much research on ADC design has concentrated on increasing resolution and sample rate, there are many applications (e.g. biomedical devices and sensor networks) that do not require high performance but do require low power energy efficient ADCs. This dissertation also explores on design of a low quiescent current 100kSps Successive Approximation (SAR) ADC that has been used as an error detection ADC for an automotive application in 350nm CD (CMOS-DMOS) technology. This work was supported by ON Semiconductor Corp, East Greenwich,RI

    Energy Efficient Pipeline ADCs Using Ring Amplifiers

    Full text link
    Pipeline ADCs require accurate amplification. Traditionally, an operational transconductance amplifier (OTA) configured as a switched-capacitor (SC) amplifier performs such amplification. However, traditional OTAs limit the power efficiency of ADCs since they require high quiescent current for slewing and bandwidth. In addition, it is difficult to design low-voltage OTAs in modern, scaled CMOS. The ring amplifier is an energy efficient and high output swing alternative to an OTA for SC circuits which is basically a three-stage inverter amplifier stabilized in a feedback configuration. However, the conventional ring amplifier requires external biases, which makes the ring amplifier less practical when we consider process, supply voltage, and temperature (PVT) variation. In this dissertation, three types of innovative ring amplifiers are presented and verified with state-of-the-art energy efficient pipeline ADCs. These new ring amplifiers overcome the limitations of the conventional ring amplifier and further improve energy efficiency. The first topic of this dissertation is a self-biased ring amplifier that makes the ring amplifier more practical and power efficient, while maintaining the benefits of efficient slew-based charging and an almost rail-to-rail output swing. In addition, the ring amplifiers are also used as comparators in the 1.5b sub-ADCs by utilizing the unique characteristics of the ring amplifier. This removes the need for dedicated comparators in sub-ADCs, thus further reducing the power consumption of the ADC. The prototype 10.5b 100 MS/s comparator-less pipeline ADC with the self-biased ring amplifiers has measured SNDR, SNR and SFDR of 56.6 dB (9.11b), 57.5 dB and 64.7 dB, respectively, and consumes 2.46 mW, which results in Walden Figure-of-Merit (FoM) of 46.1 fJ/ conversion∙step. The second topic is a fully-differential ring amplifier, which solves the problems of single-ended ring amplifiers while maintaining the benefits of the single-ended ring amplifiers. This differential ring-amplifier is applied in a 13b 50 MS/s SAR-assisted pipeline ADC. Furthermore, an improved capacitive DAC switching method for the first stage SAR reduces the DAC linearity errors and switching energy. The prototype ADC achieves measured SNDR, SNR and SFDR of 70.9 dB (11.5b), 71.3 dB and 84.6 dB, respectively, and consumes 1 mW. This measured performance is equivalent to Walden and Schreier FoMs of 6.9 fJ/conversion∙step and 174.9 dB, respectively. Finally, a four-stage fully-differential ring amplifier improves the small-signal gain to over 90 dB without compromising speed. In addition, a new auto-zero noise filtering method reduces noise without consuming additional power. This is more area efficient than the conventional auto-zero noise folding reduction technique. A systematic mismatch free SAR CDAC layout method is also presented. The prototype 15b 100 MS/s calibration-free SAR-assisted pipeline ADC using the four-stage ring amplifier achieves 73.2 dB SNDR (11.9b) and 90.4 dB SFDR with a 1.1 V supply. It consumes 2.3 mW resulting in Schreier FoM of 176.6 dB.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138759/1/yonglim_1.pd

    Design of a low power switched-capacitor pipeline analog-to-digital converter

    Get PDF
    An Analog to Digital Converter (ADC) is a circuit which converts an analog signal into digital signal. Real world is analog, and the data processed by the computer or by other signal processing systems is digital. Therefore, the need for ADCs is obvious. In this thesis, several novel designs used to improve ADCs operation speed and reduce ADC power consumption are proposed. First, a high speed switched source follower (SSF) sample and hold amplifier without feedthrough penalty is implemented and simulated. The SSF sample and hold amplifier can achieve 6 Bit resolution with sampling rate at 10Gs/s. Second, a novel rail-to-rail time domain comparator used in successive approximation register ADC (SAR ADC) is implemented and simulated. The simulation results show that the proposed SAR ADC can only consume 1.3 muW with a 0.7 V power supply. Finally, a prototype pipeline ADC is implemented and fabricated in an IBM 90nm CMOS process. The proposed design is validated using measurement on a fabricated silicon IC, and the proposed 10-bit ADC achieves a peak signal-to-noise- and-distortion-ratio (SNDR) of 47 dB. This SNDR translates to a figure of merit (FOM) of 2.6N/conversion-step with a 1.2 V power supply
    • …
    corecore