1,954 research outputs found

    Computing (R, S) policies with correlated demand

    Get PDF
    This paper considers the single-item single-stocking non-stationary stochastic lot-sizing problem under correlated demand. By operating under a nonstationary (R, S) policy, in which R denote the reorder period and S the associated order-up-to-level, we introduce a mixed integer linear programming (MILP) model which can be easily implemented by using off-theshelf optimisation software. Our modelling strategy can tackle a wide range of time-seriesbased demand processes, such as autoregressive (AR), moving average(MA), autoregressive moving average(ARMA), and autoregressive with autoregressive conditional heteroskedasticity process(AR-ARCH). In an extensive computational study, we compare the performance of our model against the optimal policy obtained via stochastic dynamic programming. Our results demonstrate that the optimality gap of our approach averages 2.28% and that computational performance is good

    Dampening variability by using smoothing replenishment rules.

    Get PDF
    A major cause of supply chain deficiencies is the bullwhip effect which can be substantial even over a single echelon. This effect refers to the tendency of the variance of the replenishment orders to increase as it moves up a supply chain. Supply chain managers experience this variance amplification in both inventory levels and replenishment orders. As a result, companies face shortages or bloated inventories, run-away transportation and warehousing costs and major production adjustment costs. In this article we analyse a major cause of the bullwhip effect and suggest a remedy. We focus on a smoothing replenishment rule that is able to reduce the bullwhip effect across a single echelon. In general, dampening variability in orders may have a negative impact on customer service due to inventory variance increases. We therefore quantify the variance of the net stock and compute the required safety stock as a function of the smoothing required. Our analysis shows that bullwhip can be satisfactorily managed without unduly increasing stock levels to maintain target fill rates.Bullwhip effect; Companies; Cost; Costs; Impact; Inventory; Managers; Order; Replenishment rule; Rules; Safety stock; Supply chain; Supply chain management; Variability; Variance; Variance reduction;

    Logistics Outsourcing and 3PL Challenges

    Get PDF
    Logistics has been an important part of every economy and every business entity. The worldwide trend in globalization has led to many companies outsourcing their logistics function to Third-Party Logistics (3PL) companies, so as to focus on their core competencies. This paper attempts to broadly identify and categorize the challenges faced by 3PL companies and discover potential gaps for future research. Some of the challenges will be related with the experience and information collected from interviews with two 3PL companies.Singapore-MIT Alliance (SMA

    The impact of stochastic lead times on the bullwhip effect under correlated demand and moving average forecasts

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordWe quantify the bullwhip effect (which measures how the variance of replenishment orders is amplified as the orders move up the supply chain) when both random demands and random lead times are estimated using the industrially popular moving average forecasting method. We assume that the lead times constitute a sequence of independent identically distributed random variables and the correlated demands are described by a first-order autoregressive process. We obtain an expression that reveals the impact of demand and lead time forecasting on the bullwhip effect. We draw a number of conclusions on the bullwhip behaviour with respect to the demand auto-correlation and the number of past lead times and demands used in the forecasts. We find maxima and minima in the bullwhip measure as a function of the demand auto-correlation.National Science Centr

    Revisiting rescheduling: MRP nervousness and the bullwhip effect

    Get PDF
    We study the material requirement planning (MRP) system nervousness problem from a dynamic, stochastic and economic perspective in a two-echelon supply chain under first order auto-regressive demand. MRP nervousness is an effect where the future order forecasts, given to suppliers so that they may plan production and organize their affairs, exhibits extreme period-to-period variability. We develop a measure of nervousness that weights future forecast errors geometrically over time. Near-term forecast errors are weighted higher than distant forecast errors. Focusing on replenishment policies for high volume items, we investigate two methods of generating order call-offs and two methods of creating order forecasts. For order call-offs, we consider the traditional order-up-to (OUT) policy and the proportional OUT policy (POUT). For order forecasts, we study both minimum mean square error (MMSE) forecasts of the demand process and MMSE forecasts coupled with a procedure that accounts for the known future influence of the POUT policy. We show that when retailers use the POUT policy and account for its predictable future behavior, they can reduce the bullwhip effect, supply chain inventory costs and the manufacturer’s MRP nervousness

    Revisiting rescheduling: MRP nervousness and the bullwhip effect

    Get PDF
    This is the author accepted manuscript. The final version is available from Taylor & Francis via the DOI in this recordWe study the material requirements planning (MRP) system nervousness problem from a dynamic, stochastic and economic perspective in a two-echelon supply chain under first-order auto-regressive demand. MRP nervousness is an effect where the future order forecasts, given to suppliers so that they may plan production and organise their affairs, exhibits extreme period-to-period variability. We develop a measure of nervousness that weights future forecast errors geometrically over time. Near-term forecast errors are weighted higher than distant forecast errors. Focusing on replenishment policies for high volume items, we investigate two methods of generating order call-offs and two methods of creating order forecasts. For order call-offs, we consider the traditional order-up-to (OUT) policy and the proportional OUT policy (POUT). For order forecasts, we study both minimum mean square error (MMSE) forecasts of the demand process and MMSE forecasts coupled with a procedure that accounts for the known future influence of the POUT policy. We show that when retailers use the POUT policy and account for its predictable future behaviour, they can reduce the bullwhip effect, supply chain inventory costs and the manufacturer’s MRP nervousness

    Stochastic Cyclic Inventory Routing with Supply Uncertainty: A Case in Green-Hydrogen Logistics

    Full text link
    Hydrogen can be produced from water, using electricity. The hydrogen can subsequently be kept in inventory in large quantities, unlike the electricity itself. This enables solar and wind energy generation to occur asynchronously from its usage. For this reason, hydrogen is expected to be a key ingredient for reaching a climate-neutral economy. However, the logistics for hydrogen are complex. Inventory policies must be determined for multiple locations in the network, and transportation of hydrogen from the production location to customers must be scheduled. At the same time, production patterns of hydrogen are intermittent, which affects the possibilities to realize the planned transportation and inventory levels. To provide policies for efficient transportation and storage of hydrogen, this paper proposes a parameterized cost function approximation approach to the stochastic cyclic inventory routing problem. Firstly, our approach includes a parameterized mixed integer programming (MIP) model which yields fixed and repetitive schedules for vehicle transportation of hydrogen. Secondly, buying and selling decisions in case of underproduction or overproduction are optimized further via a Markov decision process (MDP) model, taking into account the uncertainties in production and demand quantities. To jointly optimize the parameterized MIP and the MDP model, our approach includes an algorithm that searches the parameter space by iteratively solving the MIP and MDP models. We conduct computational experiments to validate our model in various problem settings and show that it provides near-optimal solutions. Moreover, we test our approach on an expert-reviewed case study at two hydrogen production locations in the Netherlands. We offer insights for the stakeholders in the region and analyze the impact of various problem elements in these case studies

    From supply chains to demand networks. Agents in retailing: the electrical bazaar

    Get PDF
    A paradigm shift is taking place in logistics. The focus is changing from operational effectiveness to adaptation. Supply Chains will develop into networks that will adapt to consumer demand in almost real time. Time to market, capacity of adaptation and enrichment of customer experience seem to be the key elements of this new paradigm. In this environment emerging technologies like RFID (Radio Frequency ID), Intelligent Products and the Internet, are triggering a reconsideration of methods, procedures and goals. We present a Multiagent System framework specialized in retail that addresses these changes with the use of rational agents and takes advantages of the new market opportunities. Like in an old bazaar, agents able to learn, cooperate, take advantage of gossip and distinguish between collaborators and competitors, have the ability to adapt, learn and react to a changing environment better than any other structure. Keywords: Supply Chains, Distributed Artificial Intelligence, Multiagent System.Postprint (published version
    • …
    corecore