233 research outputs found

    Movement-efficient Sensor Deployment in Wireless Sensor Networks

    Full text link
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Two key issues in MWSNs - energy consumption, which is dominated by sensor movement, and sensing coverage - have attracted plenty of attention, but the interaction of these issues is not well studied. To take both sensing coverage and movement energy consumption into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment to maximize the sensing coverage with specific energy constraints. We derive necessary conditions to the optimal sensor deployment with (i) total energy constraint and (ii) network lifetime constraint. Using these necessary conditions, we design Lloyd-like algorithms to provide a trade-off between sensing coverage and energy consumption. Simulation results show that our algorithms outperform the existing relocation algorithms.Comment: 18 pages, 10 figure

    Movement-Efficient Sensor Deployment in Wireless Sensor Networks With Limited Communication Range.

    Get PDF
    We study a mobile wireless sensor network (MWSN) consisting of multiple mobile sensors or robots. Three key factors in MWSNs, sensing quality, energy consumption, and connectivity, have attracted plenty of attention, but the interaction of these factors is not well studied. To take all the three factors into consideration, we model the sensor deployment problem as a constrained source coding problem. %, which can be applied to different coverage tasks, such as area coverage, target coverage, and barrier coverage. Our goal is to find an optimal sensor deployment (or relocation) to optimize the sensing quality with a limited communication range and a specific network lifetime constraint. We derive necessary conditions for the optimal sensor deployment in both homogeneous and heterogeneous MWSNs. According to our derivation, some sensors are idle in the optimal deployment of heterogeneous MWSNs. Using these necessary conditions, we design both centralized and distributed algorithms to provide a flexible and explicit trade-off between sensing uncertainty and network lifetime. The proposed algorithms are successfully extended to more applications, such as area coverage and target coverage, via properly selected density functions. Simulation results show that our algorithms outperform the existing relocation algorithms

    Distributed navigation of multi-robot systems for sensing coverage

    Full text link
    A team of coordinating mobile robots equipped with operation specific sensors can perform different coverage tasks. If the required number of robots in the team is very large then a centralized control system becomes a complex strategy. There are also some areas where centralized communication turns into an issue. So, a team of mobile robots for coverage tasks should have the ability of decentralized or distributed decision making. This thesis investigates decentralized control of mobile robots specifically for coverage problems. A decentralized control strategy is ideally based on local information and it can offer flexibility in case there is an increment or decrement in the number of mobile robots. We perform a broad survey of the existing literature for coverage control problems. There are different approaches associated with decentralized control strategy for coverage control problems. We perform a comparative review of these approaches and use the approach based on simple local coordination rules. These locally computed nearest neighbour rules are used to develop decentralized control algorithms for coverage control problems. We investigate this extensively used nearest neighbour rule-based approach for developing coverage control algorithms. In this approach, a mobile robot gives an equal importance to every neighbour robot coming under its communication range. We develop our control approach by making some of the mobile robots playing a more influential role than other members of the team. We develop the control algorithm based on nearest neighbour rules with weighted average functions. The approach based on this control strategy becomes efficient in terms of achieving a consensus on control inputs, say heading angle, velocity, etc. The decentralized control of mobile robots can also exhibit a cyclic behaviour under some physical constraints like a quantized orientation of the mobile robot. We further investigate the cyclic behaviour appearing due to the quantized control of mobile robots under some conditions. Our nearest neighbour rule-based approach offers a biased strategy in case of cyclic behaviour appearing in the team of mobile robots. We consider a clustering technique inside the team of mobile robots. Our decentralized control strategy calculates the similarity measure among the neighbours of a mobile robot. The team of mobile robots with the similarity measure based approach becomes efficient in achieving a fast consensus like on heading angle or velocity. We perform a rigorous mathematical analysis of our developed approach. We also develop a condition based on relaxed criteria for achieving consensus on velocity or heading angle of the mobile robots. Our validation approach is based on mathematical arguments and extensive computer simulations

    Distributed Dynamic Density Coverage for Human-Swarm Interactions

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.DOI: 10.1109/ACC.2015.7170761This paper presents two approaches to externally influence a team of robots by means of time-varying density functions. These density functions represent rough references for where the robots should be located. Recently developed continuous-time algorithms move the robots so as to provide optimal coverage of a given the time-varying density functions. This makes it possible for a human operator to abstract away the number of robots and focus on the general behavior of the team of robots as a whole. Using a distributed approximation to this algorithm whereby the robots only need to access information from adjacent robots allows these algorithms to scale well with the number of robots. Simulations and robotic experiments show that the desired behaviors are achieved

    Decentralized Learning With Limited Communications for Multi-robot Coverage of Unknown Spatial Fields

    Full text link
    This paper presents an algorithm for a team of mobile robots to simultaneously learn a spatial field over a domain and spatially distribute themselves to optimally cover it. Drawing from previous approaches that estimate the spatial field through a centralized Gaussian process, this work leverages the spatial structure of the coverage problem and presents a decentralized strategy where samples are aggregated locally by establishing communications through the boundaries of a Voronoi partition. We present an algorithm whereby each robot runs a local Gaussian process calculated from its own measurements and those provided by its Voronoi neighbors, which are incorporated into the individual robot's Gaussian process only if they provide sufficiently novel information. The performance of the algorithm is evaluated in simulation and compared with centralized approaches.Comment: Accepted IROS 202

    Connected and Automated Vehicles in Urban Transportation Cyber-Physical Systems

    Get PDF
    Understanding the components of Transportation Cyber-Physical Systems (TCPS), and inter-relation and interactions among these components are key factors to leverage the full potentials of Connected and Automated Vehicles (CAVs). In a connected environment, CAVs can communicate with other components of TCPS, which include other CAVs, other connected road users, and digital infrastructure. Deploying supporting infrastructure for TCPS, and developing and testing CAV-specific applications in a TCPS environment are mandatory to achieve the CAV potentials. This dissertation specifically focuses on the study of current TCPS infrastructure (Part 1), and the development and verification of CAV applications for an urban TCPS environment (Part 2). Among the TCPS components, digital infrastructure bears sheer importance as without connected infrastructure, the Vehicle-to-Infrastructure (V2I) applications cannot be implemented. While focusing on the V2I applications in Part 1, this dissertation evaluates the current digital roadway infrastructure status. The dissertation presents a set of recommendations, based on a review of current practices and future needs. In Part 2, To synergize the digital infrastructure deployment with CAV deployments, two V2I applications are developed for CAVs for an urban TCPS environment. At first, a real-time adaptive traffic signal control algorithm is developed, which utilizes CAV data to compute the signal timing parameters for an urban arterial in the near-congested traffic condition. The analysis reveals that the CAV-based adaptive signal control provides operational benefits to both CVs and non-CVs with limited data from 5% CVs, with 5.6% average speed increase, and 66.7% and 32.4% average maximum queue length and stopped delay reduction, respectively, on a corridor compared to the actuated coordinated scenario. The second application includes the development of a situation-aware left-turning CAV controller module, which optimizes CAV speed based on the follower driver\u27s aggressiveness. Existing autonomous vehicle controllers do not consider the surrounding driver\u27s behavior, which may lead to road rage, and rear-end crashes. The analysis shows that the average travel time reduction for the scenarios with 600, 800 and 1000 veh/hr/lane opposite traffic stream are 61%, 23%, and 41%, respectively, for the follower vehicles, if the follower driver\u27s behavior is considered by CAVs

    Collaborative Perception in Autonomous Driving: Methods, Datasets and Challenges

    Full text link
    Collaborative perception is essential to address occlusion and sensor failure issues in autonomous driving. In recent years, theoretical and experimental investigations of novel works for collaborative perception have increased tremendously. So far, however, few reviews have focused on systematical collaboration modules and large-scale collaborative perception datasets. This work reviews recent achievements in this field to bridge this gap and motivate future research. We start with a brief overview of collaboration schemes. After that, we systematically summarize the collaborative perception methods for ideal scenarios and real-world issues. The former focuses on collaboration modules and efficiency, and the latter is devoted to addressing the problems in actual application. Furthermore, we present large-scale public datasets and summarize quantitative results on these benchmarks. Finally, we highlight gaps and overlook challenges between current academic research and real-world applications. The project page is https://github.com/CatOneTwo/Collaborative-Perception-in-Autonomous-DrivingComment: 18 pages, 6 figures. Accepted by IEEE Intelligent Transportation Systems Magazine. URL: https://github.com/CatOneTwo/Collaborative-Perception-in-Autonomous-Drivin

    A comprehensive study of key Electric Vehicle (EV) components, technologies, challenges, impacts, and future direction of development

    Get PDF
    Abstract: Electric vehicles (EV), including Battery Electric Vehicle (BEV), Hybrid Electric Vehicle (HEV), Plug-in Hybrid Electric Vehicle (PHEV), Fuel Cell Electric Vehicle (FCEV), are becoming more commonplace in the transportation sector in recent times. As the present trend suggests, this mode of transport is likely to replace internal combustion engine (ICE) vehicles in the near future. Each of the main EV components has a number of technologies that are currently in use or can become prominent in the future. EVs can cause significant impacts on the environment, power system, and other related sectors. The present power system could face huge instabilities with enough EV penetration, but with proper management and coordination, EVs can be turned into a major contributor to the successful implementation of the smart grid concept. There are possibilities of immense environmental benefits as well, as the EVs can extensively reduce the greenhouse gas emissions produced by the transportation sector. However, there are some major obstacles for EVs to overcome before totally replacing ICE vehicles. This paper is focused on reviewing all the useful data available on EV configurations, battery energy sources, electrical machines, charging techniques, optimization techniques, impacts, trends, and possible directions of future developments. Its objective is to provide an overall picture of the current EV technology and ways of future development to assist in future researches in this sector
    • …
    corecore