6 research outputs found

    SetMargin loss applied to deep keystroke biometrics with circle packing interpretation

    Full text link
    This work presents a new deep learning approach for keystroke biometrics based on a novel Distance Metric Learning method (DML). DML maps input data into a learned representation space that reveals a “semantic” structure based on distances. In this work, we propose a novel DML method specifically designed to address the challenges associated to free-text keystroke identification where the classes used in learning and inference are disjoint. The proposed SetMargin Loss (SM-L) extends traditional DML approaches with a learning process guided by pairs of sets instead of pairs of samples, as done traditionally. The proposed learning strategy allows to enlarge inter-class distances while maintaining the intra-class structure of keystroke dynamics. We analyze the resulting representation space using the mathematical problem known as Circle Packing, which provides neighbourhood structures with a theoretical maximum inter-class distance. We finally prove experimentally the effectiveness of the proposed approach on a challenging task: keystroke biometric identification over a large set of 78,000 subjects. Our method achieves state-of-the-art accuracy on a comparison performed with the best existing approachesThis work has been supported by projects: PRIMA ( MSCA-ITN- 2019-860315 ), TRESPASS-ETN (MSCA-ITN-2019-860813), BIBECA (RTI2018-101248-B-I00 MINECO), edBB (UAM), and Instituto de In- genieria del Conocimiento (IIC). A. Acien is supported by a FPI fel- lowship from the Spanish MINEC

    Packing equal circles in a damaged square using simulated annealing and greedy vacancy search.

    Get PDF
    This thesis defines and investigates a generalized circle packing problem, called Packing Equal Circles into a Damaged Square (PECDS). We introduce a new heuristic algorithm that enhances and combines the Greedy Vacancy Search (GVS) and Stimulated Annealing (SA), and demonstrate, through a series of experiments, its ability to find better solutions than either GVS or SA alone. The synergy between the enhanced GVS and SA, along with explicit convergence detection, makes the algorithm robust in escaping the points of local optimum. --Leaf ii.The original print copy of this thesis may be available here: http://wizard.unbc.ca/record=b200686

    A dynamic adaptive local search algorithm for the circular packing problem

    No full text
    International audienceThis paper studies the circular packing problem (CPP) which consists of packing n non-identical circles Ci of known radius ri, i N = {1, ... , n}, into the smallest containing circle C. The objective is to determine the coordinates (xi, yi) of the center of Ci, i N, as well as the radius r and center (x, y) of C. This problem, which is a variant of the two-dimensional open dimension problem, is solved using a two-step, dynamic, adaptive, local search algorithm. At each iteration, the algorithm identifies the set of potential "best local positions" of a circle Ci, i N, given the positions of the previously packed circles, and determines for each of these positions the coordinates and radius of the smallest containing circle. The "best local position" minimizes the radius of the current containing circle. That is, every time an additional circle is packed, both the center and the radius of the containing circle are dynamically updated, and the smallest containing circle is known. The experimental results reflect the good performance of the algorithm
    corecore