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Abstract

The two-dimension packing problem is concerned with the arrangement of items without

overlaps inside a container. In particular we have considered the case when the items

are circular objects, some of the general examples that can be found in the industry are

related with packing, storing and transportation of circular objects. Although there are

several approaches we want to investigate the use of formulation space search. Formula-

tion space search is a fairly recent method that provides an easy way to escape from local

optima for non-linear problems allowing to achieve better results. Despite the fact that

it has been implemented to solve the packing problem with identical circles, we present

an improved implementation of the formulation space search that gives better results

for the case of identical and non-identical circles, also considering that they are packed

inside different shaped containers, for which we provide the needed modifications for an

appropriate implementation. The containers considered are: the unit circle, the unit

square, two rectangles with different dimension (length 5, width 1 and length 10 width

1), a right-isosceles triangle, a semicircle and a right-circular quadrant. Results from the

tests conducted shown several improvements over the best previously known for the case

of identical circles inside three different containers: a right-isosceles triangle, a semicircle

and a circular quadrant. In order to extend the scope of the formulation space search

approach we used it to solve mixed-integer non-linear problems, in particular those with

zero-one variables. Our findings suggest that our implementation provides a competitive

way to solve these kind of problems.
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Chapter 1
Introduction

In recent years, there has been an increasing interest in the circle packing problem,

several algorithms have been developed in order to achieve the best solution. Although

it is a very well known and studied problem we want to investigate if improvements can be

made if we address the problem from a different perspective like formulation space search

with additional strategies. Formulation space search is a recent method that proposed

an easy and interesting way to overcome the difficulties found in non-linear optimisation

problems of being unable to leave local optima. We also want to extend this approach

to more complicated problems such as mixed-integer non-linear programming problems.

The outline of this dissertation is as below.

Chapter 2 offers a short but comprehensive introductory description of the packing

problem along with a literature survey of the most recent work related to the circle

packing problem addressing different variants: identical circles, non-identical circles and

the different containers that have been considered so far in the literature. It also presents

the literature found concerning formulation space search and a couple of its applications.

Chapter 3 constitutes the general framework that provides us with the essential tools

to draw new paths to follow in this research. It presents the design of the heuristic

algorithm implemented for the circle packing problem with identical circles inside a

1



Chapter 1.

circular container which is considered as the basic instances to address. It also presents

the several experiments conducted in order to investigate how different modification

could affect the behaviour of the strategy adopted.

Chapter 4 shows the immediate extension of our findings in Chapter 3, it describes

in detail the appropriate modifications for the implementation of our formulation space

search to different shaped containers. The numerical results achieved for some containers

are improvements over the previous best-known solutions.

Chapter 5 describes the new scaled formulation model adopted to address the pack-

ing problem with non-identical circles inside a circular container using a close related

approach to formulation space search called reformulation descent. It details the proce-

dures adopted to reduce the size of the problem aiming to achieve good quality solutions

and reducing the computational time.

Chapter 6 extends the scaled formulation of the packing problem presented in the

previous chapter detailing the modifications needed to implement it for different shaped

containers. We present new results for the instances considered.

Chapter 7 presents our findings concerning two approaches considered to solve mixed-

integer non-linear zero-one problems using our formulation space search approach.

Chapter 8 presents the conclusion and contributions derived from the research carried

out, it also presents a section describing possible avenues for future work.

It is worth noting that in Appendix A we present our findings concerning a particular

approach for the packing problem with non-identical circles with just a few successful

results.

2



Chapter 2
Literature Review

This literature review has the intention to give a general idea of the methods that have

been used to tackle the circle packing problem in recent years. Let us say now that

Castillo et al. [14] and Hifi et al. [33] present a comprehensive review of the packing

problem considering circular and rectangular containers. In [14] the authors present a

general model for the specific case discussed providing their respective industrial appli-

cation. They give solutions from their numerical experiments conducted with different

global optimizer software packages. In [33] the authors give a detailed review of what

they called efficient approaches for the packing problem in two and three dimensions.

In the following sections we will highlight the work that to our consideration is

relevant to our research: the circle packing problem and formulation space search. There

are many different ways to approach the packing problem: by method used, by the size

of the circles being identical or not, by the shape of the container, etc. Hence we

have decided to divide this chapter into six sections: In Section 2.1 we give a general

description of the packing problem with some examples. In Sections 2.3 and 2.4 we

review works that present an approach to solve the circle packing problem for identical

and non-identical circles respectively. As for Section 2.5 we present those works that use

the formulation space search. In Section 2.2 we give a brief historical note and finally in

3



Chapter 2. 2.1. Circle packing problems

Section 2.6 we conclude this chapter with a summary.

2.1 Circle packing problems

In this section we give a general description of the two-dimensional packing problem

presenting a few pictures generated with results from the heuristic developed in the

present work to illustrate what the problem is about.

The circle packing problem is concerned with the arrangement of a finite number

(denoted as n) of circles inside a container without overlaps. The mathematical model

that represents the circle packing problem consists mainly of two types of constraints:

the container boundary and the non-overlapping constraints. The container boundary

constraints ensure that all circles lie inside the container whilst the non-overlapping

constraints ensure that for any two given circles, the distance between their centres are

at least the sum of their radii. When both sets of constraints are satisfied we have a

feasible solution for the packing problem.

But in searching for an “optimal” solution that has one of the following two inter-

pretations: Maximise the radii of all circles or to minimise the size of the container.

These are two different but equivalent points of view in which the packing problem can

be tackled, to exemplify let us consider the circular container.

For the first point of view the problem deals with maximising the radii of n circles

with a fixed size container, in this case the unit circle (a circle of radius 1 with centre

at the origin of the Cartesian plane), we denote as ρmax the maximum radii obtained

for all n circles to be packed without overlaps. However for the second point of view

we want to pack n unitary circles (circles of radii 1) without overlaps inside a circular

container with minimum radius 1/ρmax. Some work is focused on minimising the radius

of the container whilst others in maximising the radii of the circles as we will note in the

following sections.

Regarding the size of the circles to be packed the problem is categorized as that of

4



Chapter 2. 2.1. Circle packing problems

“packing identical circles” when all n circles have the same radius or as that of “pack-

ing non-identical circles” when the n circles to be packed do not have the same radius.

Figure 2.1 illustrates four examples of the packing problem, in Figure 2.1(a) we have 10

identical circles inside a circular container, if we observe Figure 2.1(b) we immediately

know that it is representing 10 non-identical circles inside a circular container. Fig-

ure 2.1(c) and Figure 2.1(d) depict the identical and non-identical packing of 10 circles

inside a square container. Even though the circular and square containers are the most

studied in the literature in our work we address these and other containers.
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Figure 2.1: Packing n = 10 circles inside a circular and a square container
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The most recent improvements for solutions to packing problems are reported at the

website Packomania [72] that started in 1999 reporting the best known solutions for the

packing problem inside a square container considering n = 1 to 200 identical circles. Since

then the instances have increased not only in number, the containers under consideration

have been diversified. For packing identical circles the containers are: circle, rectangles,

right-angle isosceles triangle, semicircle, the right quadrant of a circle, as for the case

of packing non-identical circles the containers are only circular. This website [72] is

continually updated with results from all work addressing the packing problem in its

different versions or approaches. It is also updated with results to a continuously running

search overseen by the website owner.

2.2 A historical note

Evidence of first glances of interest in the circle packing problem are presented in the

first chapter of the book by Szabo et al. [76], the authors give a brief historical review

presenting among others Malfatti’s problem (1803) and the context under which Farkas

Bolyai (1775-1856) approached the packing problem.

Figure 2.2: The Malfatti circles

An Italian mathematician called Gian Francesco Malfatti (1731-1807) proposed a

solution to a problem where it was required to extract three cylindrical columns (not

necessarily equal) from a piece of marble that consisted of a right triangular prism shape

achieving minimum waste of the marble prism. This problem can be interpreted as
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a two-dimensional problem of maximising the area/perimeter of the circles (whether

identical or not) inside a right-angle triangle. A graphical representation of the solution

given by Malfatti is illustrated in Figure 2.2. Even though this is known as Malfatti’s

problem there is evidence that it was earlier approached by the Japanese mathematician

Chokuen Ajima (1732-1798) [76]. Moreover, in 1930 Lob and Richmond showed that

Malfatti’s solution is not the densest, later on Howard Eves in 1946 proposed another

configuration improving the one of Malfatti’s [7]. Finally Michael Goldberg in 1967

showed that Malfatti’s configurations are never the solution [7, 76].

According to [76] when a Hungarian mathematician called Farkas Bolyai (1775-1856)

was about to apply for a position for the forestry commission he was commissioned to

study problems such as “planting trees in given regions such that they share the same

amount of light and air”. This practical application can be interpreted as the packing

problem where the trees are represented by the centres of the circles inside a given

bounded region.

In 1771 Joseph Louis Lagrange proved that the densest arrangements of identical

circles in the plane was given by a hexagonal pattern that resembles a honeycomb, where

the vertices of each hexagon represent the centres of a circle as depicted in Figure 2.3.

Later on the Norwegian mathematician Axel Thue (1863-1922) provided the first optimal

solution to the problem, although his proof was not very convincing. The Hungarian

mathematician László Fejes Tóth (1915-2005) completed the work in 1940 proving its

optimality. It is worth mentioning that this problem is the two-dimensional version of

the known “Kepler conjecture”. According to [7] in 1591 Sir Walter Raleigh wanted

to know how to best stack cannonballs in his ship, Thomas Harriot who was his friend

accomplished the task. Later on, Harriot convinced Kepler to adopt an atomic theory

in his studies to describe the origin of the hexagonal shape of snowflakes (assuming

that the snowflakes were composed of tiny spheres). By 1611 Johannes Kepler states

the conjecture: “It says that no arrangement of equally sized spheres filling space has
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a greater average density than that of the cubic close packing (face-centred cubic) and

hexagonal close packing arrangements”. Several attempts to prove the conjecture have

been made and in [7] we can find a reproduction of an email sent by Thomas Hales

to his colleagues on Sunday 9th of August 1998 announcing and distributing a copy of

the solution to the Kepler conjecture, stating that the solution consists of 250 pages,

plus the computer files of code and data files for combinatorics, interval arithmetic and

linear programs. After four years under revision the referees were 99% confident that the

solution is correct. In [7] we can find an extensive collection of examples and anecdotes

where the idea of the packing problem play a vital role. The examples vary from different

fields such as mathematics, physics, chemistry and technology.

Figure 2.3: Densest pattern for identical circles in the plane

2.3 Packing identical circles

This section focuses on relatively recent literature that tackles the problem of packing

identical circles. It is divided into two sections according to the shape of the container.

Section 2.3.1 presents work dedicated to the circular container whilst Section 2.3.2 con-

siders work relating to rectangular containers. Finally Section 2.3.3 deals with other

containers.

8



Chapter 2. 2.3. Packing identical circles

2.3.1 Circular container

In recent years several approaches have been developed regarding the packing of identical

circles inside a circular container. Birgin et al. [10] implemented a twice differentiable

non-linear model of the packing problem for identical and non-identical circles using a

non-linear solver called ALGENCAN. The strategy to reduce the number of the non-

overlapping constraints starts by drawing a grid over the container. The algorithm will

not consider the non-overlapping constraints of any two circles if their centres lay in

non-adjacent squares of the grid. In other words, the non-overlapping constraints of

any two circles are solely considered by the algorithm if their centres lay in adjacent

squares of the grid, the rest are disregarded. They consider the packing of identical and

non-identical circles in different shape containers such as: a circle, a square, a strip, a

rectangle, an equilateral triangle and their equivalent in 3-D space: a sphere, a cube, a

strip, a cuboid, a tetrahedron, a pyramid and a cylinder. Although the computational

results presented are up to 100 circles there was a lack of accuracy in claiming to have

beaten the best known results (as noted in [9]).

Afterwards, Birgin et al. [9] extended previous work [10] focusing solely on the case of

identical (unitary) circles. They introduce a correction step after a feasible solution given

by the non-linear solver ALGENCAN. For the correction step circles called “rattlers” are

removed. A circle denominated as a rattler is a circle that is not touching any other circle

nor the container. Then with the elements of the subset that contains the remaining

circles they form an active non-linear system of equations, that is, the non-linear system

of equations will be formed only by the constraints of the circles that are tangent to the

container and by the constraints of the circles that are tangent to each other. The non-

linear system is solved by the Newton-Raphson method, after convergence the rattlers

are reintroduced. They give computational results for up to 50 unitary circles, for the

circular and square container they match the best known results and present results for

a rectangle and a strip container.
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Grosso et al. [23] propose an algorithm based on Monotonic Basin Hopping (MBH) [45,

78] along with its variant, population basin hopping [24] to solve the circle packing prob-

lem of identical and non-identical circles inside a circular container with minimum radius.

Monotonic basin hopping is a single solution iterative local search method with a per-

turbation move that allows the diversification of the solution by jumping from one local

minimum to a closer one. Monotonic Basin Hopping arose as a variant of the Basin

Hopping algorithm presented in [78], the main difference between both algorithms relies

on the acceptance criteria of a given solution, whilst Basin Hopping accepts a worse

solution with the help of a distribution probability, Monotonic Basin Hopping only ac-

cepts improved solutions. With regards to the Population Basin Hopping algorithm, it

is a general case of MBH mentioned above, it uses a perturbation procedure and a local

search however, instead of updating a single solution, it maintains a set of candidate so-

lutions, each member of that set is compared to another one by a dissimilarity measure

keeping the one with minimum value function. Computational results for the case of

identical circles with up to n = 100 circles are given, whilst for the case of non-identical

circles they considered 9 instances where the largest instance consists of 162 non-identical

circles.

Liu et al. [51] use an approach based on energy landscape paving [27] which is an

algorithm using low temperature Monte Carlo simulation that avoids being trapped in

local minima via a penalty energy function for configurations that have already been

explored. The improved energy landscape paving presented by Liu et al. [51] is an

iterative approach whereby the centre of a chosen circle is repositioned at each iteration.

They give computational results for their approach for the problem of packing up to

100 identical circles of unit radius into a containing circle, as well as for the problem of

packing up to 162 non-identical circles into a containing circle. Liu et al. [52] extend Liu

et al. [51] by introducing gradient descent into the approach. They give computational

results for their approach for the problem of packing up to 50 non-identical circles into
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a containing circle, as well as for the problem of packing up to 50 identical spheres of

unit radius into a containing sphere. Liu et al. [50] make a number of modifications to

the algorithm of Liu et al. [52]. They give computational results for their approach for

the problem of packing up to 17 non-identical circles into a containing circle, as well as

for the problem of packing up to 91 identical circles into a containing circle.

Huang et al. [40] propose an algorithm that is based on a quasi-physical approach.

The quasi-physical approach considers that the container is of fixed size smaller than the

best known solution, the items to be packed are elastic unit circles which are randomly

allocated. The algorithm consists of three main procedures: a quasi-physical descent

procedure, a quasi-physical basin-hopping procedure and an adjustment procedure. For

the quasi-physical descent procedure the elastic circular items are pressed and pushed

against each other until all disks stop moving, obtaining a local optima configuration.

The idea of the basin-hopping procedure is to avoid being trapped in the local minima,

hence during this process each disk is subject to three kind of forces: the elastic energy

inherent in each circle, where the elastic force is interpreted as the sum of the squares

of the overlapping depth between the incumbent circle and any other object, the attrac-

tive force exerted from the centre of the container to the centre of each circle and the

non-contact repulsive force exerted by the pushed out circles. The final process of the

algorithm is to adjust the radius of the container in order to obtain a feasible packing

with the smallest radius possible for the container. They give computational results for

n = 1 to n = 150 having found 37 out of 150 better packings than those in [72].

Very recently Stoyan and Yaskov [75] presented an algorithm that solves the packing

problem of identical circles of fixed size inside a circular container considering forbidden

fixed circular areas. Because of the nature of the feasible region a special way to generate

initial solutions is provided. For the optimisation of the problem they use a modification

of the Zoutendijk method, the original method generates improved feasible directions

and optimizes on that direction, additionally they implemented a strategy that involves
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active inequalities. Regarding their computational results we can see that every instance

they have considered has been improved with their approach. The smaller case consider

158 circles whilst the largest instance contains 957 circles.

2.3.2 Rectangular container

Instances involving the packing problem with a rectangular container having length L

and width W may have different approaches in relation with the objective function. In

general these instances consider circles of fixed size (identical or non-identical) and a

variable size container. As for the objective some of the examples found in the literature

are:

• for the square container (L = W ) minimise the length of the side, so minimise L

• for the rectangle container minimise the perimeter or the area, that is minimise

L+W or minimise LW respectively

• regard one dimension of the rectangle as fixed and minimise the other dimension,

so for a fixed L minimise W , or for a fixed W minimise L. Problems of this type are

often referred to as strip packing problems (SPP) or as the circular open dimension

problem (CODP)

Regarding the rectangular container the most studied case is for the square container

(L = W ) and Szabo et al. [67] present a review of the work that has been developed

with special consideration to the algorithms that represent a computer aided approach

to justify the optimality of the packings. The methods investigated are: energy function

minimization: for this approach the objective function represent an energy function and

the points on the feasible region represent electrical charges which are repulsing each

other. The billiard simulation algorithm follows the idea of the billiard game, it sets

a random initial solution of points imposing a circle around it without overlapping,

for this approach it is considered that circles have a moving direction and a speed,
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the iterative process start the balls and at every iteration the swing of each ball is

reduce until the packing becomes rigid. The perturbation method randomly allocates n

points as initial solution, during the iterative process one circle at a time is perturbed

inside a small square around the centre of the circle whiting a distance 0.25 and the

location of the nearest neighbour is updated if the distance between them has increased,

this process is repeated until there are no more circles to move. The algorithm called

“Threshold Accepting Modified Single Agent Stochastic Search for Packing Equal Circles

in a Square” (TAMSASS-PECS) is based on the Threshold Accepting approach which is

an algorithm very similar to simulating annealing. The algorithm starts with a random

initial solution, a standard deviation and a threshold level. The algorithm improves

the initial solution using local search and it uses as a stopping rule the value of the

standard deviation. A deterministic approach based on LP relaxation is mentioned and

more detail of a modified billiard simulation approach is given. They present as well

an algebraic representation for an optimal packing for n = 2 to n = 100. Finally they

consider the interval analysis method through which they validate the optimal solutions

found. They present optimal packings for n = 28, 29 and 30 circles. Later on the work

is extended in [76] by giving a more detailed description of the methods studied in [67]

additionally providing the program codes. They give computational results for n = 2 to

n = 200 that at that time (2007) were the best-known.

Huang and Ye [39] propose an algorithm that is based on a quasi-physical strategy

presented in [41], this strategy aims to find a criterion under which n rigid objects

are arranged inside a container with a predetermined shape, in order to do that they

consider the container and the objects to be packed as elastic, they find a solution by

using the laws of motion applied between the items and the container until the items

and the container have their original shape. The Huang et al. [39] algorithm consists

of three main processes: a local search, the so called “greedy vacancy search” and an

early stop strategy. The local search is an iterative process that stops when a feasible
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solution is found. They transform the original problem to an unconstrained problem

where the objective function depends on the area of the square and on a penalty function

(the “elastic energy” function defined from the non-overlapping constraints between the

circles and the container). The greedy vacancy search is used as a perturbation method to

exploit the biggest space left in a current solution. The idea is to extract one circle from

its current position to the biggest free space considering this as the current initial solution

for the local search. Their early stop strategy evaluates if the feasible solution obtained

is a candidate that can be improved, if it cannot be improved then it is disregarded. The

algorithm moves from the greedy vacancy search to the local search procedure only when

a feasible solution is found, hence obtaining a better solution, or at least not worse. They

give computational results from n = 1 to n = 200 presenting 17 out of 200 improvements

over the best known packing at that time.

Machado and Leitao [57] propose an algorithm that solves the packing problem of

identical circles inside a square container, their approach is based on genetic algorithms,

from this point of view an individual is represented with two chromosomes; one is a

vector with the coordinates of a solution for the packing problem whereas the second

chromosome is a mating fitness function to evaluate the potential mates of the individual.

This approach relies in the observation that in some cases the optimal configuration of an

instance with n circles is also an optimal configuration with n−i with i ∈ [1, n−2] circles,

this information is used to assess the performance of an individual for mating selection.

They give computational results for n = 2 to 24 identical circles comparing their best

solutions from four evolution mating selection functions and the optimal solutions. The

accuracy considered for the results was four decimal places. No computation time is

given for any approach.
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2.3.3 Other containers

Even though the circular and square containers are the most studied instances for the

packing of identical circles, Melissen [58, 59] provides optimal (proven) packings for up

to 12 identical circles inside an equilateral triangle container. Afterwards Melissen and

Schuur [60] use an approach based on simulated annealing, quasi-Newton method and

human intelligence strategy for the solution of 16, 17 or 18 identical circles inside an

equilateral triangle. Another contribution considering an equilateral triangle container

is by Graham et al. [19] giving a dense packing for n = 22 to 34 identical circles. Other

containers such as a right-angle-isosceles triangle and a semicircular container are found

in [54].

2.4 Packing non-identical circles

This section considers the case of packing non-identical circles within circular and rect-

angular containers. In Section 2.4.1 we focus on work that considers a circular container

whilst in Section 2.4.2 those concerning a rectangular container.

2.4.1 Circular container

Some early approaches to solve the packing problem of non-identical circles based on a

quasi-physical method are presented in [38, 42]. Wang et al. [79], incorporate a quasi-

physical and a quasi-human approach; the algorithm presented alternates from the quasi-

physical to the quasi-human strategy until a solution is found or the time allowed has

been reached. The physical strategy is based on the laws of motion and is used to obtain

a packing of n circles until a local minima has found. The human strategy is based on

the behaviour of people in a non satisfactory position, the most unfortunate will tend to

move out as soon as possible while the more fortunate may wish to spread their wealth to

obtain some balance. Under this considerations the human strategy aims to improve the
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current solution by picking up the circle with the maximum pain (depth of overlap, in the

human context the most unfortunate) and randomly allocate it inside the container. An

improved version of the later is presented by Huang et al. [36] by changing the condition

that allows switching from the quasi-physical to the quasi-human strategy in a shorter

period of time; instead of considering a local minima solution as the condition to switch

they change it by a promising local minimum solution. They give numerical results for

four instances where the time was reduced by significant factors.

Zhang and Huang [81] propose a heuristic based on simulated annealing combined

with heuristic strategies to avoid being trapped in a local minima. During the simulated

annealing process the temperature may drop to zero meaning that the algorithm may

get stuck in a local optima hence, in this stage of the algorithm heuristic strategies

are used. The heuristic strategy implemented consists of grouping the circles according

to their size, if overlaps are found within a group of circles then one of the embedded

circles is picked out and randomly placed around the circular container; but if there

are no overlaps by group, then the circle with the most embedded measure is randomly

reallocated inside the container. They give computational results for four instances of

which three are of different sized circles and one of equally sized circles.

Later on Zhang and Deng [80] proposed an algorithm that combines two well known

heuristics: simulated annealing and tabu search. Let us recall that simulated annealing

is a heuristic technique developed to approach global optimal solutions, in this algorithm

simulated annealing is used during the optimisation process to escape from a local minima

by allowing worse solutions to be accepted according to a probability function. On the

other hand the idea of the tabu search technique is to forbid movements to prevent cycles

and to guide the search to explore new neighbourhoods. They give computational results

for nine instances, five of them consist of identical circles while the other four consist of

non-identical circles.

In 2006 a contest was held for finding the optimal solutions for the packing problem
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for unequal circles with radii Ri = i for all i = 1, ..., n inside a circular container of

minimum radius. The instances considered were from n = 5 to n = 50. In Addis et

al. [1] they present the algorithm that made them the winners of that contest. Their

approach is based on population basin hopping [24] and the reduction of the space of

variables. Although they won the contest further computational results are frequently

reported. Müller et al. [64] addressed same problem using the simulated annealing ap-

proach reaching the best known solutions for n = 5 to 23 and 25 circles while beating

the (previously) best known for n = 24 and for n = 26 to 50 circles. As mentioned

previously above, the website [72] maintains the best solutions for different variants of

the packing problem and is continually updated.

Huang et al. [37] present two heuristics to solve the packing problem of non-identical

circles aiming to minimise the radius of the circular container. The first heuristic is

based on the maximum hole degree strategy. The hole degree strategy is a measure

of the benefit of placing a circle in the container in relation with those already packed

hence, a maximum hole degree for any given circle represent the maximum benefit for

placing that given circle inside the container. The second heuristic uses a self look-ahead

strategy to improve over the solution obtained by the first heuristic. The self look-ahead

strategy consists of examining every corner placement, that is, it places a circle tangent

to at least two circles without overlapping and it measures the benefit of that corner

placement by examining the relation between all circles inside and outside the container.

Akeb et al. [4] extended the work in [37] by combining two strategies: the maximum hole

degree and the minimum damage. Both strategies are used to determine the position

of the next circle to be packed. Depending on the current solution the circle will be

located according to one or the other strategy. Akeb et al. [2] propose an algorithm that

embeds beam search within the dichotomous local search of the minimum radius of the

container. The beam search branches out a node based on the maximum hole degree

measure.
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Lu et al. [56] propose an algorithm to solve the circle packing problem combining

two strategies: Prune-Enriched-Rusenbluth Method (PERM) with the maximum cave

degree approach [37]. PERM was conceived under a chemical point of view to generate a

chain of polymers with large length [21]. Briefly, it is a method where the configurations

formed are assigned a weight, if the weight of a partial configuration is less than a lower

threshold it is pruned and it is enriched (enlarged) if the weight is greater than a given

upper threshold. For the implementation given by Lu et al. the circles are packed

one by one as close as possible according to the maximal cave degree approach forming

partial configurations. PERM strategy is used in every partial packing to decide which

branches to prune or to enrich based on the associated estimated weight that every

partial configuration has. They present results for 14 instances where the radii of the

circles to be packed are equal and unequal, the smallest instance consists of 7 equal

circles whilst the largest instance consists of 90 equal circles.

Hifi et al. [32] present a heuristic that dynamically updates the centre and the radius

of the circular container. The updating process comes after finding the best position

for the current circle. Afterwards, Hifi et al. [31] propose an algorithm that combines

adaptive and restarting techniques. The algorithm consist of three phases; a dynamic

search that determines a packing solution, an adaptive phase that uses intensification

and diversification on the solution obtained in the dynamic search (the intensification

aims to find a smaller radius for the container whilst the diversification uses different

packing techniques for the current solution) and finally the restarting phase that is based

on the hill climbing approach.

Al-Mudahka et al. [5] propose an algorithm that combines two procedures: local

search and a nested partition of the feasible space. The local search procedure used is

tabu search, the tabu list is used to find a permutation of the circles that leads close to

the optimal one, then they explore the feasible set by making a partition of it. As part

of their nested partition procedure they use a polar reformulation of the problem as a
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way to escape from a local optimum. The computational results given for their approach

for the problem of packing non-identical circles inside a circular container consider two

different instances; when the radii of circles is given by Ri = i ∀i = 1, ..., n for up to

n = 50 circles and when the radii is given by Ri = 1/
√
i ∀i = 1, ..., n for up to n = 35

circles. As well they consider the case of identical unitary circles and give computational

results for that case for up to 100 circles.

In order to solve the layout design of satellite module Liu et al. [48, 49] consider the

two dimensional packing problem adding equilibrium constraints. In [48] the heuristic

presented is based on simulated annealing while in [49] the heuristic presented is based

on tabu search.

2.4.2 Rectangular container

As mentioned in Section 2.3.2 we have found (in published work) different ways in which

the packing problem with a rectangular container has been studied, in this section we

present a few of them considering non-identical circles.

Some work presented in the field of the packing problem has been directly motivated

by industrial applications. George et al. [17] consider the problem of “fitting pipes of

different diameters into a shipping container”, the authors decided to tackle the problem

through the two-dimensional packing problem considering that the circles and the rectan-

gular container have fixed size. They formulate the packing problem as a mixed-integer

non-linear programming problem: continuous variables represent the (x, y) coordinate

position while binary variables take the value one if the circle is placed in the rectangle

and zero otherwise. The objective function aims to maximise the total density provided

by the circles packed. The binary non-linear constraint model is formed by considering

that boundaries of the two types of constraints (those that guarantee circles are inside the

container and the non-overlapping constraints) are multiplied by the binary variables.

They propose an adaptive heuristic based on strategies found in genetic algorithms that
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uses a stable solution. A stable solution is defined as one where the circles satisfy condi-

tions such as: touching the bottom of the container, or one of the sides of the container

or when the circles are resting on top of another circle as big as itself or on top of two

resting circles. For the series of implemented heuristics it is important to obtain a stable

solution considering that ultimately the circles packed in the rectangular container repre-

sent pipes being fitted in a shipping container. The heuristic algorithms produced stable

or unstable solutions depending on the rules for locating the circles. The six heuristics

presented were tested on a series of 66 test problems. The problems were generated by

considering that any instance is formed with elements of one, two or the three different

sets in which the circles were categorized: small, medium and large. The comparisons

suggested that overall the best performance was produced by a quasi-random procedure

presented when considering quality of solution and computational time.

Stoyan and Yaskov [74] address the circular open dimension problem (CODP) by con-

sidering a strip container of fixed width aiming to minimise the length of the container

using the reduced gradient method which is another method to generate improving fea-

sible directions, and the active inequality collection strategy that determines a working

set of constraints that will be treated as equality constraints. Their approach consists of

two phases: in phase one the radii of the circles are considered fixed and the aim of this

phase is to find a local minima, in phase two the radii of a selected pair of circles are

considered as variables, an increase of size for one circle and decrease for the other will

lead to an improvement in the solution, jumping from one local minima to another until

all the suitable pairs of circles are finished. They assessed their algorithm using a set of

30 instances giving computational results for only a subset of those used, the size of the

problems presented range from n = 20 to 35 circles. In the conclusions it is suggested to

use a multi-start strategy as the final result is sensitive to the initial solution.

Akeb et al. [3] address the CODP as in [74] but they consider non-identical circles

of fixed radii. They present two version of an algorithm that is based on the augmented
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beam search method. The first version is based on multi-start strategy, that is to restart

the algorithm from a new initial solution to diversify the exploration of the feasible

region aiming to find a global optima, the second version uses multi-start and separated

beam strategies. “A beam search is a heuristic search technique that combines elements

of breadth-first and best-first searches. Like a breadth-first search, the beam search

maintains a list of nodes that represent a frontier in the search space. Whereas the

breadth-first adds all neighbours to the list, the beam search orders the neighbouring

nodes according to some heuristic and only keeps the n best, where n is the beam

size” [71]. They test their algorithm on two sets of instances: one set is composed

of instances presented in the literature and the second set comprises of 1560 instances

randomly generated in a certain fashion. According to their results their algorithm

dominates those against which it was compared.

Hifi et al. [34] present an algorithm to solve the constrained and unconstrained cir-

cular cutting problem where a rectangular surface with length L and width W is to be

cut in non-identical circular pieces. The approach to solve it is via simulated anneal-

ing aiming to find the maximum area covered by the circular items without overlaps.

They compare their work against a modified version of the original algorithms presented

in [6, 8, 25] by adapting them to pack circular items, when originally they were devised

to pack items other than circles. Additionally they compare their results against those

in [74] and to those extracted somehow in [20]. Their computational results are presented

in terms of the percentage coverage of the area of the rectangular container, they claim

to have produced good solutions when contrasting against those found in the literature.

Hifi et al. [30] consider the circular cutting problem for a rectangular container. The

rectangular container of length L, width W and the size of the circular items are fixed.

The authors consider a maximum demand on certain circular pieces of a specific size.

They developed two algorithms: one is based on constructive heuristics while the other

is based on genetic algorithms. The instances considered are from [73], the solutions
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given from the two heuristics developed were compared against solutions in [34, 73] and

dominated those in [34, 73].

2.5 Formulation space search

Formulation space search is a relatively recent method that emerged with the need to

escape from solutions that are stationary points and reach better solutions when con-

sidering non-linear non-convex problems. Stationary points are those whose derivative

is zero but are neither minimum nor maximum. In Mladenović et al. [62] they observed

that different but equivalent formulations of the same problem may have different char-

acteristics that can be exploited to escape from stationary points and possibly find better

solutions. That is, while in one formulation we reach a stationary point, this may not be

the case in another formulation, hence a natural manner to proceed is swapping between

formulations when a stationary point has been reached.

Under this framework Mladenović et al. [62] proposed the formulation space search

for the circle packing problem considering two formulations of the problem: one in a

Cartesian coordinate system, one in a polar coordinate system. Their algorithm solves

the problem with one formulation at a time and when the solution is the same for

all formulations, then the algorithm terminates. They considered the case of packing

identical circles and their computational results are for up to 100 circles packed into the

unit circle and the unit square.

Afterwards Mladenović et al. [63] improved on [62] by considering a mixed formula-

tion of the problem; they set a subset of the circles in the Cartesian system whilst the rest

of the circles are in the polar system. A reduction in the number of the non-overlapping

constraints is made at the initial solution by disregarding points sufficiently far away

from each other. They give computational results for up to 100 identical circles inside

the unit circle.

Formulation space search is a new and relatively unexplored idea in the literature.
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It has been applied to only a few problems in the literature additional to circle packing

(e.g. timetabling, Kochetov et al. [43]). More discussion as to formulation space search

can be found in Hansen et al. [26]. A related approach is variable space search, which

has been applied to graph colouring (Hertz et al. [28, 29]). More recently formulation

space search has been applied to the cutwidth minimization problem, Mladenovic et

al. [66]. As well it has been used to present a strategy to solve mixed-integer non-linear

programming problems in López and Beasley [53].

2.6 Conclusions

In this chapter we gave a description of the two-dimensional packing problem. We

presented a brief historical note highlighting appropriate examples of the two-dimensional

packing problem. We reviewed some of the most relevant work published in recent years

for the packing problem of identical and non-identical circles, mainly considering circular

and rectangular containers and briefly mentioned the work carried on with triangular

containers. We also presented relevant literature related to formulation space search.
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Chapter 3
Packing identical circles inside a circular

container

In this chapter we address the packing problem of identical circles inside the unit circle

container. In Section 3.1 we describe the dual nature of the problem and justify how it can

be addressed by two different points of view. Section 3.2 presents the mathematical model

used that represents the packing problem to be solved. In Section 3.3 we describe in

detail the procedures implemented with formulation space search for the packing problem

with identical circles. In particular, we explain the need to consider two procedures that

tackle two key components of our heuristic: in one procedure we reduce of the size of the

set of the non-overlapping constraints whilst with another procedure we ensure we obtain

feasible solutions. In Section 3.4 we present the pseudocode, in Section 3.5 we start giving

a glance of the algorithm with the use of pictures for a complete iteration. We present the

computational results produced by our heuristic and assess its performance by comparing

it with the best-known solutions [72], with approaches based on FSS [62, 63] and using

some modifications to the formulation of the problem, we also compare with other work

found in the literature [9, 23, 51, 68]. In order to investigate more about the behaviour of

our FSS heuristic we consider in Section 3.6 some other alternative strategies to improve
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(if possible) our results. Finally we finish this chapter with the conclusions in Section 3.8.

3.1 The circular container

Let us recall from Section 2.1 that the packing problem is concerned with the arrangement

of n circles inside a bounded region. In this chapter the bounded region is the circular

container which is the most studied case in the packing problem area. In the literature

it is often addressed from two different (but equivalent) points of view:

a) to maximise the radius associated with the n circles when the container size (area) is

fixed

b) to minimise the size (area) of the container to accommodate n circles of fixed radius

Justification: These two viewpoints are in fact equivalent because there exists a

one-to-one relationship (based on scaling) between them. Consider, for the purposes of

illustrating this equivalence, the container being a circle centred on the origin.

Let us assume that first point of view is true, that means that we have an optimal

solution with circles centred at (xi, yi) i = 1, ..., n with n identical circles with radii

of maximum value, say R within a container of fixed size, without loss of generality

let us assume that the container radius is equal to 1. If we scale the current solution

((xi, yi) i = 1, ..., n) by a factor, say 1/R, the new scaled solution that represents the

coordinate centres for the n circles to be packed is obtained by multiplying by the scaled

factor (xi/R, yi/R) with circles that have a fixed radius 1 within a circular container

with radius 1/R. For this problem it is required to obtain a minimum size (area) for the

circular container. As the area of a circle keeps a direct square relation with respect to

its radius then minimising the radius (1/R) is equivalent to minimising the area of the

container.
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3.2 The mixed formulation model

The mathematical model given in equations (3.1)-(3.11) describes the mixed formulation

for the two-dimensional packing problem of identical circles maximising the radii of n

circles inside the unit circle container. The packing problem is solved by our implementa-

tion of formulation space search. The container is centred at the origin of the Cartesian

plane and concerning the notation used we have:

• C the set of indices of circles whose centres are expressed in Cartesian coordinates,

so for circle i ∈ C its centre is at (xi, yi) in Cartesian coordinates

• P the set of indices of circles whose centres are expressed in polar coordinates, so

for circle i ∈ P its centre is at (ri, θi) in polar coordinates (where C ∩ P = ∅ and

C ∪ P = {1, ..., n})

• Q the set of all pairs {(i, j) | i = 1, ..., n; j = 1, ..., n; i 6= j}, so |Q| = n(n− 1)/2

• R the radius associated with each of the n circles

• Roverlap an upper bound on R, formally Roverlap is the maximum radius that the

circles can have before they must overlap due to area considerations, defined here

by equating the area of the containing unit circle (π12) to the total area of the n

circles (nπR2
overlap), so Roverlap = 1/

√
n

Although we have above (using disjoint sets C and P ) separated centres expressed in

Cartesian and polar coordinates note here that the relationship between the two coor-

dinate systems is that a point (x, y) in Cartesian space has equivalent coordinates (r, θ)

in polar space where x = r cos(θ) and y = r sin(θ).

The formulation used is:
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max R (3.1)

st

x2i + y2i ≤ (1−R)2 ∀i ∈ C (3.2)

ri ≤ 1−R ∀i ∈ P (3.3)

(xi − xj)
2 + (yi − yj)

2 ≥ 4R2 ∀(i, j) ∈ Q with i, j ∈ C i < j (3.4)

(xi − rj cos(θj))
2 + (yi − rj sin(θj))

2 ≥ 4R2 ∀(i, j) ∈ Q with i ∈ C j ∈ P (3.5)

r2i + r2j − 2rirj cos(θi − θj) ≥ 4R2 ∀(i, j) ∈ Q with i, j ∈ P i < j (3.6)

Xi −∆ ≤ xi ≤ Xi +∆ ∀i ∈ C (3.7)

Yi −∆ ≤ yi ≤ Yi +∆ ∀i ∈ C (3.8)

0 ≤ ri ≤ 1 ∀i ∈ P (3.9)

0 ≤ θi ≤ 2π ∀i ∈ P (3.10)

0 ≤ R ≤ Roverlap (3.11)

The objective, equation (3.1), maximises the radius associated with the circles. Equa-

tions (3.2) and (3.3) are the constraints which ensure that every circle is fully inside

the container, in this case the unit circle. Notice here that whilst equation (3.2) is a

non-linear equation when expressed in Cartesian form, it is a linear equation, equation

(3.3), when expressed in polar form.

Equations (3.4)-(3.6) ensure that no circles overlap each other. Equation (3.4), for

example, says that the Euclidean distance between the centres of circle i and circle j,

√

(xi − xj)2 + (yi − yj)2 must be at least 2R (since each circle is of radius R). Note

here that for computational reasons we (as is common in the literature) have squared

both sides of this constraint to eliminate the square root. Equations (3.5)-(3.6) are as

equation (3.4), but where one or both of the circles has its centre expressed in polar

coordinates.
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Equations (3.7)-(3.11) are the limits on the variables. Equations (3.7) and (3.8)

limit variables for circles expressed in the Cartesian system, where Xi and Yi are known

values taken from the initial solution with ∆ a range of movement. Note here that

although equation (3.9) can be deduced from equation (3.3), it is given here

for completeness. Equation (3.10) limits the polar angle, so avoiding a multiplicity of

equivalent solution values, θi + k(2π) for all integer values of k.

The difference between the formulation used for our heuristic algorithm and those

given in [62, 63] are:

• an estimated upper bound denoted as Roverlap for variable R

• we introduced the Q set for the non-overlapping constraints

• we use limits for circle centres that are expressed in the Cartesian system as given

in equations (3.7) and (3.8)

3.3 The formulation space search heuristic

The heuristic developed for packing identical circles is based on formulation space search

and we will denote it as “FSS”. It considers two processes that influence the quality of

the final solution. The first process is related to how we decrease the size of the set of

the non-overlapping constraints (|Q|) whilst the second process amends any non-accurate

solution (if any) disregarded by our non-linear solver (Snopt [18, 35]).

Regarding the size of the set of the non-overlapping constraints (equations (3.4)-

(3.6)), it is formed by pairs of circles and assuming that we have n circles there are

(

n
2

)

= n(n− 1)/2 possible ways to create them, that is |Q| = n(n− 1)/2. In other words,

the more circles the heuristic is dealing with the larger the cardinality of Q, leading

to an exhausted and possibly unfruitful search for feasibility considering pairs of circles

that are not even close, e.g., those whose distance between them is much greater than

2R. The idea to decrease the size of Q has already been explored and implemented in
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different ways in [10, 62]. In Section 3.3.1 we propose a new procedure to determine the

pair of circles that will be elements of Q.

Numerical accuracy is particularly important for problems of this kind, the best-

known results given at the Packomania web site of Specht (available at [72]) are given

to a very high degree of accuracy (30 decimal places). In order to address numerical

accuracy we have implemented in our heuristic a process (called “correction step”) that

ensures feasibility for any given solution by the non-linear solver when expressed with a

high degree of precision. Details of this process are given in Section 3.3.3.

3.3.1 The set of the non-overlapping constraints

As mentioned earlier, in order to reduce the number of non-overlapping constraints we

need to reduce the size of Q. This is done by introducing linear constraints on the range

of possible values for centre coordinates, that is, for each circle i having a known point

(Xi, Yi), the centre of the circle is not allowed to move more than ∆ from this point at

the next iteration of our FSS heuristic. For ease of presentation all centres are expressed

here in Cartesian coordinates.

Given these restrictions the constraints on the centre coordinates of circle i become

Xi −∆ ≤ xi ≤ Xi +∆ and Yi −∆ ≤ yi ≤ Yi +∆ (3.12)

i.e. xi ∈ [Xi − ∆, Xi + ∆] and yi ∈ [Yi − ∆, Yi + ∆]. Consider the non-overlapping

constraint equation (3.4). This involves the term (xi−xj)
2 for two circles i and j, whose

centres now have a restricted range, so we can deduce the minimum value that this term

can take. Given the ranges, xi ∈ [Xi −∆, Xi +∆] and xj ∈ [Xj −∆, Xj +∆] these two

ranges overlap (in other words xi can equal xj) if and only if one of the end points lies

in the other range. In other words these ranges overlap if:

Xi −∆ ∈ [Xj −∆, Xj +∆] or Xi +∆ ∈ [Xj −∆, Xj +∆] or (3.13)

Xj −∆ ∈ [Xi −∆, Xi +∆] or Xj +∆ ∈ [Xi −∆, Xi +∆]
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If the ranges overlap then the minimum value of (xi − xj)
2 is zero. If the ranges do not

overlap then the minimum value of (xi − xj)
2 will occur when xi and xj take values at

the end of their ranges, so in this case the minimum value of (xi − xj)
2 will be:

min{[(Xi −∆)− (Xj −∆)]2, [(Xi −∆)− (Xj +∆)]2, (3.14)

[(Xi +∆)− (Xj −∆)]2, [(Xi +∆)− (Xj +∆)]2}

Working out every element of expression (3.14), we have that:

[(Xi −∆)− (Xj −∆)]2 = [(Xi +∆)− (Xj +∆)]2 = (Xi −Xj)
2

[(Xi −∆)− (Xj +∆)]2 = (Xi −Xj)
2 + 4∆(Xj −Xi +∆)

[(Xi +∆)− (Xj +∆)]2 = (Xi −Xj)
2 + 4∆(Xi −Xj +∆) (3.15)

Hence, if we denote dx(i, j) = (Xi −Xj)
2 then expression (3.14) is equivalent to:

min{dx(i, j), dx(i, j) + 4∆(Xj −Xi +∆), dx(i, j) + 4∆(Xi −Xj +∆)} (3.16)

A pseudocode to computing the minimum distance between any two circles i and

j considering only the x-coordinate is given in algorithm 3.1. Let us note that the

procedure to compute the distance over the y-coordinate is exactly the same.

In a similar manner we can compute the minimum value of the (yi − yj)
2 term in equa-

tion (3.17) as zero if:

Yi −∆ ∈ [Yj −∆, Yj +∆] or Yi +∆ ∈ [Yj −∆, Yj +∆] or (3.17)

Yj −∆ ∈ [Yi −∆, Yi +∆] or Yj +∆ ∈ [Yi −∆, Yi +∆]

and as:

min{[(Yi −∆)− (Yj −∆)]2,[(Yi −∆)− (Yj +∆)]2, (3.18)

[(Yi +∆)− (Yj −∆)]2,[(Yi +∆)− (Yj +∆)]2}
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Algorithm 3.1 Computing minimum distance pseudocode

Function dminx(i, j)← minx(X,Y,∆)

if Xi = Xj then

dminx(i, j)← 0

else if Xi > Xj then

dminx(i, j)← (Xi −Xj)
2 + 4∆(Xj −Xi +∆)

else if Xi < Xj then

dminx(i, j)← (Xi −Xj)
2 + 4∆(Xi −Xj +∆)

end if

otherwise. In a similar way, denoting dy(i, j) = (Yi − Yj)
2 expression (3.18) can be

simplified as:

min{dy(i, j), dy(i, j) + 4∆(Yj − Yi +∆), dy(i, j) + 4∆(Yi − Yj +∆)} (3.19)

Let us consider Figure 3.1 to clarify what has been described above. In this figure

we have two known points, (Xi, Yi) and (Xj , Yj), and the square surrounding each point

indicates the range within which the centre’s, (xi, yi) and (xj , yj), for circles i and j can

be located. Deciding if the centres of the circles i and j may overlap we need to know

how close the x and y coordinates of circles i and j may be by calculating the minimum

values of terms (xi − xj)
2 and (yi − yj)

2. According to Figure 3.1 the minimum value

of (xi − xj)
2 is determined by squaring of the length of the horizontal line that goes

from point A to point B that are joining the left-hand square to the right-hand square,

namely [(Xi−∆)− (Xj+∆)]2. The minimum value of (yi−yj)
2 is zero (since the ranges

overlap).

Now if the sum of these minimum values for (xi − xj)
2 and (yi − yj)

2 is ≥ 4R2

(compare equation (3.4)) then there is no need to impose a non-overlapping constraint

for circles i and j, because they cannot overlap each other by definition given the ranges

imposed.
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Yj − ∆

Yj + ∆

Yi − ∆

Yi + ∆

(Xj , Yj)

Xj − ∆ Xj + ∆

(Xi, Yi)

Xi − ∆ Xi + ∆

A B

Figure 3.1: Example of how the non-overlapping constraints are determine

With reference to Figure 3.1 then given the square ranges allowed for circles i and

j the best possible position for these circles (each of radius R) in any attempt to have

them overlap would be centre them at points A and B respectively. If the distance from

A to B is ≥ 2R (equivalently the squared distance is ≥ 4R2) then there is no need to

impose a non-overlapping constraint for circles i and j.

Clearly we do not know R, since that is a variable in the optimisation, but we can

replace it by any valid upper bound which we do know, here we use Roverlap. Hence if

the sum of these minimum values is ≥ 4R2
overlap circles i and j cannot overlap and the

pair (i, j) need not be included in Q. Conversely if this sum is < 4R2
overlap the pair (i, j)

does need to be included in Q.

Hence, in summary here, we take all pairs (i, j) of circles, do the calculation (equa-

tions (3.13)-(3.18)) outlined above (which is computationally an easy task) and thereby

identify the pairs of circles that need to be included in Q.

We denote the above procedure as OverlapSet(X,Y,∆, Roverlap, n) that returns the

set Q of pairs of circles, it is also described in pseudocode 3.2.

We would extend here our previous comment that other authors in the literature

have also attempted to reduce the number of overlap constraints. Mladenovic et al [63]

reduce the number of constraints by ignoring overlap constraints for circles whose cen-
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Algorithm 3.2 Reducing the size of Q pseudocode

Function Q← OverlapSet(X,Y,∆, Roverlap, n)

Q← ∅

for i = 1 to n− 1 do

for j = i+ 1 to n do

dminx(i, j)← minx(X,Y,∆) {call function minx}

dminy(i, j)← miny(X,Y,∆) {call function miny}

if dminx(i, j) + dminy(i, j) < 4R2
overlap then

Q← Q ∪ (i, j) {update Q set}

end if

end for

end for

tres (at the initial solution, before optimisation) are sufficiently far apart. In our view

the disadvantage of their approach is that during the optimisation process they do not

consider a constraint (3.12) that limits the location of a new solution for circles in the

Cartesian system in order to take advantage of the previous solution to obtain a better

solution (unlike our approach above). An important difference therefore between our ap-

proach and earlier formulation space search work for circle packing (such as Mladenovic

et al [62] who did not reduce overlap constraints, and Mladenovic et al [63]) is the use

of constraints that limit the range of movement for circle centres.

Birgin and Gentil [10] use a distinctly different approach to reduce the number of

overlap constraints. They first replace the n(n−1)/2 overlap constraints, equations (3.4)-

(3.6), by a single constraint which is the sum of n(n − 1)/2 non-linear terms. Then, in

order to reduce the computational effort relating to evaluating this constraint (which

they may need to do many times during the course of a non-linear solution algorithm),

they consider a partition of the container into regions in such a way that circles whose
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centres are not in the same (or an adjacent) region cannot contribute to the constraint.

Essentially therefore their approach consists of replacing n(n− 1)/2 overlap constraints,

each of which is computationally inexpensive to evaluate numerically (requiring O(1)

operations), by a single surrogate constraint that computationally requires O(n(n−1)/2)

operations to evaluate.

3.3.2 Optimisation problem

In our FSS heuristic the sets C and P are of approximately equal size. The initial solution

is randomly generated at every iteration, however it is set in a slightly different way for

initialization step and for the remaining iterations of our heuristic algorithm. In iteration

one we randomly generate the initial solution using polar coordinates (ri ∈ [0, 1] and θi ∈

[0, 2π]), converted to Cartesian coordinates for those circles that belong to C and denoted

as (x0, y0), note here that only for this iteration the known points (X,Y ) = (x0, y0), this

procedure is also explained in algorithm 3.3. After we have obtained a solution from the

non-linear solver, the initial solution for next iteration will be randomly generated at a

∆ distance from the previous solution obtained by the non-linear solver. To clarify this

point, let us consider (x, y) as the solver solution, which represent the centre coordinates

of each circle, we set the known points (X,Y ) = (x, y) hence a new initial solution will

be given by x0 ∈ (X −∆, X +∆) and y0 ∈ (Y −∆, Y +∆).

Limited computational experience indicated that, whilst we impose range constraints

on all circles in terms of computing Q (as described above), it was sufficient purely to

impose range constraints on circles whose centres are expressed in Cartesian coordinates

in terms of the optimisation. This allows additional flexibility for positioning of cir-

cles whose centres are expressed in polar coordinates. Although this might result in

some circles overlapping in the solution any such overlaps are corrected as explained in

Section 3.3.3 below.

Hence (at each iteration) the non-linear optimisation problem that we solve is op-
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Algorithm 3.3 First Initial Solution pseudocode

Function (x0, y0, X, Y )← InitialSolution(n, |C|)

for i = 1 to n do

ri ← random[0, 1] {generate random values from}

θi ← random[0, 2π] {a uniform distribution for r and θ}

end for

x0i = ri cos(θi) and y0i = ri sin(θi) ∀i ∈ C {initial solution for circle in C}

x0i = ri and y0i = θi ∀i ∈ P {initial solution for circle in P}

X = r cos(θ) and Y = r sin(θ) {vector (X,Y ) of known points}

timise (3.1) subject to (3.2)-(3.11). We denote this non-linear optimisation problem

as NLP (x0, y0, C, P,Q,X, Y,∆, Roverlap) where x0 and y0 represent an initial solution

for our optimisation solver Snopt in each iteration. In the computational results re-

ported later below we set an initial solution for this solver by randomly generating

x0i ∈ (Xi −∆, Xi +∆) and y0i ∈ (Yi −∆, Yi +∆) (i = 1, ..., n).

3.3.3 Feasibility and correction step

As mentioned earlier, numerical accuracy is an issue that needs to be addressed to ensure

that all solutions are feasible when expressed with high degree of decimal place accuracy.

The correction process deals with feasibility, that is, it needs to verify two conditions and

correct them when necessary: all circle centres are inside the container and that every

pair of circles do not overlap. Let us consider (xi, yi) i = 1, ..., n a given solution by the

non-linear solver expressed in Cartesian coordinate system where R∗ is the maximum

radius associated with the optimiser solution.

First we must ensure that all circle centres are inside the container, in this case the

unit circle, that is x2i + y2i ≤ 1 i = 1, ..., n. If this condition is not satisfied for any par-

ticular circle we reposition it inside the container, this process is detail in algorithm 3.4.
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Even though computational results have shown that circle centres outside the container

is not a common situation we have to cover all possible situations to ensure feasibility

for every solution.

Verifying the second condition involves the non-overlapping constraints. Let us set:

R = min

{

√

(xi − xj)2 + (yi − yj)2/2 | i = 1, ..., n; j = 1, ..., n; i < j

}

(3.20)

to ensure that the radius R is such so as to prevent circles from overlapping and then

set:

R∗ = min

{

R,min

{

1−
√

x2i + y2i | i = 1, ..., n

}}

(3.21)

to ensure that all the circles are fully inside the unit circle. By the nature of the procedure

adopted above, R∗ must be associated with a feasible solution to the problem. Note here

that the value of R∗ may (because of the procedure above) differ (albeit possibly only

slightly) from the radius value returned by the solver as the maximum possible radius.

We denote the above procedure as Correction(x0, y0, x, y) and it returns a value for

radius that must (by construction) be associated with a feasible solution. Pseudocode

for this procedure is given in algorithm 3.4. In our computational implementation of this

correction procedure we used a MATLAB function called vpa (which is the acronym for

variable precision arithmetic) that gives as many digits of accuracy as we desire.

3.4 Pseudocode

In this section we present Algorithm 3.5, the pseudocode that represents the outline

of our heuristic. In Section 3.4.1 we also present an example of the performance of our

heuristics using 10 identical circles, showing pictures of the first iteration of the algorithm

developed that will be described below.

Regarding the pseudocode, it is composed of two processes: Initialisation and Opti-

misation. In the initialisation process we set:
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Algorithm 3.4 Correction step pseudocode

Function (R∗, x, y)← Correction(x0, y0, x, y)

for i = 1 to n do

if x2i + y2i > 1 and (x0i )
2 + (y0i )

2 ≤ 1 then

(xi, yi)← (x0i , y
0
i )

else

ri ∈ [0, 0.99]

xi = ri cos(θi) and yi = ri sin(θi)

end if

end for

R← min
{

√

(xi − xj)2 + (yi − yj)2/2 | i = 1, ..., n; j = 1, ..., n; i < j
}

R∗ ← min
{

R,min
{

1−
√

x2i + y2i | i = 1, ..., n
}}

• |C| ← ⌊n/2⌋ number of circles in the Cartesian system are approximately equal

• Roverlap ← 1√
n
, let us recall from Section 3.2 that Roverlap is an upper bound for

variable R based on area comparison depending of the number of circles (n) to be

packed

• ∆ ← 2
3Roverlap factor involved in creating a range to allow centre coordinates to

move at most ∆ distance from a known point (X,Y ), also it helps to create limits

over variables expressed in Cartesian coordinate system during the optimisation

process. Its value depends (see below) on the current best solution for R, so we

use Roverlap for the initial stage of the heuristic.

• Rbest ← 0 initialising variable that will keep track of best value for R variable

• t← 0 initialise the iteration counter

• t rep← 0 initialise the replication counter
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In Section 3.6.3 we explain and justify based on numerical experiments the choice for

2
3 as the associated value to ∆, the number of replications for all instances as well as the

number of iterations in each replication.

We generate a random initial solution by using polar coordinates (ri ∈ [0, 1] and

θi ∈ [0, 2π]), converted to Cartesian coordinates for those circles that belong to C and

denoted as (X,Y ).

Regarding the optimisation, it is an iterative process where we seek the maximum

value Rbest through different processes described in previous sections:

• overlapSet returns the pairs of circles (i, j) that form the elements of the non-

overlapping constraints set Q

• NLP stands for the step where the solver returns a solution (x, y) of the best result

found using solver Snopt

• Correction returns the corrected value (if necessary) for variable R as the best

maximum radius common to all circles denoted as R∗

We also observed that a handful of results from the Correction step (in particular

for cases with large number of circles) returned a small value for R∗ such as 0.001,

this indicates that there is at least one pair of centre circles whose distance apart is

2R∗ = 0.002. As the generation of the initial solution for next iteration depends on

the ∆ value, such a small value for R∗ affects and leads to a smaller value for ∆, thus

almost forcing the algorithm to remain with a solution that does not allow new points

to be explored more than ∆ from the current centres. Hence when this (although rare)

situation happens in order to have a wider range of movement than, 2
3R

∗ = 0.0006, we

arbitrarily choose to use 1
10Roverlap. We set a new iteration by assigning current non-

linear solver solution (x, y) considering all their elements in their Cartesian form to a

vector of known points (X,Y ) that will be the centre of a square with distance ∆ in

order to generate a new initial solution x0 ∈ (X −∆, X +∆) and y0 ∈ (Y −∆, Y +∆)
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Algorithm 3.5 Formulation space search pseudocode

Function (Rbest, Xbest, Ybest)← FSS(n, replication limit, iteration limit)

Initialisation: |C| ← ⌊n/2⌋ ∆← 2
3Roverlap Rbest ← 0 t rep← 0

repeat

t← 0

(x0, y0, X, Y )← InitialSolution(n, |C|) {a first initial solution}

repeat

Q← OverlapSet(X,Y,∆, Roverlap) {find the overlap set Q}

(x, y,R)← NLP (x0, y0, C, P,Q,X, Y,∆, Roverlap)

(R∗, x, y)← Correction(x0, y0, x, y) {correct the radius}

Rbest ← max{Rbest, R
∗} {update Rbest}

(Xbest, Ybest)← (x, y) {save coordinates associated with Rbest}

if R∗ ≤ 0.001 then

∆← 1
10Roverlap

else

∆← 2
3R

∗ {update ∆}

end if

t← t+ 1 {update iteration counter}

(X,Y )← (x, y) {set (X,Y ) to the current solution}

x0 ∈ (X −∆, X +∆) and y0 ∈ (Y −∆, Y +∆) {new initial solution (x0, y0)}

C ← P P ← {1, ..., n} \ C {switch the sets C and P}

until t = iteration limit

t rep← t rep+ 1 {update replication counter}

until t rep = replication limit

as explained in section 3.3.2. Once we have generated a new initial solution in terms of

the Cartesian system we translate those that should be expressed in the Polar system.
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3.4.1 A glance of our FSS

Figure 3.2 illustrates example steps from our FSS approach. Here there are four different

pictures plotted using results from our heuristic when solving the packing problem for

n = 10 identical circles inside the unit circle. Let us state that from now on, circles

with a small “o” in their centre represent circles expressed in the Cartesian coordinate

system while circles with an asterisk “∗” in their centre are those expressed in the polar

coordinate system. In Figure 3.2 we have not been included the solutions obtained by

the correction step as they are the same as those given by the non-linear solver, this

means that there were no overlaps.

Figure 3.2(a) represents a randomly generated initial solution inside the unit circle

container with circles of radii zero as Rbest = 0. The initial solution is the starting

point for the solver to return a solution that in this case is graphically reproduced in

Figure 3.2(b) with Rbest = 0.25936275. As mentioned before, the solution given by the

correction step turned out to be the same as that given by the solver R∗ = Rbest.

Next step in our heuristic can be seen in Figure 3.2(c), we switch those centre coordi-

nates expressed in Cartesian to polar coordinate system and vice-versa, depicted in the

same picture we have an initial solution for next iteration. Consider 3.12 where the known

points (X,Y ) are given by the last solution from the solver, ∆ = 2
3R

∗ = 0.1729333, hence

a range of movement (depicted as the green square around the known point) allows to

have a close but new initial solution for next iteration, it is represented by the red small

o and the red asterisk *. The returned solution by the solver is depicted in Figure 3.2(d)

with R∗ = Rbest = 0.26093107 so an improved solution compared with Figure 3.2(b).

Following this iterative manner we precede to obtain the best solution in iteration 48.

The best solution is shown in Figure 3.2(e) with Rbest = 0.262258924129267.

Figure 3.3 illustrates the variation in the value of R∗, these values were taken from

the returned results from our heuristic composed of 80 iterations to pack 10 identical

circles inside the unit circle. The graphic suggests that for this small problem the number
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of iterations is more than required to obtain the best result but it gives more chances

to explore points around the previous given solution by the solver to form the initial

solution for next iteration.

3.5 Computational results

The results given in this section for our FSS heuristic were produced using an Intel Core 2

pc (2.26GHz, 4GB RAM). Our heuristic was coded in MATLAB 7.0 and as a subroutine

used the non-linear optimisation solver Snopt [18, 35].

We consider different comparisons: In Section 3.5.1 we compare the results produced

by our heuristic with those results presented in Packomania web site [72], Sections 3.5.2

and 3.5.3 present the comparisons made with previous work based on the FSS approach

found in the literature. In Section 3.5.4 we compare with other work based on differ-

ent approaches found in the literature and finally in Section 3.6 we include alternative

strategies we considered aiming to improve over current solutions.

The measurement used to compare our results with others is called percentage

deviation , this measure describes how accurate are our results with respect to those

compared. Let us denote fbk as the best-known solution whilst fb represents the best

solution obtained by an approach, hence the percentage deviation is calculated as:

100(fbk − fb)/fbk.

We should be aware here that there are a number of complications in terms of com-

paring circle packing results presented in the literature:

• some papers give results in terms of the circle radius, others in terms of the inverse

of that radius

• the “Best-known” value is not a static value, rather it is dynamic as it may change

over time as [72] is updated with improved results
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Figure 3.3: Variations of R∗ for n = 10 identical circles

• different papers use different degrees of precision (number of decimal places given

in the published results)

• some papers present results that are on closer inspection invalid (due to a lack of

sufficient numeric precision, typically detected by comparing the detailed results

given in the paper with [72])

3.5.1 Comparing with Packomania web site [72]

Let us recall that in Section 2.1 we stated that Packomania web site started reporting

the best-known solution to the packing problem since 1999 and it is continually updating

the best-known solutions, although they do not give computation time. Hence, we clarify

that comparisons presented in Table 3.1 are based on the “best-known” solutions taken

in January 2011.

Table 3.1 is composed of five columns: First column refers to the number n identi-

cal circles to be packed, second column refers to the best-known solutions taken from

Packomania web site [72] in January 2011, third column shows the results produced
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by our heuristic, fourth column displays the accuracy of our results with respect to

the best-known by using the percentage deviation, finally fifth column gives the total

time spent expressed in seconds. The results displayed on Table 3.1 represent a se-

ries of instances that take values for n = 10 to 100 circles in step of 5 followed by

n = 125, 150, 175, 200, 250 and 500.

Table 3.1: Comparison with Packomania web site [72] for the unit circle container

n Best-known OUR Best % deviation Total time

solution solution (sec)

10 0.262258924190 0.262258924188 0.000000001 40.59

15 0.221172539086 0.221172539085 0.000000001 36.97

20 0.195224011019 0.195224011010 0.000000004 47.30

25 0.173827661421 0.173827661389 0.000000019 64.77

30 0.161349109065 0.161349109023 0.000000026 81.61

35 0.149316776635 0.149316776574 0.000000041 112.36

40 0.140373604203 0.140373604193 0.000000007 109.38

45 0.132049594252 0.132049592409 0.000001396 150.98

50 0.125825489530 0.125825489530 0.000000001 173.06

55 0.121786324528 0.121786324528 0.000000000 218.58

60 0.115657480133 0.115657480132 0.000000001 245.97

65 0.110896743723 0.110896743719 0.000000003 288.75

70 0.107001616606 0.107001616367 0.000000223 347.45

75 0.103390915666 0.103390909387 0.000006073 407.75

80 0.100319499416 0.100319470202 0.000029121 478.99

85 0.098395063693 0.098395063689 0.000000003 621.22

90 0.094822059587 0.094822059542 0.000000048 586.38

95 0.092249177761 0.092249116345 0.000066576 692.78

100 0.090235200288 0.090235041265 0.000176232 809.86

125 0.080852343329 0.080852333325 0.000012373 1324.81

150 0.074289754450 0.074288436073 0.001774642 2225.91

175 0.068792158147 0.068782834112 0.013553922 3183.07

200 0.064669354186 0.064665524191 0.005922427 4814.65

250 0.057927485801 0.057926958793 0.000909771 9518.75

500 0.041437143525 0.041314938258 0.294917207 86117.3

Average 0.012694805 4507.97

The results produced by our approach were obtained by considering that the algo-
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rithm is composed of 25 replications and each replication consist of 80 iterations having

random initial solutions. Packomania web site keeps record of the best-known solutions

to a high degree of accuracy (30 decimal places), for this matter the implementation of

our FSS heuristic uses a MATLAB function called vpa that gives us as many digits as

we desire. In Table 3.1 we present data, our results and comparisons with nine decimal

places of accuracy while the total time is reported with two decimal places expressed

in seconds. The average percentage deviation from Table 3.1 is 0.012694805 whilst the

average total time spent is of 4507.97 seconds which is 75.13 minutes. This suggests

good accuracy when balancing quality of solution and time spent.

Figure 3.4 illustrates the result obtained by our heuristic with 50 identical circles, all

centre circles with an “o” represent those circles expressed in the Cartesian coordinate

system whilst centre circles with a ∗ are expressed in the polar system. The radius

associated with all 50 circles inside the unit circle container is 0.125825489530 having

0.000000001 as the percentage deviation from the best-known.
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Figure 3.4: Final solution for n = 50 identical circles

A further experiment with the unit circle container was carried out based on results
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shown in Section 4.3. The improvements presented in Table 4.4 encouraged us to run our

heuristic considering instances with 2 ≤ n ≤ 150 identical circles. The results showed no

improvements over the best-known results, the average % deviation obtained was 0.0111

with an average total computational time of 637 seconds. Details of this experiment

considering other containers can be found in Section 4.3.

3.5.2 Comparison with Mladenovic et al [62]

Mladenovic et al. [62] used an approach called reformulation descent (RD), it was applied

to the packing problem for the unit circle and unit square container. Although in this

section we concentrate our attention on the unit circle container, in Chapter 4 we tackle

more cases with different containers, among which is the unit square. The RD method

works with the Minos non-linear solver. They give results using two different formulations

of the problem: one a pure Cartesian formulation (denoted by MC), the other a pure

polar formulation (denoted by MP ), both using Minos. They also give results for a pure

Cartesian formulation using the Spenbar non-linear solver (denoted by SP).

Table 3.2 shows the results they obtained for the case where the container is the

unit circle. That table also shows the performance of our FSS heuristic considering two

non-linear solvers Snopt and Minos (for the same values of n as considered in [62]).

In Table 3.2 we give a “best-known” result as taken directly from [62]. The values

seen are given as the inverse of the circle radius. The column labelled Best-known†

in Table 3.2 refers to the inverse of best-known circle radius at that time and is given

here precisely as in [62] with six decimal place accuracy. In computing the percentage

deviation from this value the results shown for the four approaches (RD, MC , MP ,

SP) are calculated as: 100(f−1
best−f−1

bk )/(f−1
bk ) where f−1

bk is the inverse of the best-known

radius [so here the value used for this inverse is as shown in the table under Best-known†]

and f−1
best is the inverse of best radius found by an approach. The percentage deviations

for our FSS heuristic as seen in this table are also calculated in this way.
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The computation times (seconds) shown in Table 3.2 for our FSS heuristic are total

computation times, that is the total time for twenty-five replications from different initial

solutions (2.26GHz Intel Core 2 pc). The computation time given for the approaches

in [62] is the average time per replication (over fifty replications) from different initial

solutions (in seconds, 1800MHz Pentium 4 pc).

Table 3.2: Comparison with Mladenovic et al [62] for the unit circle

% Deviation from Best-known
Total time Average computation time

as reported in [62]

n Best- FSS FSS RD MC MP SP FSS FSS RD MC MP SP

known† Snopt Minos Snopt Minos

10 3.813026 0.00 0.00 0.00 0.00 0.00 0.00 41 94 0.00 0.02 0.01 0.29

15 4.521357 0.00 0.00 0.00 0.13 0.13 0.00 37 205 0.01 0.03 0.02 1.87

20 5.122307 0.00 0.00 0.00 0.00 0.00 0.00 47 293 0.04 0.11 0.08 5.21

25 5.752824 0.00 0.14 0.00 0.00 0.00 0.00 65 433 0.08 0.37 0.19 17.14

30 6.197741 0.00 8.30 0.00 0.00 0.00 0.00 82 516 0.16 0.52 0.29 41.69

35 6.697171 0.00 35.75 0.00 0.01 0.02 0.03 112 190 0.90 1.84 1.73 81.98

40 7.123847 0.00 41.38 0.00 0.00 0.00 0.00 109 271 1.11 2.92 1.91 179.69

45 7.572912 0.00 33.72 0.10 0.11 0.04 0.07 151 323 1.47 3.08 2.19 300.41

50 7.947515 0.00 80.46 0.06 0.03 0.00 0.02 173 444 3.19 5.16 4.41 503.78

55 8.211102 0.00 71.29 0.00 1.13 1.57 1.56 219 552 3.37 6.73 5.15 902.59

60 8.646220 0.00 85.09 0.03 0.10 0.57 0.00 246 656 4.71 7.54 6.00 1526.40

65 9.017397 0.00 68.82 0.00 0.47 0.44 0.31 289 750 16.24 12.94 10.43 2118.60

70 9.346660 -0.01 69.98 0.10 0.55 0.32 0.27 347 959 19.56 17.61 14.54 3484.63

Average

(n ≤ 70) 0.00 38.07 0.02 0.19 0.24 0.17 148 437 3.91 4.53 3.61 704.94

75 9.678344 -0.07 77.14 0.10 0.22 0.44 408 1232 26.46 22.67 17.16

80 9.970588 -0.02 81.11 0.10 0.41 0.29 479 1366 39.15 30.99 23.62

85 10.163112 0.00 84.51 0.72 1.43 1.10 621 1139 38.79 29.85 24.04

90 10.546069 0.00 84.59 0.02 0.02 0.45 586 1592 96.82 47.19 47.70

95 10.840205 0.00 84.47 0.18 0.26 0.48 693 1799 147.35 59.51 41.84

100 11.082528 0.00 89.39 0.30 0.52 0.38 810 2063 180.32 64.96 45.02

Average

(n ≤ 100) -0.01 52.43 0.09 0.28 0.33 0.17 290 783 30.51 16.53 12.96 704.94

Results presented in Table 3.2 concerning the average percentage deviation of all

five approaches, it is clear that our FSS heuristic has the lowest average percentage

deviation (−0.01) when using the non-linear solver Snopt, this indicates that our heuristic

is capable of more accurate results when compared with the other four approaches (RD,

MC , MP , SP) presented in [62]. However using a different non-linear solver (Minos)

makes comparison difficult. Summarising, our FSS approach when using Snopt produced
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better quality results in less time when compared with the approaches presented in

Mladenovic [62] and when using Minos as non-linear solver. In order to have a better

insight of our FSS approach with these two non-linear solvers we decided to test it using

single and mixed formulations, the results are presented in section 3.6.

3.5.3 Comparison with Mladenovic et al [63]

In [63] Mladenovic et al. used the formulation space search approach with a mixed

formulation solving the packing problem inside the unit circle container as described

in Section 2.5. They compared the percentage deviation from two approaches: RD (as

in [62]) and FSS (denoted in Table 3.3 as FSS-M). The results presented were obtained

on a Pentium 3, 900 MHz computer.

In Table 3.3 we present the comparisons between our results and those presented

in [63]. The series of instances considered goes from n = 50 to 100 identical circles in

steps of five. Here as before we give a “best-known” result as taken directly from [63]. The

results for our FSS approach and the computational times are the same as in Table 3.2

and presented here for ease of comparison. The results presented in [63] were produced

with 40 replications, the computational time given in seconds represents the average

time per replication taken from [63]. For RD the results and computational time are the

same as in Table 3.2.

From Table 3.3 the average percentage deviation from best-known result indicates

that FSS-M improves over RD, however the average time for the FSS-M approach in-

crease by 188.87/52.36 = 3.61 times. In contrast, the negative average percentage devi-

ation from our FSS approach suggest that our results are equal and in some cases better

in quality than those by FSS-M and even better than the best-known presented in second

column.

In FSS-M Mladenovic et al. [63] they use RD as local search, here they ignore overlap

constraints for circles whose centres (at the initial solution, before optimisation) are
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sufficiently far apart, however after have obtained a solution for each local search they

solve the problem in an iterative way using every time a reduced formulation taken

randomly from the same level set (same cardinality for C but randomly choosing the

circles in C), they change from one level to another after no more improvements are

found. With regards to quality of results, our FSS approach using Snopt non-linear solver

outperforms FSS-M this may suggests that the strategy adopted in our FSS algorithm of

using constraints that limit the range of movement for circle centres is a superior one to

use. However using a different non-linear solver such as Minos makes comparison with

FSS-M difficult.

Table 3.3: Comparison with Mladenovic et al [63] for the unit circle

FSS (Snopt) FSS (Minos) RD FSS-M

n Best-known†
% dev Time % dev Time % dev Time

50 7.947515 0.00 173 80.46 444 0.06 159.50 0.00 3221.60

55 8.211102 0.00 219 71.29 552 0.00 168.50 0.00 2912.40

60 8.646220 0.00 246 85.09 656 0.03 235.50 0.00 3375.60

65 9.017397 0.00 289 68.82 750 0.00 812.00 0.00 4330.00

70 9.346660 -0.01 347 69.98 959 0.10 978.00 0.01 6065.60

75 9.678344 -0.07 408 77.14 1232 0.10 1323.00 0.02 6580.40

80 9.970588 -0.02 479 81.11 1366 0.10 1957.50 0.04 9179.60

85 10.163112 0.00 621 84.51 1139 0.72 1939.50 0.18 10246.80

90 10.546069 0.00 586 84.59 1592 0.02 4841.00 0.02 11790.80

95 10.840205 0.00 693 84.47 1799 0.18 7367.50 0.07 12333.60

100 11.082528 0.00 810 89.39 2063 0.30 9016.00 0.12 13066.80

Average -0.01 443 79.71 1141 0.15 2618.00 0.04 7554.84

3.5.4 Comparison with other work

Pushing forward a further investigation was carried out, the objective being to analyse

the performance of our heuristic with other relatively recent work found in the literature.

We considered four different works: Birgin and Gentil [9], Grosso et al [23], Liu et al [51]

and Pintér [68]. The approach used by them has been described in Chapter 2.
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Based on data taken from the respective work under consideration we calculated their

corresponding percentage deviation, the average time in seconds and also presenting the

non-linear solver used. This information can be seen in Table 3.4 where we also present

the average percentage deviation and average time in seconds from our FSS heuristic for

analogous cases produced on a Intel Core 2 pc (2.26 GHz, 4GB RAM).

Results from Table 3.4 indicates that results given by Pintér are not competitive with

the other results shown.

Comparing with the Grosso et al [23] approach, it seems that our FSS approach dom-

inates in quality of results and in computational times. For the approaches proposed

in [9, 51] our approach gives higher average percentage deviation, however our results

are produced in much faster time. This suggests that our FSS heuristic is a computa-

tional effective approach when balancing quality of results and computational time when

compared with Birgin and Gentil [9] and Liu et al [51].

Before ending the section we need to highlight the fact that by the nature of the

circle packing problem it is necessary to use a non-linear solver as part of the algorithm

as done by all approaches presented in Table 3.4. But we need to be careful as we will

see in Table 3.5 in Section 3.6 that results produced when changing to another solver

may differ considerably even using the same algorithm. Hence, even though comparisons

such as those in presented in Table 3.4 are necessary we do not know how we would had

performed if those approaches had used a different non-linear solver.
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Table 3.4: Comparison with other work1

Paper Values of n Average Average FSS Average FSS Average Solver

% deviation time (secs) % deviation time (secs) used

Birgin and Gentil [9] 10,15,20,...,50 0 1019 1.66× 10−7 91 ALGENCAN

Grosso et al [23] 30,35,40,...,100 0.00059028 3784 -0.00049533 355 Snopt

Liu et al [51] 35,40,45,...,100 3.10664× 10−10 79870 2.00× 10−5 375 Snopt

Pintér [68] 10,15,20,...,60 0.59949089 195 1.36× 10−7 117 LGO

1For Birgin and Gentil [9] the computation time is for a 2.4GHz Intel Core 2 Quad, 4GB RAM pc. They start from the solution given by the heuristic

algorithm of Birgin and Sorbal [10]. The time given above does not include the time for this heuristic, which [10] indicates was one hour (2GHz AMD Opteron

244 processor, 2GB RAM) for all values of n. For Grosso et al [23] the computation time is for a Pentium IV 2.4GHz, 1GB RAM pc. Liu et al [51] use five

replications, but only give the time for the replication that resulted in the best solution found. To account for this we have multiplied the time for this replication

by five. Their computation time is for a Pentium IV 1.6GHz, 512MB RAM pc. Pintér [68] gives results for two approaches, the results given above are for the

LGO+CONCOPT approach which (effectively) dominates the other approach presented. His computation time is for an AMD Athlon 64 3200+ 2GHz pc.
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3.6 Algorithmic variations

In the pursuit of a better understanding of the effect that different modifications to our

heuristic may have we decided to carried out two different types of test: in Section 3.6.1

we change from a mixed formulation to single formulation, additionally we use a different

solver called Minos whose results are compared with those produced by the non-linear

solver Snopt. In Section 3.6.2 we investigate the possible implications that changes

on specific parameters of a mixed formulation such as the number of circles in set C

(consequently in P ) have on the results presented in Tables 3.1- 3.4, simultaneously we

investigate different ways to update sets C and P .

3.6.1 Single formulations

We investigate the contribution of switching between formulations and the use of a

different solver in our formulation space search heuristic. We carried out a test to

evaluate performance, the test is divided in two and involves using single formulations

of the packing problem. In first part of the test the single formulation used is for all

circles to be expressed in the Cartesian coordinate system, technically that corresponds

to C = {1, ..., n} and P = ∅ (with no switching of the sets C and P in Algorithm 3.5).

In a similar manner the second part of the test considers a polar formulation only, where

P = {1, ..., n} and C = ∅ (with no switching of the sets C and P in Algorithm 3.5).

The non-linear solver used for this test is Minos which was used in [62, 63]. Table 3.5

presents the average percentage deviation calculated with results from the test comparing

single formulations using Minos and Snopt as the non-linear solvers. The Best known

results are those reported in Packomania in January 2011. The instances considered go

from n = 10, 15, ..., 100 identical circles.

Table 3.5 shows that with single and mixed formulations, non-linear solver Minos

produced higher average % deviation when compared with Snopt.
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Table 3.5: Results for the unit circle comparing a mixed formulation with our FSS heuristic with single formulations using Minos and

Snopt

Packomania Cartesian Formulation Polar Formulation Mixed Formulation

n Best known Minos time Snopt time Minos time Snopt time Minos time Snopt time

10 0.262259 0.000000 90 0.000000 27 0.000000 99 0.000000 28 0.000000 94 0.000000 41

15 0.221173 0.000000 137 0.000000 34 0.129917 155 0.000000 37 0.000000 205 0.000000 37

20 0.195224 0.000000 197 0.000000 41 0.000000 162 0.000000 43 0.000000 293 0.000000 47

25 0.173828 0.000000 272 0.000000 58 0.412662 334 0.000000 65 0.139224 433 0.000000 65

30 0.161349 0.000000 304 0.000000 73 7.428389 597 0.000000 86 8.300765 516 0.000000 82

35 0.149317 0.000000 508 0.000000 103 4.579150 865 0.000020 115 46.211209 190 0.000000 112

40 0.140374 0.000000 585 0.000000 101 34.304136 957 0.000000 114 41.378935 271 0.000000 109

45 0.132050 0.077918 878 0.000000 135 31.705839 1372 0.000106 152 33.722255 323 0.000000 151

50 0.125825 0.000000 1216 0.000000 163 32.147063 1898 0.000000 185 80.458204 444 0.000000 173

55 0.121786 1.462660 1300 0.000000 212 51.168021 2326 0.000000 241 71.290774 552 0.000000 219

60 0.115657 0.000000 1739 0.000000 237 53.011893 2902 0.000000 251 85.090458 656 0.000000 246

65 0.110897 0.000000 2212 0.000000 292 56.149072 3655 0.000000 314 68.820562 750 0.000000 289

70 0.107002 0.231772 2814 0.000000 343 64.670124 4647 0.000701 391 69.976156 959 0.000000 347

75 0.103391 0.028387 3410 0.023851 395 69.555199 5971 0.000077 429 77.140604 1232 0.000010 408

80 0.100320 0.116767 3936 0.016567 468 70.754200 7409 0.000010 531 81.109675 1366 0.000030 479

85 0.098395 1.152741 4638 0.000000 581 77.951434 8812 0.000000 659 84.513237 1139 0.000000 621

90 0.094822 0.195925 5221 0.000011 587 73.146259 9988 0.000000 646 84.589831 1592 0.000000 586

95 0.092249 0.407115 5721 0.029756 696 79.502268 11524 0.000813 726 84.472057 1799 0.000065 693

100 0.090235 1.038331 6477 0.001718 801 80.424956 13176 0.005441 835 89.388022 2063 0.000177 810

Average 0.247980 2192 0.003784 281 41.423189 4045 0.000377 308 52.979051 783 0.000015 290
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Average % deviation from single formulations using Minos showed a radical difference,

in our experience this is due to the fact that although we provide random initial solutions

at every iteration in the implementation of our FSS approach, the solver Minos tends

to prefer as solution lower/upper limits of the variables, whilst for the Cartesian system

the limits are xi ∈ [Xi −∆, Xi +∆] and yi ∈ [Yi −∆, Yi +∆] for the polar system the

limits for variables are ri ∈ [0, 1] and θi ∈ [0, 2π] as stated in equations (3.7)-(3.10) and

so, variables ri with solution at the upper bound, during correction step are randomly

re-allocated inside the unit circle therefore the maximum radius has to be reduced to

guarantee no overlaps.

In summary based on results presented in Table 3.5 we can say that non-linear solver

Minos is not effective when compared with Snopt. Regarding single formulations it is

clear that the non-linear solver Snopt gives lower percentage deviations. Also, results

from Table 3.5 and Table 3.1 show evidence that much lower percentage of deviation is

obtained if we use a mixed formulation.

Another approach that works with equivalent formulation can be seen in PhD the-

sis [70], here the author applies variable neighbourhood search to solve the circle packing

problem switching between two single formulations: first formulation is one aiming for

the maximum common radii for n identical circles to be packed inside the unit circle

container, whilst the second formulation aims to minimise the size of the container con-

sidering unit circles to be packed. They also solve the case for the square container in a

similar fashion.

3.6.2 Alternative strategies

The results produced by our FSS heuristic are based on particular fixed settings, hence

if we do even slight modifications to our algorithm it may lead to different results. In

addition to this we know that when working with non-linear optimisation problems one of

the concerns that may lead to better results is how we set the initial solution. Therefore
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in this section we present the strategies that we considered to investigate the performance

of our FSS heuristic under some modifications related to the initial solutions.

The strategies considered take into account two elements of variations: the initial

number of circles in set C whose centres are expressed in Cartesian coordinate system,

consequently in set P , whose centres are in polar coordinate system (as |P | = n \ |C|)

and the systematic fashion adopted to select and update through the algorithm those

circles being in set C or P .

To get some understanding about the influence that the strategies have we decided to

initially set the number of circles in set C as m (|C| = m) where parameter m is defined

as m = n
3 ,

n
4 ,

n
5 ,

2n
3 , 2n4 , 2n5 , 3n4 , 3n5 , 4n5 . For computational reasons the investigation carried

out was with values for n = 10, 15, ..., 100 identical circles.

Strategy 1 is called fix and switch FS(m). It consists of fixing the initial cardinality

of C to m, where we start by randomly allocating m circles to C. At each iteration we

update C and P by switching them (C ← P , P ← {1, ..., n} \ C). In this strategy the

cardinality of C will alternate, first m, then n−m, then m, etc. A similar alternative is

presented in [63], in their approach the value of parameter m changes when the solution

cannot be improved and the number of circles in the Cartesian system is increased in a

systematic fashion.

Strategy 2 is called fix and random FS(m). It consists of fixing the initial cardi-

nality of C to m, where we start by randomly allocating m circles to C. At each iteration

we update C and P by randomly choosing which circles will be allocated in C. In this

strategy the cardinality of C will always be m.

Strategy 3 is called switch outer SO(m). It consists of fixing the initial cardinality

of C to m, where we start by randomly allocating m circles to C. At each iteration we

update C and P by switching only those circles i whose distance from the origin (0, 0) of

the unit circle to their centre is greater than 0.75 (i.e.
√

x2i + y2i ≥ 0.75). In this strategy

the cardinality of C will vary. Here we used 0.75 as it divides the unit circle into two
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portions of (approximately) equal area, an inner area where the centre coordinates are

left unchanged at each iteration and an outer area where they are switched.

Whilst there are (potentially) a large number of possible strategies that can be ex-

amined the three considered here seemed to us to capture different elements:

• in fix and switch FS(m) we have a fixed alternating cardinality and circles swap

between Cartesian and polar coordinates

• in fix and random FR(m) we have a fixed cardinality for C, but circles are randomly

allocated to C at each iteration

• in switch outer SO(m) the cardinality of C is initially considered fixed, however

circles with centre close to the origin never change formulation, whilst circles whose

centre is outside of a circle with radius 0.75 always change formulation (and hence

C has variable cardinality).

Note here that the results presented above in Tables 3.1-3.4 are for a fix and switch

strategy FS(M), but with M generated by randomly allocating each circle either to C

or to P (so M will be randomly distributed around n/2). With three basic strategies,

each with nine values for m (n3 ,
n
4 ,

n
5 ,

2n
3 , n2 ,

2n
5 , 3n4 , 3n5 , 4n5 ), we have 27 different strategies

to compare with our existing strategy FS(M).

As these strategies, e.g. FR(m), may involve the use of random numbers we adopted

a statistical hypothesis testing approach to comparing them against our existing strategy

in order to judge whether, or not, there was sufficient statistical evidence to conclude

that an alternative strategy was better than our existing strategy.

In our hypothesis testing the null hypothesis was:

H0: the average percentage deviation from our current strategy is equal to the average

percentage deviation given by a specific alternative strategy

The alternative hypothesis was:

H1: the average percentage deviation from our current strategy is greater than the
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average percentage deviation given by a specific alternative strategy (equivalently that

the alternative strategy gives a lower percentage deviation than our current strategy)

This is a one-sided hypothesis test. If we reject H0 (accept H1) then we (statistically)

have evidence that there exists a better strategy than our current strategy.

We could use a paired t-test here, but since that technically assumes normality, we

chose to use a Wilcoxon signed rank test. We computed the p-values for our one-sided

hypothesis test (using the R language for statistical computing). For those unfamiliar

with hypothesis testing the p-value is the probability that the result we observe would

occur by chance if the null hypothesis was true. If the p-value is small then this provides

evidence that the null hypothesis H0 is not true and so the alternative hypothesis H1

should be accepted. In judging whether the p-value is small the standard approach

is to compare against values such as 0.05 and 0.01 (significance levels of 5% and 1%

respectively).

Table 3.6: p-values for the comparisons between the 27 described strategies and current

strategy adopted [FS(M)] in our heuristic

n/2 n/3 n/4 2n/3 2n/4 2n/5 3n/4 3n/5 4n/5

FS(m) 0.9350 0.8515 0.9044 0.9650 0.9455 0.9518 0.9044 0.9422 0.6569

FR(m) 0.8646 0.9044 0.9093 0.8940 0.9752 0.9650 0.9229 0.9487 0.8376

SO(m) 0.8646 0.8709 0.9487 0.9892 0.9350 0.9386 0.9229 0.8376 0.9093

In Table 3.6 we show the p-values from the hypothesis test contrasting the 27 strate-

gies presented above with current strategy adopted (FS(M)) in our heuristic. We ob-

served that for each of our 27 different strategies the associated p-value was always much

greater than 0.05, indicating that the null hypothesis should be accepted at the 5% sig-

nificance level. Based on this we would conclude that there is no evidence that our

current strategy is out-performed by any of the 27 alternative strategies we examined.

Of course we are aware that we could have investigated further here. For example
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we could have examined further values for m in fix and switch FS(m), fix and random

FR(m) and swap outer SO(m). We would simply comment here that readers familiar

with algorithmic work such as we present here will be aware that there are always different

choices to be made, and it is impossible to examine all alternatives in detail. However

we believe that the quality of the results seen in Tables 3.1-3.4, plus the quality of our

FSS heuristic when considered against individual papers in the existing literature, mean

that the fix and switch FS(M) strategy adopted is justified.

3.6.3 Setting numerical factors

The numerical settings that form the framework of our heuristic are: ∆ factor, the

number of iterations and the number of replications adopted.

∆ factor. The ∆ factor is used to create a range of movement (a square vicinity)

around a known point denoted as Xi for every circle i with three different purposes:

• to determine if a pair (i, j) of circles is an element of the Q set as described in

Section 3.3.1

• to determine a new random solution for next iteration

• it forms part of the limits of a subset of constraints imposed only for circles ex-

pressed in the Cartesian system given in equations (3.7) and (3.8)

The final numerical factor 2
3 associated to ∆ was determined after conducting several

experiments with five instances with n = 25, 51, 77, 103 and 128 identical circles. In order

to get insight into what would be an appropriate numerical value for ∆ and considering

that we were in the first stage of the heuristic, we arbitrarily decided to conduct the

experiments running our heuristic for 80 iterations. For every experiment we considered

a different value for ∆ taken from the succession of numbers: 0.2, 0.25, ..., 1.00, 1.25, 1.50.

To determine the most suitable numerical value for ∆ we calculated the average percent-

age deviation for each value tested from the previous list considering the best solution
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obtained with the five instances, Figure 3.5 shows the variations on the average percent-

age deviation with respect to each ∆ factor associated. From Figure 3.5 we can see that
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Figure 3.5: Variations in % deviation depending on ∆ values

best factors for ∆ (those with % deviation closer to zero) are between 0.65 and 0.80,

hence we ran our heuristic to get deeper into the analysis, having the same five instances

as before but this time we set the number of replications to five, each replication con-

sisting of 80 iterations as before. In Table 3.7 we report the data resulting from these

experiments: possible ∆ values and their respective percentage deviation. These results

suggest that the best factor to adopt is 2
3 .

Number of iterations. Deciding how many times we should run our heuristic

requires some considerations: having to many iterations may be reflected in more com-

putational time and it may be not contribute to the improvement of the current best

solution, too few iterations may gives us fast solutions possibly with a short exploration

of the set of feasible solutions. Hence, we conducted a test considering the same five in-

stances as before (n = 25, 51, 77, 103 and 128 identical circles), we ran the algorithm for
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Table 3.7: Values for ∆

∆ factors % deviation

.65 0.073977017

2/3 0.011964561

.70 0.41481330

.75 0.038537852

.80 0.038463637

100 iterations recording the minimum percentage deviation and the average percentage

deviation after 25, 50, 75 and 100 iteration limits. Table 3.8 presents the results from the

test conducted and it is presented in columns: the number of limit iterations, the min-

imum percentage deviation, the average up the respective limit iteration and the total

time spent shown in minutes. Considering the minimum average percentage deviation we

Table 3.8: Iterations

Number of Minimum Average Total time

iterations % deviation % deviation in minutes

25 0.168361745 1.597598967 48.82

50 0.066425336 0.847013129 98.20

75 0.054332132 0.585499147 147.27

100 0.018546917 0.447976901 196.22

clearly see that the more iterations we consider the bigger the chances to obtain a better

quality solution. Regarding the total time spent, looking at the tendency from all limit

iterations we may say that roughly every iteration takes around two minutes (48.82/25

= 1.9528), in order to gain more accuracy and balancing time spent we decided to set the

number of iteration between 75 and 100 (in fact 80 iterations). The information provided

in this test allows to roughly predict that any solution obtained after 80 iterations would

have a minimum percentage deviation laying in the range (0.018546917, 0.054332132)

approximately, and an average percentage of deviation within a range (0.447976901,
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0.585499147) with total time between 147.27 to 196.22 minutes.

Number of replications. We call replications the repeated action to run the

algorithm for certain number of times, as in our heuristic the initial solution is randomly

chosen, hence replicating provides a systematic random fashion to explore the solution

space. In order to determine the number of replications for our algorithm we ran our

heuristic with previous five instances of n = 25, 51, 77, 103 and 128 identical circles for

15, 20, 25, 50, 75 and 100 replications. Table 3.9 shows the minimum average percentage

deviation after k replications, the average percentage deviation for k replications and

the total time spent reported in minutes for the five instances. Results from Table 3.9

Table 3.9: Replications

Number of Minimum Average Total time

replications (k) % deviation % deviation in minutes

15 0.026667205 0.057170468 28.81

20 0.026667205 0.049544652 39.90

25 0.019892933 0.043787735 49.90

50 0.017288440 0.030628824 99.80

75 0.008886488 0.024613665 148.88

100 0.008886487 0.020681870 194.55

indicate that the lowest % deviation 0.008886488 is obtained with 75 replications, with

an average % deviation 0.024613665 in 148.88 total minutes (2 hours 28 minutes). Here

balancing accuracy of solution with computational time spent we set 25 as the number of

replications for our heuristic. This means that a solution obtained after 25 replications

may have on average a % deviation 0.043787735 in 49.9 minutes.

3.7 Formulation space and search space

Formulation space search combines the exploration of two different spaces: the for-

mulation space and the search space. The formulation space is defined as the space
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that considers all different (but valid) formulations of a given problem, as a space it

induces a distance between any two given formulations. Mladenovic et al [62] define

the distance between two formulations in the context of circle packing as the number

of circles that differ in both formulations. To clarify let us consider two formulations

denoted as φ1 and φ2 respectively, hence the distance between φ1 and φ2 is given by:

d(φ1, φ2) = |{Cφ1 ∪ Cφ2} \ {Cφ1 ∩ Cφ2}| examples are given below. With regards of the

search space is what we often call as the space of feasible solutions, in this context we

refer to the geometry of the container, here the unit circle.

3.7.1 Reformulation descent and formulation space search

Reformulation descent and formulation space search have common grounds, both use

different (but valid) formulations of the original problem to obtain a better solution.

However whilst a solution obtained using reformulation descent is a solution that is a

stationary point for all the proposed formulations, a solution obtained with formulation

space search is one that is the best solution found after exploring the formulations con-

sidered. Above in our final FSS heuristic presented in algorithm 3.5 we explored several

formulations which have been detailed in section 3.6.2. Based on the statistical tests

carried out in section 3.6.2 we decided to use two mixed formulations φ1 and φ2 where

Cφ1 = Pφ2 (consequently Pφ1 = Cφ2), according to the definition of distance between two

formulations we can say that for our two formulations the distance is n (d(φ1, φ2) = n).

In order to diversify the initial solution at every iteration we explored the nearby space

by creating a new random initial solution close to previous one in a range of movement

∆.

Tested formulations and the distance between them Before the final ver-

sion of our heuristic algorithm was set, we tested three main strategies detailed in

section 3.6.2, for each strategy we set |C| = m where parameter m is defined as

m = n
3 ,

n
4 ,

n
5 ,

2n
3 , 2n4 , 2n5 , 3n4 , 3n5 , 4n5 .
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In order to illustrate the distance between any two formulations with each strategy,

let us consider for all cases n = 10 circles and that the parameter m is given by n
3 hence,

in all cases we have m = 10
3 which is rounded to 3.

Let us recall that Strategy 1 starts by randomly allocating 3 circles into C and the

remaining circles (n − m = 7) are allocated into P . In order to have a clear idea let

us consider formulation 1 φ1 with Cφ1 = {8, 2, 10}, therefore Pφ1 = {7, 4, 3, 6, 9, 5, 1}.

The solution obtained by the non-linear solver is depicted in Figure 3.6(a) where green

circles are expressed in the Cartesian coordinates system whilst the yellow circles are

expressed in the polar system. For the next iteration we swap to formulation 2 (φ2)

where Cφ2 = Pφ1 and Pφ2 = Cφ1 . Let us recall from section 3.3.2 that the initial solution

in formulation 2 is randomly generated at a ∆ distance to the centre of the circles in

the current solution which are considered known points. Hence, in Figure 3.6(b) we

only show the change of the formulation. With regard to the distance between these

two formulations by following the definition we can see that it is 10. As this is the

behaviour of the nine cases considered in strategy 1, we can say that we always work

with two formulations and the distance between the two is given by the number of circles

n. Hence for this strategy we have a fixed distance between formulations.
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(b) Current solution showing the swap

to formulation φ2

Figure 3.6: Example of Strategy 1 change of formulation with n = 10 circles
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Strategy 2 consists of fixing the number of circles in C as m, for the initial solution

we randomly allocate m circles to C then after the solver has given a solution we start

the next iteration with a new initial solution that randomly allocates m circles to C.

Considering the previous example in Figure 3.7(a) we have Cφ1 = {8, 2, 10} and Pφ1 =

{7, 4, 3, 6, 9, 5, 1}, however in next iteration the circles are randomly re-allocated, let us

say that the re-allocation is set to Cφ2 = {5, 6, 9} and Pφ2 = {1, 4, 2, 10, 8, 3, 7}, then

in Figure 3.7(a) we show the swap from formulation φ1 to φ2 of current solution. The

distance between these two formulations is d(φ1, φ2) = |{8, 2, 10, 5, 6, 9} \ ∅| = 6. As the

elements in C may change at every iteration, this means that we are considering at most

80 different formulations per replication, that makes a total of 2000 possible different

formulations for all 25 replications, the distance between any two given formulations

might vary as they are dependent on which circles are allocated in C. Hence for this

strategy we have a variable distance between formulations.
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(b) Current solution showing the swap

to formulation φ2

Figure 3.7: Example of Strategy 2 change of formulation with n = 10 circles

Strategy 3 considers a random initial solution setting |C| = m for iteration one,

then after we have obtained a solution from the non-linear solver we will swap only

those circles that satisfy x2i + y2i ≥ 0.75 (to be close to the edge of the unit circle
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container), this implies that although circles close to the origin will always be in the

same set as they were in at iteration one, the cardinality of C will vary depending

on those circles that are close to edge of the container. To illustrate how strategy

3 works let us consider initially Cφ1 = {1, 5, 10} and Pφ1 = {2, 3, 4, 6, 7, 8, 9}, after

we obtained a solution from the non-linear solver we only swap circles whose distance

from the origin of the Cartesian plane to their centre is greater than 0.75, in this case

looking at Figure 3.8(a) this constraint is depicted with a dotted circle dividing those

circles that will swap from C to P and vice-versa. As we can see, circles {5, 7, 10} are

close to the origin hence, they will remain in the set where they were initially placed,

and circles {1, 2, 3, 4, 6, 8, 9} are around the edge of the container, therefore in next

iteration we consider formulation φ2 with Cφ2 = {2, 3, 4, 5, 6, 8, 9, 10} and Pφ2 = {1, 7}

as shown in Figure 3.8(b). In this case the distance between the two formulations is

d(φ1, φ2) = |{1, 2, 3, 4, 5, 6, 8, 9, 10} \ {5, 10}| = 7. In general we can conclude that for

this strategy we have a variable distance between formulations.
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Figure 3.8: Example of Strategy 3 change of formulation with n = 10 circles

65



Chapter 3. 3.8. Conclusions

3.8 Conclusions

In this chapter we addressed the circle packing problem of identical circles inside the unit

circle container. We presented our heuristic algorithm, which is based on the Formulation

Space Search method. We described the procedures implemented in our FSS heuristic

to ensure a feasible and accurate solution. We presented the final pseudocode which

was accompanied by some pictures detailing the steps in the iterations considered. We

gave computational results, we provided a description of the tests carried out in order to

generate the framework of our current FSS heuristic for the case with identical circles,

here is worth highlighting the role of ∆ factor inside the algorithm, it is used:

• to determine if a pair (i, j) of circles is an element of the Q set

• to determine a new random solution for next iteration

• it also sets the limits of a subset of constraints imposed only for circles expressed

in the Cartesian system.

We also presented an extensive analysis comparing our results with others found in

the literature and others produced with alternative strategies. With respect to the

comparisons made we can conclude that our approach:

• dominates in quality of solution when considering papers based on the formula-

tion space search approach (Mladenovic, et al [62] and Mladenovic, et al [63]), as

presented in section 3.5.2 and section 3.5.3;

• is an effective approach when balancing quality of solution and computational time

when considering results from Birgin [9] and Liu [51] as presented in section 3.5.4;

• produced poor results when evaluating the polar single formulation in conjunction

with a different solver (Minos) as presented in table 3.5 in section 3.6.1;
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• with the current strategy (based on the hypothesis testing) none of the 27 alter-

native strategies considered was superior, as presented in section 3.6.2 .
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Chapter 4
Packing identical circles inside different

containers

Containers with other shapes have been considered in the literature as we mentioned in

Section 2.3.3 mainly comprising rectangular containers and different types of triangles.

However, here we present container shapes such as a semicircle and a circular quadrant

that, although they are considered in Packomania website [72], have not received much

attention in the literature (to the best of our knowledge). The six different shaped

containers considered are: the unit square, two rectangles of different dimension (L =

5 and L = 10,W = 1), a right angled isosceles triangle, a semicircle and a circular

quadrant. Figure 4.1 illustrates the six different containers that have been considered

here with n = 7 identical circles for illustrative purposes.

The aim of this chapter is to demonstrate the capabilities of our FSS heuristic for

solving the packing problem with identical circles inside different shaped containers.

Hence we focus our attention on the modifications to the mathematical model given

in equations (3.1)-(3.11) and to the heuristic algorithm 3.5, for ease of reference in

Section 4.1 we repeat them both. In Section 4.2 we detail the modifications needed for

each container. In Section 4.3 we give computational results and in Section 4.4 we finish
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Figure 4.1: Example of different containers with 7 identical circles
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4.1 Model and algorithm for the packing problem

As we mentioned at the beginning of this chapter, here for ease of reference we give

again the mathematical model for the packing problem with identical circles with the

unit circle container, we have also again included the heuristic algorithm developed. The

model is given in equations (4.1)-(4.11), whilst our heuristic algorithm is given here again

in the pseudo-code 4.6.

max R (4.1)

st

x2i + y2i ≤ (1−R)2 ∀i ∈ C (4.2)

ri ≤ 1−R ∀i ∈ P (4.3)

(xi − xj)
2 + (yi − yj)

2 ≥ 4R2 ∀(i, j) ∈ Q with i, j ∈ C i < j (4.4)

(xi − rj cos(θj))
2 + (yi − rj sin(θj))

2 ≥ 4R2 ∀(i, j) ∈ Q with i ∈ C j ∈ P (4.5)

r2i + r2j − 2rirj cos(θi − θj) ≥ 4R2 ∀(i, j) ∈ Q with i, j ∈ P i < j (4.6)

Xi −∆ ≤ xi ≤ Xi +∆ ∀i ∈ C (4.7)

Yi −∆ ≤ yi ≤ Yi +∆ ∀i ∈ C (4.8)

0 ≤ ri ≤ 1 ∀i ∈ P (4.9)

0 ≤ θi ≤ 2π ∀i ∈ P (4.10)

0 ≤ R ≤ Roverlap (4.11)

Let us briefly recall that equation (4.1), maximises the radius associated with the circles.

Equation (4.2) are the constraints which ensure that every circle is fully inside the

container, in this case the unit circle. Its polar equivalent is given in equation (4.3).

Equations (4.4)-(4.6) ensure that no circles overlap each other. Equations (4.5)-(4.6) are

as equation (4.4), but where one or both of the circles has its centre expressed in polar

coordinates. Equations (4.7)-(4.11) are the limits on the variables.
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Algorithm 4.6 Formulation space search pseudocode

Function (Rbest, Xbest, Ybest)← FSS(n, replication limit, iteration limit)

Initialisation: |C| ← ⌊n/2⌋ ∆← 2
3Roverlap Rbest ← 0 t rep← 0

repeat

t← 0

(x0, y0, X, Y )← InitialSolution(n, |C|) {a first initial solution}

repeat

Q← OverlapSet(X,Y,∆, Roverlap) {find the overlap set Q}

(x, y,R)← NLP (x0, y0, C, P,Q,X, Y,∆, Roverlap)

(R∗, x, y)← Correction(x0, y0, x, y) {correct the radius}

Rbest ← max{Rbest, R
∗} {update Rbest}

(Xbest, Ybest)← (x, y) {save coordinates associated with Rbest}

if R∗ ≤ 0.001 then

∆← 1
10Roverlap

else

∆← 2
3R

∗ {update ∆}

end if

t← t+ 1 {update iteration counter}

(X,Y )← (x, y) {set (X,Y ) to the current solution}

x0 ∈ (X −∆, X +∆) and y0 ∈ (Y −∆, Y +∆) {new initial solution (x0, y0)}

C ← P P ← {1, ..., n} \ C {switch the sets C and P}

until t = iteration limit

t rep← t rep+ 1 {update replication counter}

until t rep = replication limit

As the modifications to the heuristic are related to the correction procedure, let us

recall that this procedure modifies the solution given by the solver (if needed) reducing
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as much as possible the size of the radii to avoid any overlaps between the circles (equa-

tion (4.12)), and between any circle with the container (equation (4.13) considers the

unit circle container). Details about the model and/or the algorithm can be found in

Chapter 3.

R = min

{

√

(xi − xj)2 + (yi − yj)2/2 | i = 1, ..., n; j = 1, ..., n; i < j

}

(4.12)

R∗ = min

{

R,min

{

1−
√

x2i + y2i | i = 1, ..., n

}}

(4.13)

4.2 Different shaped containers

Six different shaped containers were investigated, in Section 4.2.1 we present the appro-

priate modifications for the rectangular shaped containers considered: the unit square

and two rectangles with different dimensions (lengths 5 and 10, width 1). Another three

shaped containers are considered: Section 4.2.2 presents the modifications for the right-

angled isosceles triangle, Section 4.2.3 presents those for the semicircle and Section 4.2.4

for the circular quadrant.

4.2.1 Rectangular and square containers

For the case of a rectangular container we consider a rectangle of length L, width W ,

centred at the Cartesian origin. If the container is the square then (obviously) L = W ,

where the case of the unit square corresponds to L = W = 1. The modifications needed

to change from the container being the unit circle (as considered in Chapter 3) are

relatively minor and we detail them below.

4.2.1.1 Formulation modifications

Regarding formulations changes we now define Roverlap, the upper bound on the radius,

using nπR2
overlap = LW , so Roverlap =

√

LW/nπ.
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Equations (4.2) and (4.3) that ensure that the circles are inside the container must

be changed. Equation (4.2) is replaced by:

−L/2 ≤ xi +R ≤ L/2 −W/2 ≤ yi +R ≤W/2 ∀i ∈ C (4.14)

−L/2 ≤ xi −R ≤ L/2 −W/2 ≤ yi −R ≤W/2

The polar replacement of equation (4.3) is simply as equation (4.14), but with Carte-

sian variables replaced by their polar equivalents.

With respect to the constraints, equations (4.7)-(4.11), setting variable limits then

in the rectangular case equations (4.7) and (4.8) are no longer valid and are deleted.

Equation (4.9), which bounds the polar radius, is replaced by:

0 ≤ ri ≤
√

(L/2)2 + (W/2)2 ∀i ∈ P (4.15)

Note here that for this container, as for the other containers considered below, very

few changes are needed from the unit circle case considered in Chapter 3. In other

words, the formulation adopted and the FSS heuristic are easily extendible to different

containers.

4.2.1.2 FSS heuristic modifications

For the heuristic algorithm 4.6 the changes concern the correction procedure, namely

Correction(x0, y0, x, y) and finding the radius that corresponds to the given circle centres

such that the circles do not overlap and are fully inside the container. Equation (4.12),

which ensures that the circles do not overlap, is as before. Equation (4.13), to ensure

that the circles are fully inside the container, is replaced by

R∗ = min {R,min {L/2− |xi|,W/2− |yi| | i = 1, ..., n}} (4.16)

4.2.2 Triangular container

For the case of the triangular container in Section 2.3.3 we made reference to some works

found in the literature [19, 58–60] that mainly focus on equilateral triangles. Here we
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consider an right-angled isosceles triangle (as in Specht [72]) where the two equal sides

are each of length L and they join at the origin of the Cartesian plane. Their intersections

with the third side of the triangle are at coordinates (0, L) and (L, 0).

4.2.2.1 Formulation modifications

For the heuristic algorithm 4.6 changes, Roverlap, the upper bound on the radius, is now

defined using nπR2
overlap = L2/2, so Roverlap = L/

√
2nπ.

Equations (4.2) and (4.3) that ensure that the circles are inside the container must

be changed. Equation (4.2) is replaced by:

xi + yi +
√
2R ≤ L ∀i ∈ C (4.17)

Equation (4.3) is replaced by the equivalent polar expression of (4.17). Additionally we

need to include constraints (4.18) to ensure that the circles are fully inside the triangle

container. As before the polar equivalent of constraints (4.18) is also included.

xi ≥ R yi ≥ R ∀i ∈ C (4.18)

With respect to the constraints, equations (4.7)-(4.11), setting variable limits then

equations (4.7) and (4.8) are no longer valid and are deleted. Equations (4.9) and (4.10)

are replaced by

0 ≤ ri ≤ L 0 ≤ θi ≤ π/2 ∀i ∈ P (4.19)

4.2.2.2 FSS heuristic modifications

Equation (4.13), to ensure that the circles are fully inside the container, is replaced by

R∗ = min
{

R,min
{

xi, yi, {(L− xi − yi)/
√
2} | i = 1, ..., n

}}

(4.20)

4.2.3 Semicircular container

Here we consider the semicircular container as the upper half of the unit circle centred

at the origin of the Cartesian plane as in Specht [72].

74



Chapter 4. 4.2. Different shaped containers

4.2.3.1 Formulation modifications

Roverlap, the upper bound on the radius, is now defined using nπR2
overlap = π12/2, so

Roverlap = 1/
√
2n.

To ensure that no circle lies outside the container, equation (4.21) must be added to

the model defined by equations (4.2)-(4.11). As before, we include the polar equivalent

of equation (4.21).

yi ≥ R ∀i ∈ C (4.21)

Equation (4.8) is replaced by 0 ≤ yi ≤ 1 ∀i ∈ C and equation (4.10) is replaced by

0 ≤ θi ≤ π ∀i ∈ P .

4.2.3.2 FSS heuristic modifications

Equation (4.13), to ensure that the circles are fully inside the container, is replaced by

R∗ = min

{

R,min

{

yi, {1−
√

x2i + y2i } | i = 1, ..., n

}}

(4.22)

4.2.4 Circular quadrant container

Here we consider the circular quadrant container as the upper quarter of the unit circle

centred at the origin of the Cartesian plane as in Specht [72].

4.2.4.1 Formulation modifications

Roverlap, the upper bound on the radius, is now defined using nπR2
overlap = π12/4, so

Roverlap = 1/
√
4n.

For the circular quadrant container we use the mathematical model given in equa-

tions (4.2)-(4.11) and we add equation (4.23) to ensure that no circle lies outside the

container. As well we include the polar equivalent of equation (4.23).

xi ≥ R yi ≥ R ∀i ∈ C (4.23)
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Equations (4.7) and (4.8) are replaced by 0 ≤ xi ≤ 1 and 0 ≤ yi ≤ 1 ∀i ∈ C respectively

whilst equation (4.10) is replaced by 0 ≤ θi ≤ π/2 ∀i ∈ P .

4.2.4.2 FSS heuristic modifications

Equation (4.13), to ensure that the circles are fully inside the container, is replaced by

R∗ = min

{

R,min

{

xi, yi, {1−
√

x2i + y2i } | i = 1, ..., n

}}

(4.24)

4.3 Computational results

The computational results for this section are presented according to the container. The

unit square container was the single case where we found other work to compare with,

the three different sources are: [9, 62, 72]. To the best of our knowledge, there is not

yet other work considering the remaining five containers that we have considered, hence

we compared our results with the best-known solutions [72] (available in January 2011).

4.3.1 Rectangular containers

Table 4.1 presents results for the case where the container is the unit square. Here the

results from our heuristic are compared with those presented by Mladenovic et al [62].

Data shown in Table 4.1 displays a set of 19 instances where n the number of circles

follows a sequence in steps of five, starting with 10 circles and finishing with 100 circles.

The Best-known† solution is as considered in [62] and refers to the inverse of the best-

known solution at that time and here is given exactly as in [62]. The accuracy measure

is the percentage deviation, finally we have the computational time.

This table clearly indicates that for this case our FSS heuristic produces results of

much better quality having a percentage deviation −0.14 than any of the three ap-

proaches (RD, MC , MP ) of [62]. Regarding computation times, let us recall from Sec-

tion 3.5.2 that times from the three approaches (RD, MC , MP ) are presented as in [62],
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which are the average time per replication (over 50 replications) from different initial

solutions, whilst we present the total time for 25 replications. Doing a fair comparison

we would have to calculate the average of the average total time in seconds spent for

our approach by dividing the average total time (479) by 25 which is 19.12 seconds.

Although it is the highest computation time from all four approaches it is not far from

the highest (15 seconds) from the RD approach in [62].

Table 4.1: Comparison with Mladenovic et al [62] for the unit square

% deviation from Total Average time

n Best-known† best-known time as reported in [62]

FSS RD MC MP FSS RD MC MP

10 6.74757140 0.00 0.00 0.00 0.00 61 0.01 0.01 0.02

15 7.86370315 0.00 0.54 0.54 0.00 50 0.03 0.04 0.05

20 8.97808315 0.00 0.00 1.56 0.00 65 0.05 0.11 0.10

25 10.00000000 0.00 0.00 0.00 0.00 78 0.10 0.24 0.28

30 10.90856809 0.00 0.63 0.63 0.58 99 0.26 0.61 0.57

35 11.86370360 0.00 0.32 0.32 0.59 155 0.38 1.04 1.11

40 12.62837533 0.00 0.09 0.09 0.19 169 1.10 1.94 1.97

45 13.38198309 0.00 0.16 0.16 0.11 237 1.24 2.26 2.54

50 14.01009567 0.00 0.28 1.04 0.28 276 1.87 4.00 3.64

55 14.69391977 0.00 0.61 0.61 0.37 286 3.27 6.15 5.22

60 15.37742112 0.00 0.38 0.38 0.53 350 5.17 8.11 7.13

65 15.82179344 0.00 0.93 0.93 1.09 487 7.50 12.26 10.04

70 16.50255154 0.00 0.36 0.92 0.80 517 13.43 13.12 11.92

75 17.09561268 0.01 0.67 0.73 0.55 621 17.01 18.04 15.37

80 17.43050631 0.00 1.45 1.50 0.77 750 24.95 23.65 23.37

85 17.96028299 0.00 1.39 1.23 1.05 978 33.11 30.44 26.05

90 18.60466847 0.00 0.77 1.25 1.13 1179 43.62 35.85 27.81

95 19.07658639 0.00 0.80 0.94 0.49 1423 51.02 43.49 35.48

100 20.00000000 -2.72 0.00 0.00 0.00 1317 80.80 61.15 47.68

Average -0.14 0.49 0.68 0.45 479 15.00 13.82 11.60

The second investigation for the unit square container is presented in Table 4.2, here

we compare our results with those presented by Birgin and Gentil [9]. The instances

considered have n = 2, 3, ..., 50 identical circles. Table 4.2 shows the percentage deviation

for each approach and the computation time spent in seconds.

In Section 2.1 we mentioned that there are two different points of view to address
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the packing problem, here, let us note that the approach used by Birgin and Gentil [9]

is that of considering identical unitary circles aiming to minimise the size of the square

container, hence they report their solutions in terms of size of the length of the edge

of the square container whilst our approach aims to maximise the radii of the small

identical circles to fit into the unit square container. This means that if the solution

from Birgin and Gentil [9] has edge length L∗ to fit n unitary circles then in our unit

square the circles would have a maximum radius 1/L∗.

From the bottom row of Table 4.2 we can see that although the average percentage

deviation presented by the FSS approach is higher, the computational time spent by

the FSS approach is considerably lower 1285.84/153.57 = 8.37 times faster. Birgin and

Gentil [9] tests were conducted on a 2.4 GHz Intel Core 2 Quad with 4 GB of RAM

memory and running GNU/LINUX operating system, whilst our tests were conducted

on a 2.26 GHz Intel Core 2 pc with 4 GB of RAM memory and running in Windows XP

operating system. Third and last investigation involving the unit square (US) container

is with the best-known solutions [72] (available in January 2011). The comparisons

are shown in Table 4.3 which also include the results from the other two rectangular

containers considered: a rectangle with length L = 5 and width W = 1 (R 5× 1) and a

rectangle with length L = 10 and width W = 1 (R 10× 1). The accuracy measure is the

percentage deviation. Data in Table 4.3 shows the best-known solution, the percentage

deviation and the total computational time to obtain the results in 25 replications, each

replication consisting of 80 iterations. The instances taken into account are comprised

of n = 10, 15, ..., 100, 125, 150, 175, 200, 250 and 500 circles.

We can see from the bottom row in Table 4.3 that the lowest average percentage

deviation (0.01998805) for the instances considered is given by the rectangular container

with dimensions length L = 5 and width W = 1, whilst the highest average percentage

deviation (0.05921323) is given by the unit square container. It is worth mention that

in Table 4.3 for the case of the rectangle with dimensions 5× 1 with 500 circles and for
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the rectangle with dimensions 10× 1 with 250 and 500 circles the percentage deviation

reported is zero as [72] had no results for these cases at the time we carried out the

investigation. Regarding about time we can see that the unit square container spent on

average the lowest total time with 7295 seconds whilst the rectangular container with

dimensions length L = 10 and width W = 1 spent on average the highest total time with

12968 seconds.
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Table 4.2: Comparison with Birgin and Gentil [9]

n Birgin % dev FSS % dev Birgin time FSS total time

2 -0.0000000001544834 0.0000067205830000 0.00 1598.88

3 -0.0000000000982177 0.0000006071180000 0.01 394.66

4 0.0000000000000000 0.0000000001348033 0.00 30.05

5 0.0000000002184457 0.0000000002216085 0.01 64.67

6 -0.0000000002540556 0.0000067023710000 0.48 67.61

7 -0.0000000000054093 0.0000004992284000 2.29 108.78

8 -0.0000000000318991 0.0000000161926100 4.56 68.19

9 0.0000000002000067 0.0000000003036071 0.69 26.78

10 -0.0000000001543742 0.0000006218509466 43.44 61.22

11 0.0000000001401820 0.0000029846990000 456.84 45.61

12 -0.0000000003057977 0.0000054888090000 126.30 49.97

13 0.0017291990000000 0.0000019844800000 2.96 44.28

14 -0.0000000000262894 0.0000205038000000 13.44 46.06

15 -0.0000000000981741 0.0000007770086094 135.58 50.36

16 0.0000000000000000 0.0000000062423950 0.00 41.08

17 0.0000000000438015 0.0000149937200000 109.89 59.63

18 0.0000000000004565 0.0000086390930000 13.93 57.91

19 0.0000000000033376 0.0000439700700000 5.78 68.92

20 -0.0000000004307032 0.0000002602001092 5.56 65.27

21 -0.0000000000602850 0.0000018143240000 758.56 78.08

22 0.0008923583000000 0.0000011423130000 12.73 76.12

23 0.0000000002100385 0.0000078695700000 4447.51 88.14

24 0.0000000003812286 0.0000019330280000 233.46 86.38

25 0.0000000000000000 0.0000000380855070 0.84 78.39

26 0.0000000001172008 0.0000116351100000 96.25 92.48

27 0.0000000000665820 0.0000009207121000 974.71 104.38

28 0.0000000002294721 0.0000073572230000 80.53 99.91

29 -0.0000000003347006 0.0000101909300000 21.42 102.94

30 0.0000000000126559 0.0000001375722064 28.21 98.53

31 -0.0000000002626017 0.0000037280440000 155.25 118.81

32 0.0000000002334601 0.0000048173860000 438.73 125.09

33 0.0013745760000000 0.0000010999630000 115.67 123.58

34 0.0000000005544745 0.0000699432400000 6428.40 146.50

35 -0.0000000004252372 0.0000026636822117 1802.77 155.47

36 -0.0000000003999967 0.5491094000000000 29.29 162.75

37 0.0005946050000000 0.0000726830400000 6577.27 178.94

38 0.0042973210000000 0.0000003487986000 6889.47 152.03

39 0.0000000000319624 0.0000017520760000 112.60 165.45

40 -0.0000000003571675 0.0000021701146337 2133.86 168.86

41 0.0000000001013102 0.0002256899000000 198.40 174.69

42 -0.0000000002127649 0.0000024032450000 67.83 172.34

43 0.0011217430000000 0.0007067743000000 2055.75 187.31

44 0.0009049288000000 0.3302351000000000 8522.40 198.70

45 0.0000000000197041 0.0000327147457704 510.51 236.80

46 0.0008446683000000 0.0000017148530000 151.07 215.95

47 0.0011539000000000 0.0000511495200000 4731.81 228.19

48 -0.0000000006868933 0.0000357124300000 2214.69 236.64

49 0.0000000005251256 0.0055037630000000 1334.68 245.84

50 0.0170323600000000 0.0000067387512595 12245.42 275.95

Average 0.0006111358814366 0.0180862894302730 1285.84 153.57
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Table 4.3: Comparisons with Packomania web site [72] for identical circles inside rectangular container

Best-known radius % deviation from best results of FSS Total time of FSS

n U S R 5× 1 R 10× 1 U S R 5× 1 R 10× 1 U S R 5× 1 R 10× 1

10 0.14820432 0.06185032 0.05000000 0.00000062 0.00000031 0.00000000 61 85 40

15 0.12716655 0.05505051 0.03598519 0.00000078 0.00000694 0.00003046 50 63 63

20 0.11138235 0.05000000 0.03109074 0.00000026 0.00000000 0.00000693 65 48 76

25 0.10000000 0.04226996 0.02885380 0.00000004 0.00000972 0.00006879 78 86 140

30 0.09167106 0.03923334 0.02765293 0.00000014 0.00003912 0.00006820 99 108 123

35 0.08429071 0.03761333 0.02693590 0.00000266 0.00000337 0.00002189 155 159 141

40 0.07918675 0.03593823 0.02500000 0.00000217 0.00017827 0.00000001 169 171 122

45 0.07472734 0.03333333 0.02265228 0.00003271 0.00000000 0.00206741 237 176 167

50 0.07137710 0.03117646 0.02133467 0.00000674 0.00004963 0.00033613 276 220 208

55 0.06805536 0.02974024 0.02040995 0.00000207 0.00003851 0.00020284 286 251 268

60 0.06503041 0.02887175 0.01973563 0.00000467 0.00000759 0.00032433 350 309 325

65 0.06320396 0.02820113 0.01924353 0.00002148 0.00001523 0.00016231 487 401 445

70 0.06059669 0.02777780 0.01884091 0.00036655 0.00000436 0.00027852 517 495 538

75 0.05849454 0.02634156 0.01854818 0.00689349 0.00259092 0.00030264 621 608 692

80 0.05737068 0.02513053 0.01834058 0.00000015 0.10504818 0.00000309 750 692 817

85 0.05568018 0.02432442 0.01738610 0.00420337 0.00008201 0.05816296 978 771 1038

90 0.05374995 0.02372096 0.01669075 0.00007667 0.00045144 0.12902497 1179 927 1241

95 0.05242037 0.02323914 0.01615003 0.00224318 0.00028429 0.17491486 1423 1110 1333

100 0.05140107 0.02288111 0.01566314 0.00249622 0.00008262 0.00035285 1317 1259 1640

125 0.04597834 0.02032251 0.01431718 0.08040242 0.13161784 0.00028669 2452 2263 3192

150 0.04214547 0.01896176 0.01324134 0.00400724 0.00000181 0.04666236 4107 3942 6195

175 0.03906110 0.01732794 0.01206593 0.03707206 0.06322381 0.43360267 6374 6717 11735

200 0.03661280 0.01641240 0.01147946 0.29745107 0.00025828 0.11747268 8790 9463 19004

250 0.03287632 0.01463438 0.01011529 0.08660955 0.19570694 0.00000000 18111 20465 56617

500 0.02344549 0.01046709 0.00573487 0.95843434 0.00000000 0.00000000 133443 241386 218047

Average 0.05921323 0.01998805 0.03857414 7295 11687 12968
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4.3.2 Other containers

Table 4.4 presents the results for the right-angled isosceles triangle with length L = 1, a

semicircle with radius one and a circular quadrant with radius one. In this table we can

see that some results showing the percentage deviation are negative numbers, this means

that the solution given by our heuristic outperformed the best- known solution [72]. For

the instances considered in Table 4.4 the right-angled isosceles triangle presented five im-

provements having on average a percentage deviation of 0.00877214 with an average total

time of 6126 seconds, the semicircular container presented the lowest average percent-

age deviation of −0.00644147 with an average total time of 4540 seconds having eleven

instances with better results than the best-known solution, finally the circular quadrant

showed five improved instances with an average percentage deviation of 0.05615641 with

an average total time of 5900 seconds.

In the light of these improvements we decided to investigate and extend the set of

instances with n = 2, 3, ..., 150 identical circles for all containers. For computational

reasons we did not venture above n = 150, other than for the specific values of n

shown in Tables 4.3 and 4.4. Obtaining the results seen in Table 4.5 required, in total,

approximately 280 h which is nearly 12 days of computation. Although for the new set of

instances with 2 ≤ n ≤ 150 circles we considered all containers, the unit square container

showed no improvements and its results are not in Table 4.5, however it took on average

a total time of 1115 seconds. As well the 280 h of computation time is considering

the average total time of the unit circle container (637 seconds). Table 4.5 presents a

summary for containers that gave improved results, information displayed on Table 4.5

for 2 ≤ n ≤ 150 consists of:

• The number of improved cases (an improved case being one where we improved on

the best-known results reported in Specht [72]).

• The average % deviation from (previously) best-known of these improved cases.

82



Chapter 4. 4.3. Computational results

• The values of n for these improved cases.

• The average % deviation (from previously best-known result) over all the n values

considered.

• The average time taken in seconds (averaged over all the n values considered).

We can see from Table 4.5 that the semicircular container with radius one and centred

at the origin presented the highest number of improvements (69) for instances whose

number of circles ranged between 2 and 150, that is (69/149) = 0.4631 which means that

the 46.31% of the cases considered were improved. Regarding its average percentage

deviation over the improved cases, it is −0.031634857204 whilst its average percentage

deviation over all values of n = 2, 3, ..., 150 is −0.0071 having the lowest average total

time of 695 seconds. Figure 4.2(c) shows the solution associated with Table 4.5 for

n = 19 circles when the container is the semicircle. All pictures presented in Figure 4.2

are as in figures in Chapter 3 where circles with an “o” in their centre represent circles

expressed in Cartesian coordinates whilst circles with a “∗” in their centre are for circles

expressed in polar coordinates.

According to Table 4.5 the circular quadrant container with radius one is the second

best case with a high number of improvements (46), that is (46/149) = 0.3087 which

represents 30.87% of improvement cases. Its average percentage deviation over the im-

proved cases is −0.015183685245 whilst its average percentage deviation over all values

of n = 2, 3, ..., 150 is of 0.0145. Figure 4.2(d) shows the improved solution associated

with Table 4.5 for n = 29 circles for the circular-quadrant container.

For the right-angled isosceles triangle container with length L = 1 the number of

improvements was 18 which represents (18/149 = 0.1208) so 12.08%. For the rectangular

container with dimensions L = 5 and W = 1 we present 9 improvements which is

(9/149 = 0.0604) so 6.04% of improved cases. Regarding the rectangular container with

dimensions L = 10 and W = 1 we have 6 improvements (6/149 = 0.0403) so 4.03% of
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improved cases. Figures 4.2(b), 4.2(e) and 4.2(f) show the improved solutions for n = 13

for the triangular container, n = 37 for the rectangular container with dimensions L = 5

and W = 1, finally for n = 39 circles for the rectangular container with dimensions

L = 10 and W = 1. Although the unit square container showed no improvements we

present in Figure 4.2(a) a picture with n = 25 circles related to result from Table 4.3

where the % deviation when compared with the best-known was of 0.00000004.

It is clear from Table 4.5 that our FSS heuristic is able to produce results better

than previously best-known results. Since Specht [72] is updated with results from a

continually running search as well as with results from all authors this is a significant

achievement. Some of the results presented here have already been communicated to

Specht [72] and can be seen on the Packomania web site.
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Table 4.4: Comparisons with Packomania web site [72] for identical circles inside different containers

Best-known radius % deviation from best results of FSS Total time of FSS

n Triangle Semicircle Quadrant Triangle Semicircle Quadrant Triangle Semicircle Quadrant

10 0.10622236 0.18826273 0.13507299 0.00000000 0.00000000 0.00000000 25 26 32

15 0.08761007 0.15862581 0.11021202 0.00000000 0.00000000 0.00000000 35 34 40

20 0.07637899 0.13909585 0.09706486 0.00000000 0.00000000 0.00000000 49 49 50

25 0.06855244 0.12458460 0.08783098 0.00000005 0.00000000 0.00000000 66 61 67

30 0.06306127 0.11396560 0.08056619 -0.00116554 0.00000007 0.00000005 99 82 85

35 0.05870276 0.10578339 0.07455576 0.00000001 0.00000003 0.00000003 127 104 114

40 0.05528479 0.09906682 0.07008873 0.00000165 0.00000000 0.00000001 147 115 128

45 0.05215170 0.09366677 0.06642553 0.00000048 0.00000076 0.00000459 186 139 158

50 0.04978289 0.08909114 0.06309977 0.00000032 -0.00296879 -0.00042110 204 172 193

55 0.04751903 0.08503462 0.06034441 0.00000003 0.00000000 -0.00389984 270 204 235

60 0.04559821 0.08148310 0.05780469 -0.00696771 -0.02792077 0.08300160 329 236 273

65 0.04392293 0.07876654 0.05559034 -0.01848641 -0.00066426 -0.02016617 376 289 328

70 0.04248494 0.07605493 0.05383862 0.00000771 -0.00803026 -0.00001603 422 338 390

75 0.04103285 0.07330218 0.05203938 0.00000271 0.00005501 0.00000001 617 388 463

80 0.03984458 0.07131755 0.05047000 0.00002315 -0.00466258 0.00156236 610 472 560

85 0.03866429 0.06923479 0.04902977 0.02820367 -0.00297505 0.02630948 704 608 633

90 0.03769046 0.06756591 0.04769082 -0.00532499 0.00000005 0.02557222 799 695 721

95 0.03669864 0.06557692 0.04644563 0.01127538 -0.06325532 0.15671220 942 739 826

100 0.03580337 0.06402453 0.04541670 -0.00030914 -0.00458006 -0.00101656 1379 804 935

125 0.03220479 0.05757342 0.04066541 0.02634894 -0.00422906 0.01868178 1875 1462 1757

150 0.02953038 0.05271053 0.03730329 0.01686111 -0.04790578 0.14962182 3132 2374 3112

175 0.02742193 0.04887802 0.03460409 0.13031379 -0.09912597 0.11936323 5202 3891 4870

200 0.02569074 0.04592558 0.03241631 0.03851828 0.01942512 0.02110307 7533 5848 7530

250 0.02305043 0.04112424 0.02913502 0.00000000 0.08580021 0.19391764 14942 11126 14346

500 0.01640334 0.02929358 0.02077970 0.00000000 0.00000000 0.63357992 113086 83242 109647

Average 0.00877214 -0.00644147 0.05615641 6126 4540 5900
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Table 4.5: FSS improved results for 2 ≤ n ≤ 150

Rectangle 5× 1 Rectangle 10× 1 Triangle Semicircle Circular quadrant

Number of improved 9 6 18 69 46
cases

% of improved cases -0.026620256247 -0.021473329600 -0.005939179656 -0.031634857204 -0.015183685245

value of n 37 49 74 83 39 43 76 13 27 30 36 19 37 41 46 47 49 50 29 34 37 44

101 131 132 82 109 139 44 48 56 57 52 53 54 60 64 65 66 47 49 50 52

141 148 60 61 65 68 68 70 71 74 79 80 81 55 56 57 58

90 92 100 82 83 85 86 87 88 91 62 64 65 66

111 116 130 92 93 94 95 97 98 100 69 70 71 72

104 105 106 107 108 73 78 81 84

112 113 115 116 118 87 89 91 92

119 120 121 122 123 97 99 100 102

124 125 127 130 131 103 106 107 108

132 133 134 135 136 111 118 119 120

140 141 142 144 146 121 129 134

147 148 149 150 137 139 146

Average % over 0.0263 0.0242 0.0227 -0.0071 0.0145

all different n

Average time 1098 1518 869 695 825

in seconds
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(e) Rectangle 5× 1 with 37 circles
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(f) Rectangle 10× 1 with 39 circles

Figure 4.2: Solutions with improvements in different containers
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4.4 Conclusions

In this chapter we showed the capabilities of our FSS heuristic in that it can be easily

implemented for containers other than the circular one. We presented six different shaped

containers: the unit square, a rectangle with L = 5 and W = 1, a rectangle with L = 10

and W = 1, a right-angled isosceles triangle with length L = 1, a semicircle and a right-

circular quadrant with radius 1. The adaptations for each one of the containers were

minor and related to the boundaries of the container and the limits on the variables.

Regarding the results presented for instances with n = 5, 10, ..., 100, 125, 150, 175,

200, 250 and 500 circles and for the triangle, semicircle and the circular quadrant we

observed a number of improvements over the (previous) best-known solutions. Encour-

aged by those results we decided to increase the number of instances now considering

n = 2, 3, ..., 150. For computational reasons we did not undertake larger instances as the

total time spent was around 12 days of computations. The results for the new instances

considered showed improvements over the (previous) best-known; for the rectangular

container with dimensions L = 5 and W = 1 we obtained 9 improvements (6.04% of

improvements), for the rectangular container with dimensions L = 10 and W = 1 we

obtained 6 improvements (4.04% of improvements), for the right-angled isosceles tri-

angle we obtained 18 improved cases (12.08% of improvements), for the semicircular

container we obtained 69 improvements (46.31% of improvements) and finally for the

circular quadrant we obtained 46 improvement (30.87% of improvements).

In general we can say that our FSS heuristic is an effective algorithm when balancing

the accuracy of the results with computational time spent. Moreover, it showed the

capability of easy adaptation to other shaped containers and gave improvements (now

published and available from the web site Packomania [72]) over the (previously) best-

known solutions.
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Chapter 5
Packing non-identical circles inside a

circular container

Addressing the packing problem with non-identical circles leads us to two different ap-

proaches: the aim of the first approach is to find the minimum radius of the circular

container considering the non-identical circles as being of fixed size, it is characterized

by a greedy strategy to resolve the overlaps encountered after the solver solution whilst

the second approach is based on a scaled formulation for the unit circle container. The

“greedy strategy” approach is given in Appendix A since, computationally, it was less

successful than the scaled approach given in this chapter.

This chapter is divided into six sections. In Section 5.2 we present a scaled formula-

tion that is based on reformulation descent considering the unit circle container whilst in

Section 5.3 we present the heuristic algorithm developed. In Section 5.4 we present the

computational results from the tests considered and in Section 5.6 we give the conclusion

to the chapter.
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Chapter 5. 5.1. Non-identical circles

5.1 Non-identical circles

We address two different categories of non-identical circles: large variation instances and

small variation instances. We consider an instance a large variation instance if the radii

are defined as Ri = i for all i = 1, ..., n and an instance a small variation instance when

their radii are defined as Ri = 1/
√
i for all i = 1, ..., n. Generically a large variation

instance means that there is a wide disparity between the size of the circles, a small

variation instance means that there is only a small disparity between the sizes of the

circles. In Figures 5.1(a) and 5.1(b) are two examples of non-identical circles inside a

unit circle where the difference between large and small variation can be appreciated if we

compare the size of the largest circle with the size of the smallest circle in Figure 5.1(a) as

compared to Figure 5.1(b). The reason for distinguishing large/small variation instances

is that we adopt different algorithmic steps depending upon the type of instance being

considered.
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(a) Unit circle Ri = i, large variation in-

stance
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(b) Unit circle Ri = 1/
√
i, small variation

instance

Figure 5.1: Circle packing problem with n = 10 non-identical circles
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5.2 Scaled formulation for the unit circle container

The formulation that we used to address the packing problem with non-identical circles

size considers a circular container. This formulation is different from those found in the

literature, where the problem is most commonly formulated as considering the radius of

each circle as a fixed value, aiming to find the minimum radius of the circular container.

Here we regard the circular container as being fixed, namely the unit circle. This means

that the size of the container is fixed and even though the radius of each circle has been

previously defined as Ri the aim of this approach is to find the maximum common

scaling factor for each circle denoted as ρ. In other words we seek the maximum

value of ρ such that non-identical circles of radii ρRi can be packed inside the unit circle

container. As far as we are aware this scaled view of the problem has not been considered

before in the literature.

In terms of the unit circle container it is clear that the maximum value of ρ, say

ρmax, means that the original circles, of radii Ri, can be packed inside a circular con-

tainer of minimum radius 1/ρmax with the non-identical circles having centre coordinates

(xi/ρmax, yi/ρmax) for i = 1, ..., n. This scaled problem and the standard problem in the

literature are therefore equivalent. However for some containers, such as rectangles, a

triangle, semicircle and circular quadrant, this scaled view of the problem leads to new

problems that have not been considered previously in the literature, but these contain-

ers will be discussed in Chapter 6. The formulation presented below considers the unit

circle container and details about the changes to the formulation and the heuristic for

the other containers will be given in detail in the next chapter.

Our maximum common scaling formulation for the circle packing problem with non-

identical circles and the unit circle as the container is:

max ρ (5.1)
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Chapter 5. 5.2. Scaled formulation for the unit circle container

subject to

x2i + y2i ≤ (1− ρRi)
2 ∀i ∈ C (5.2)

ri ≤ 1− ρRi ∀i ∈ P (5.3)

(xi − xj)
2 + (yi − yj)

2 ≥ (ρ(Ri +Rj))
2 ∀(i, j) ∈ Q with i, j ∈ C i < j

(5.4)

(xi − rj cos(θj))
2 + (yi − rj sin(θj))

2 ≥ (ρ(Ri +Rj))
2 ∀(i, j) ∈ Q with i ∈ C j ∈ P

(5.5)

r2i + r2j − 2rirj cos(θi − θj) ≥ (ρ(Ri +Rj))
2 ∀(i, j) ∈ Q with i, j ∈ P i < j

(5.6)

− 1 ≤ xi ≤ 1 ∀i ∈ C (5.7)

− 1 ≤ yi ≤ 1 ∀i ∈ C (5.8)

0 ≤ ri ≤ 1 ∀i ∈ P (5.9)

0 ≤ θi ≤ 2π ∀i ∈ P (5.10)

0 ≤ ρ ≤
√

1/Σn
i=1R

2
i (5.11)

The objective function (5.1) maximises the scaling factor associated with each ra-

dius Ri. Equations (5.2) and (5.3) are the constraints that ensure that all circle centres

[(xi, yi) or (ri, θi)] are inside the container, for this particular case, the unit circle. Equa-

tions (5.4), (5.5) and (5.6) guarantee that any two circles i and j do not overlap each

other. Equations (5.7) and (5.8) represent the limits for the variables that are in the

Cartesian system whilst equations (5.9) and (5.10) represent the limits of the variables

that are in the Polar system. Finally equation (5.11) represents the limit on ρ (derived

from area considerations since we need Σn
i=1π(ρRi)

2 ≤ π(1)2). The formulation given

above is based on the formulation given in López and Beasley [54] for packing identical

sized circles in the unit circle and has been considered in this thesis in Chapter 3.
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5.3 Heuristic

The heuristic presented here, was first conceived as one based on formulation space

search, however after several computational experiments given in detail in Section 5.5 we

observed that the scaled formulation gave better results when adopting a reformulation

descent approach.

The heuristic developed is divided into two phases: an optimisation phase where we

find a local optima and an improvement phase where we improve the solution obtained in

the optimisation phase. For the optimisation phase we used the Reformulation descent

method whilst for the improvement phase we seek improvement by swapping circles and

packing circles in free space.

5.3.1 Optimisation problem

The optimisation problem will be addressed by the reformulation descent (RD) method.

We use the mixed Cartesian/Polar formulation as presented in equations (5.1)-(5.11),

denoted as NLP (x0, y0, C, P ) in the pseudocode given below. Even though the result

given by the non-linear solver (SNOPT) has a high degree of accuracy we have included

a correction step to avoid having non-feasible solutions and the details will be described

in Section 5.3.2. Having a mixed formulation we set the cardinality of sets C and P as

|C| = ⌊n/2⌋ then |P | = n \ |C|, after each iteration we will switch the circles in C to P

and vice-versa.

5.3.1.1 Subset of circles in the optimisation process

When the radius of the circles are defined by Ri = i (large variation instance) we can

see that the smallest circle has radius R1 = 1 whilst the biggest one is n times bigger

with radius Rn = n. This difference in size is so big that (assuming n is reasonably

large) if we exclude circle one with radius R1 = 1 from the optimisation process it
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will probably not have an impact on the optimal solution. By this we mean that the

optimal packing of circles i = 2, . . . , n will probably have sufficient free space that circle

one can be packed without perturbing the already packed circles. However excluding

circle one would decrease the number of non-overlapping constraints in the problem

(equations (5.4)-(5.6)), as it would be one less circle to be paired with the other (n− 1)

circles as part of the set Q. An illustration for the large variation instance case is in

Figure 5.1(a) for n = 10 non-identical circles.

In the light of this when considering the case where Ri = i we set ⌈.70n⌉ as the

number of circles for the optimisation process, that is we will be taking into account just

seventy percent of the circles, the biggest circles as in Grosso et al [23]. The packing of

the remaining smaller circles (thirty percent of the circles) is done in the insertion process

that takes place after the improvement process, the details will be given in Section 5.3.5.

Instances of this type are large variation instances.

In contrast, we have the case when radii of the circles are defined by Ri = 1/
√
i

where the difference between radius R1 = 1 and radius Rn = 1/
√
n is smaller

√
n times,

with R1 = 1 as the largest circle. As an example, if n = 5 the radius of circle one

is R1 = 1 whilst the radius of circle 5 is R5 = 1/
√
5 = 0.4472, this means that R1 is

√
5 = 2.2361 times larger than R5. As this difference is not as big as in the previous

instance where Ri = i, here for Ri = 1/
√
i we did not include the insertion process and

for the optimisation phase we work with the entire set of n circles. Instances of this type

are small variation instances. An example of these instances is depicted in Figure 5.1(b).

Essentially for large variation instances we make a computational saving by leav-

ing the “smaller” circles be inserted after the optimisation phase. For small variation

instances the nature of the circle sizes means that we consider all of them in the optimi-

sation phase.
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5.3.2 Correction step

A correction step is included in our heuristic to ensure that every solution given by the

solver is feasible. All solutions must satisfy two conditions: being inside the container

and no overlapping circles. If these conditions are not met the appropriate corrections

will be applied. At the end of the correction step we should have a feasible solution with

an associated value for ρ.

First (working solely in Cartesian coordinates for convenience) we test that for every

circle i, with circle centre at coordinates (xi, yi), is inside the container, in this case the

unit circle. In other words the circle centre must satisfy x2i + y2i ≤ 1. If for some circle

k, we have x2k+ y2k > 1 then the coordinates (xk, yk) will be arbitrarily reallocated inside

the container. Computational experience has been that all solutions given by the solver

are inside the container, however logically this step is needed to ensure the feasibility of

the solution. In addition we define

ρ1 = min{(1−
√

x2i + y2i )/Ri|i = 1, ..., n} (5.12)

as the maximum value for variable ρ in equation (5.2) which ensures that all circles are

fully inside the unit circle container.

To satisfy the non-overlapping condition, we consider all possible pairs of circles and

calculate the distance between their centres keeping the minimum, that is, for any two

circles (i, j) with radii Ri and Rj we set

ρ2 = min

{

√

(xi − xj)2 + (yi − yj)2/(Ri +Rj)|i < j ∀(i, j) ∈ Q

}

(5.13)

Here ρ2 represents the maximum value for variable ρ such that no two circles overlap.

Finally we take

ρcurrent = min{ρ1, ρ2} (5.14)

where ρcurrent is the best value that the variable ρ can take whilst keeping the current

solution feasible, as well it represents the maximum scaling factor by which each radius
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Ri for all i = 1, ..., n can be multiplied to fit the n circles with known centres [xi, yi]

inside the unit circle.

5.3.3 The pseudocode

Our pseudocode is shown in Algorithm 5.7 and it consists of two phases. Phase one

solves the packing problem through the reformulation descent method using an off-the-

shelf optimiser. Sets C and P are defined by randomly placing circle i with i = 1, ..., n

either in C or P . At every iteration the initial solution is generated randomly inside

the container, in our case the unit circle by choosing ri uniformly from the interval [0, 1]

and θi uniformly from interval [0, 2π] and expressing their respective values in Cartesian

coordinates (x0, y0). This initial solution is a starting guess for the non-linear solver

SNOPT [18, 35]. Then we have the correction step to guarantee that all constraints are

satisfied. The stopping criteria is based on the number of iterations.

Phase two of the algorithm depends on the problem we are solving. If the problem

to be solved is a large variation instance then we considered two processes: first the

swapping process (considered in Section 5.3.4) followed by the insertion process (detailed

in Section 5.3.5). Whereas if the problem to be solved is a small variation instance we

only carry out the swapping process in phase two. The reason for this was explained in

Section 5.3.1.1.

The swapping process attempts to improve the current best arrangement by swapping

circle i with circle j (see Section 5.3.4 for details). If the swap improves the current

solution then we keep it and continue the swapping process from the updated solution

until there is no further improvement. In Algorithm 5.7 ρmax represent the maximum

scaling factor encountered so far, Rindex is a vector that keeps track of the radius of

each circle. Finally in Algorithm 5.7 as part of phase two we have the insertion process,

whose function is to determine a location for small circles inside the existing packing of

the largest circles, here (xbest, ybest) represent the coordinates of the small circle packed
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during the procedure.

Given this overview of our pseudocode we now consider in detail the swapping and

insertion processes.

5.3.4 Swapping process

The swapping process explores a small part of the combinatorial nature of the problem.

In Algorithm 5.7 a solution from phase 1 is denoted as (X,Y ) with Rindex being the

vector that keeps track of the radii of all circles. For this procedure we will investigate

if a small perturbation of a pair of circles would improve current solution.

Assume (without loss of generality) that the n circles have been indexed such that

the radii Ri are in order (either ascending order or descending order as convenient,

ties broken arbitrarily). The point of assuming this is that we now know that the two

circles with radii (size) closest to circle i are circles i − 1 and i + 1. Take circles i

and i + 1 with radii Ri and Ri+1 respectively, and swap them. In other words, we

set the centre of circle i to where i + 1 is centred, and set the centre of circle i + 1

to where i was centred. Set (X,Y ) with Rindex = [R1, R2, ..., Ri+1, Ri, ..., Rn] as initial

solution for the non-linear solver. The solver will return as solution the coordinates (x, y)

and ρcurrent with Rindex = [R1, R2, ..., Ri−1, Ri+1, Ri, Ri+2, ..., Rn]. If ρcurrent > ρmax

then (x, y) with Rindex = [R1, R2, ..., Ri−1, Ri+1, Ri, Ri+2, ..., Rn] is our best solution

up to now with ρmax ← ρcurrent. However if ρcurrent ≤ ρmax we restore Rindex as

[R1, R2, ..., Ri−1, Ri, Ri+1, Ri+2, ..., Rn]. Whether we have an improved solution or not

we continue swapping the circles. Note that we only swap adjacent circles in Rindex,

hence they will always be of similar sizes. This procedure is applied for both large and

small variation instances. We terminate the swapping process when there are no two

adjacent circles in Rindex that can be swapped and improve the solution.
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Algorithm 5.7 Reformulation descent for the non-identical circle case

Function (ρmax, X
∗, Y ∗)← RD(n, replication limit, iteration limit)

t rep← 0

repeat

ρmax ← 0 Rindex ← [R1, ..., Rn] |C| ← ⌊n/2⌋ t← 0 {Initialisation}

Phase 1:

repeat

(x0, y0)← Randomly generate an initial solution (X,Y )

C ← {1, ..., n} \ P ; P ← n \ C {set C and P}

(x, y, ρ)← NLP (x0, y0, C, P )

ρcurrent ← Correction(x0, y0, x, y, ρ) {correct the radius}

ρmax ← max{ρmax, ρcurrent} {update ρmax}

(X∗, Y ∗)← (x, y) {save coordinates associated with ρmax}

t← t+ 1 {update iteration counter}

until t = iteration limit

(X∗, Y ∗, ρmax)← Best solution {best solution from phase 1}

Phase 2:

(X∗, Y ∗, ρmax, R
index)← Swapping(X∗, Y ∗, ρmax, R

index) {ρmax best solution after

swap}

repeat

(xbest, ybest)← Insertion(X∗, Y ∗, ρmax, R
index) {best coordinates to insert a

small circle}

(X∗, Y ∗)← (X∗, Y ∗) ∪ (xbest, ybest)

until all circles are being packed

t rep← t rep+ 1 {update replication counter}

until t rep = replication limit
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5.3.5 Insertion process by circle tangency

The insertion process by circle tangency procedure has been designed to find a suitable

location around the edge of the container where small circles can be inserted when the

larger circles have been packed. This procedure is used solely for large variation instances.

During this process we insert one circle at a time in descending order with respect

to their radius (so here we assume that the circles have been indexed in ascending radii

order so R1 ≤ R2 ≤ R3 ≤ · · · ≤ Rn). Let us consider the smaller circles 1, 2, ..., s with

radii R1, R2, ..., Rs respectively, the first circle to enter the insertion process is the largest

of these, circle s. To find a location for circle s we look for the space available between

two tangent circles (circles that are touching each other) that are also tangent to the

container. Circles that are tangential, one to another, are also known as “kissing” circles.

Figure 5.2 illustrates (in grey) where small circles may be located. For every space

found we determine the position (coordinates) for circle s to be located in such a fashion

that it will always be inside the container but it may be overlapping the two tangent

circles, these coordinates are recorded in a list along with their degree of non-overlap.

The degree of non-overlap is simply the minimum of the distances between the centres

of the two tangent circles and the coordinates found to locate the small circle, it is

derived from equation (5.4). From this list we choose the position that satisfies the non-

overlapping constraints, (i.e. whose degree of non-overlap is greater or equal to zero).

Once we have chosen the position for circle s we continue with circle s− 1 and so on.

In Figure 5.2 we can see a packing consisting of circles i, j, k and l, the dashed circles

in the grey area represent some of the possibilities where we can locate the small circle

s. If we take circles k and l we immediately note that circle l is not touching the edge

of the container, but as long as the space between circle l and the container is less than

the radius of circle s (1−
√

x2l + y2l − ρRl < ρRs) then we will consider it as a tangent

circle.

Determining the position (x, y) to locate the small circle s with known radius Rs
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(xk, yk)

(xi, yi)

(xj , yj)
(xl, yl)

Figure 5.2: Example of the insertion process for the unit circle as container

requires the solution of the non-linear system given by equations (5.15) - (5.17). This

system involves the two circles that are tangent to themselves and tangent to the edge of

the container, circle i with coordinates (xi, yi) and radius Ri and circle j with coordinates

(xj , yj) and radius Rj .

(x− xi)
2 + (y − yi)

2 − (ρmaxRs + ρmaxRi)
2 ≥ 0 (5.15)

(x− xj)
2 + (y − yj)

2 − (ρmaxRs + ρmaxRj)
2 ≥ 0 (5.16)

x2 + y2 − (1− ρmaxRs)
2 ≤ 0 (5.17)

These inequalities seek a centre (x, y) for circle s of radius Rs such that circles i and

j may touch s and s is inside the container. The solution to this system is given by

the non-linear solver. As we examine many possible locations for circle s we will keep

the location that best fits, i.e. the one that satisfies the non-overlapping constraints or

violates that condition the least. In case our only option is to accept a point (x̂, ŷ) that

does not satisfy the non-overlapping conditions then we call the non-linear solver to get

a feasible solution.

5.3.6 A glance into our heuristic

So far we have detailed the steps of our algorithm and given pseudocode for the entire

process, now we present a snapshot using n = 10 non-identical circles with radii Ri = i
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for i = 1, ..., n to be packed inside the unit circle.

Let us recall from Section 5.3.1.1 that for large variation instances for the optimisation

process we solely consider the ⌈0.70n⌉ of the larger circles, so we start (for this particular

case) with only 7 circles. In Figure 5.3(a) we present a random initial solution with 7

circles, coordinates with an “o” are for those circles expressed in the Cartesian system

whilst those coordinates with an “∗” are for those circles expressed in the polar system.

Figure 5.3(b) represents the solver solution whilst Figure 5.3(c) is the final solution before

the swapping process and as well is the solution after the swapping process as in this

case there was no difference between the two solutions. In Figure 5.3(d) we present the

final solution after the insertion process where we incorporate the three smallest circles

which are expressed in Cartesian coordinates and denoted with a “·” in their centre.

5.4 Computational results

In this section we deal with the circular container. As discussed above we regard this case

as being one of finding the maximum common scaling factor such that the non-identical

circles can be packed inside the unit circle. Other authors in the literature regard the

problem as one of packing fixed sized non-identical circles inside a circular container

where the objective is to minimise the radius of the container. Since (also as discussed

above) there exists a direct correspondence between these two views of the problem (our

solution with maximum common scaling factor ρmax corresponds to a circular container

of radius 1/ρmax) here, for ease of comparison with previous work, we present our results

in terms of packing fixed sized non-identical circles inside a circular container where the

objective is to minimise the radius of the container. We compare our results against

previous results reported in the published scientific literature.

The results presented in this section for our heuristic were produced on an Intel(R)

Core(TM) i5-2500 3.30 GHz CPU with 4.00 GB. The algorithm was coded in MatLab

7.9.0 using SNOPT [18, 35] as the non-linear solver. Numerical settings such as the
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(a) Random initial solution

o

o

o

o

*

*

*
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(d) Final solution after inserting small circles

Figure 5.3: A snapshot of our heuristic with n = 10 non-identical circles with Ri = i
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number of iterations and the number of replications that the algorithm uses are detailed

and justified in Section 5.5, for the moment let us say that we use five replications, each

one consisting of 50 iterations.

5.4.1 Comparison with Al-Mudahka et al [5]

In this section we compare our results against those recently reported in Al-Mudahka

et al [5] where they proposed a heuristic (TS/NP) based on tabu search and nested

partitions of the space search. They ran their tests in a Pentium IV, 2.66 Ghz and 512

Mb of RAM, their heuristic was coded in Fortran that evokes GAMS, which in turn

uses CONOPT3 to solve the NLP problems. Results from this comparison are shown in

Table 5.1 for the case when the radii of the circles to be packed are defined as Ri = i

and in Table 5.2 when Ri = 1/
√
i.

In Table 5.1 column 1 is the number of non-identical circles to be packed inside

the circular container, column 2 gives the best-known solution radius reported in Al-

Mudahka et al [5], columns 3 and 4 represent the best solution obtained by Al-Mudahka

et al [5] and our heuristic, respectively. The measure that we use to compare our results is

percentage deviation, which is calculated as 100(Rbest−RBestKnown)/RBestKnown, where

Rbest represents the best solution found by the approach in question and RBestKnown

is the best solution previously known, as given in column 2 and taken from [5]. If the

percentage deviation is negative it means that a solution is better than the previous

best-known solution.

It is important to note that in Al-Mudahka et al [5] they measured their results

considering the deviation (Rbest − RBest−Known) whilst we are using the percentage de-

viation, therefore to make a fair comparison of the results we present their results as

their respective percentage deviation. Column 7 shows computation time as stated in

Al-Mudahka et al [5], in column 8 we present the total time spent by our heuristic over

all replications for each instance. The last row of Table 5.1 shows the average percentage
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deviation and average total time for each approach.

Table 5.1: Results by TS/NP [5] and RD for the case when Ri = i ∀i = 1, ..., n

Best TS/NP RD TS/NP RD TS/NP RD

n known best solution best solution % deviation % deviation total total

Radius Radius Radius time (s) time (min)

5 9.00139774 9.001398 9.00139775 0.00000 0.00000011 426 7.68

6 11.05704039 11.05704 11.05704040 0.00000 0.00000009 686 11.12

7 13.46211067 13.46211 13.46211068 0.00000 0.00000007 1511 12.02

8 16.22174667 16.22175 16.22174668 0.00000 0.00000006 2551 17.14

9 19.23319390 19.39734 19.23319391 0.85347 0.00000005 4051 23.4

10 22.00019301 22.34516 22.00019301 1.56803 0.00000000 5760 23.97

11 24.96063428 24.96063 24.96063429 0.00000 0.00000004 2094 30.34

12 28.37138943 28.67863 28.37138944 1.08292 0.00000004 3548 38.32

13 31.54586701 32.00719 31.54586702 1.46238 0.00000003 4054 48.42

14 35.09564714 35.41261 35.09564714 0.90313 0.00000000 6146 49.5

15 38.83799550 39.00243 38.83799682 0.42337 0.00000340 6696 65.06

16 42.45811643 42.92185 42.45811644 1.09221 0.00000002 9684 81.95

17 46.29134211 46.77237 46.34518193 1.03914 0.11630646 10168 87.73

18 50.11976262 50.65635 50.20889346 1.07062 0.17783572 14312 103.73

19 54.24029359 55.02744 54.36009421 1.45123 0.22087015 14925 122.49

20 58.40056747 59.04547 58.48047359 1.10427 0.13682422 19825 125.29

21 62.55887709 63.49768 63.00078332 1.50067 0.70638453 5923 148.74

22 66.76028624 68.10291 66.96471591 2.01111 0.30621449 6636 179.37

23 71.19946160 72.70501 71.69822657 2.11455 0.70051790 7209 216.97

24 75.75270412 76.49105 76.12311970 0.97468 0.48898001 8552 216.74

25 80.28586443 81.56595 80.81682360 1.59442 0.66133581 11409 259.49

26 85.07640122 86.43809 85.48743800 1.60055 0.48313842 12062 305.33

27 89.79218156 91.15366 90.93173506 1.51626 1.26910103 13657 309.07

28 94.54998647 96.34813 95.64064140 1.90179 1.15352204 14364 365.51

29 99.51231790 101.7251 100.72003130 2.22364 1.21363207 15185 424.25

30 104.57855508 107.1161 105.88817223 2.42640 1.25228078 20745 427.63

31 109.77194698 111.8996 111.07712597 1.93829 1.18899138 21424 499.55

32 114.86543833 117.6701 116.61226677 2.44173 1.52076070 22781 574.08

Average 1.22481 0.41416784 9514 170.53

One point to note with respect to Table 5.1 is that different authors in the literature

give their results to a different number of decimal places. This needs very careful con-

sideration when comparing results (and when calculating percentage deviations). For

example in Table 5.1 consider n = 7 for which the best-known radius is 13.46211067.

At first sight the result of 13.46211 from TS/NP appears better, since it is a lower

radius. However this apparent difference only arises because in their work [5] dealing
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with TS/NP the authors have given results only to five decimal places. Rounding the

best-known result to five decimal places makes it clear that the two radii are identical,

hence the percentage deviation of zero seen for this instance for TS/NP in Table 5.1.

Comparing the n = 7 result for TS/NP with that for RD (so comparing 13.46211 against

13.46211068) raises the same issue, since our RD result appears worse, but in fact when

rounded to the same number of decimal places as the result given by TS/NP it is the

same. The percentage deviations given for TS/NP in Table 5.1 have been calculated

using appropriate rounding.

RD outperformed TS/NP in that for all instances from n = 5 to n = 32 in Table 5.1

(after consideration of rounding, so performing a fair comparison by utilising the same

number of decimal places) the radius from our RD heuristic is better (or equal) to radius

given by the TS/NP approach. In other words, with respect to quality of solution,

our heuristic dominates (for all the problems examined) the heuristic of Al-Mudahka

et al [5]. Over all instances the average percentage deviation for the TS/NP approach

of [5] is 1.22481 whilst for RD it is 0.41416784. With respect to computation time the

average for [5] in Table 5.1 is 9514 seconds = 159 minutes, similar to the average for RD

(albeit on different pcs). No results for n ≥ 32 were reported in [5]. Nevertheless we

considered as our largest instance n = 35 circles, the best result from our RD heuristic

is a radius of 132.76520032 obtained in a total of 766.65 minutes, a picture showing the

result obtained can be seen in Figure 5.4(a).

Table 5.2 has eight columns as Table 5.1, here we are considering that the radii of

the circles to be packed are defined by Ri = 1/
√
i. The percentage deviations given

in this table have been computed after consideration of rounding (necessary here since

the best-known result is only given in [5] to four decimal places, so the results from

TS/NP and RD have been rounded to four decimal places before the computation of the

percentage deviation). For the 14 instances considered in [5] the results obtained by our

RD heuristic dominate the results of [5] in that for all instances we (to the six decimal
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places of [5] shown in Table 5.2) obtain an equal (or better) solution than [5]. Overall

the average percentage deviation in the last row of Table 5.2 for the TS/NP approach

is -0.3777 whilst for our RD heuristic it is -0.6294. Computation times are again similar

(an average of 24316 seconds, so 405.27 minutes, as compared to 331.82 minutes; albeit

on different pcs). A picture showing the result obtained by our RD heuristic for n = 35

can be seen in Figure 5.4(b).

Table 5.2: Results by TS/NP [5] and RD for the case when Ri = 1/
√
i ∀i = 1, ..., n

Best TS/NP RD TS/NP RD TS/NP RD

n known best solution best solution % deviation % deviation total total

Radius Radius Radius time (s) time (min)

5 1.7516 1.751552 1.75155246 0.0000 0.0000 1270 11.19

6 1.8101 1.810077 1.81007694 0.0000 0.0000 3169 14.7

7 1.8387 1.838724 1.83872407 0.0000 0.0000 5152 18.64

8 1.8613 1.864532 1.85840095 0.1719 -0.1558 8428 23.3

9 1.8900 1.878813 1.87881276 -0.5926 -0.5926 10489 28.92

10 1.9244 1.920960 1.91343552 -0.1767 -0.5716 14739 35.63

12 1.9696 1.959311 1.95197444 -0.5229 -0.8936 10919 55.87

14 2.0173 2.006005 1.98606765 -0.5602 -1.5466 14885 83.03

16 2.0464 2.031021 2.02213023 -0.7525 -1.1875 22418 114.52

18 2.0664 2.065764 2.05613259 -0.0290 -0.4985 25499 162.47

20 2.1050 2.083187 2.08237082 -1.0356 -1.0736 38164 235.95

25 2.1642 2.143192 2.13929005 -0.9703 -1.1505 30929 595.67

30 2.2008 2.188324 2.18190380 -0.5680 -0.8588 63970 1173.55

35 2.2259 2.220271 2.21958858 -0.2516 -0.2830 90387 2092.05

Average -0.3777 -0.6294 24316 331.82

5.4.2 Comparison with other work

In Table 5.3 we compare the results obtained by our RD heuristic with those presented

by Grosso et al [23], Liu et al [51], Lu and Huang [56] and Zhang and Deng [80]. Those

authors considered 13 instances of non-identical circles whose radii can be found in [23,

51, 56, 80] inside a circular container. Table 5.3 consists of seven columns; column

one records the instance number, column two indicates how many unequal circles each
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Figure 5.4: Circle packing problem with n = 35 non-identical circles

instance has, column three indicates where previous results for the instance can be found,

column four indicates the best solution (radius) from those presented in [23, 51, 56, 80],

column five indicates the best radius obtained by our RD approach, in column six we

report the percentage deviation whilst in column seven we report the total time spent

by our heuristic. Here, because of the varying number of decimal places quoted in the

best-known solution, we have in each instance rounded the RD solution to the same

number of decimal places before computing the percentage deviation. With regard to

quality of result note that we are comparing our RD heuristic against the best result

obtained from four different heuristics [23, 51, 56, 80]. We can see in the last row of

Table 5.3 that the average RD percentage deviation is −0.05 that is, overall our RD

approach produces better results than previous work. With respect to computation time

an average time of just over one hour is not excessive in our view.

Figure 5.5 illustrates two out of four instances (instances 1 and 2 in Table 5.3) for

which we improved over previously best-known result: in Figure 5.5(a) we have 10 non-

identical circles whose radii are R1 = R2 = 10, R3 = 11, R4 = R5 = R6 = 20, R7 = 31.5,

R8 = 32, R9 = 40, R10 = 50, in Figure 5.5(b) we present the case for 11 non-identical
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circles whose radii are defined as R1 = 21, Ri+1 = Ri+1, i = 1, ..., 10, lastly in Figure 5.5

we have 16 non-identical circles whose radii are R1 = 21, Ri+1 = Ri + 1, i = 1, ..., 15.

Table 5.3: Comparing RD with other work in the literature for the case of non-identical

circles inside a circular container

Instance n Reference Best-known RD % deviation Total

solution solution time (min)

1 9 [56] 24.143 24.14213562 -0.004 7.94

2 10 [56] 98.90 98.83543170 -0.06 26.14

3 10 [51, 56] 99.8850 99.88507689 0.0000 26.47

4 11 [56] 57.17 56.98440037 -0.33 67.60

5 11 [23, 51] 60.7099 60.70996281 0.0002 59.87

6 12 [56, 80] 215.47 215.47005384 0.00 7.43

7 14 [23, 51] 113.5587 114.57807922 0.8977 139.53

8 15 [23, 51, 56, 80] 38.8379 38.83799682 0.0003 65.06

9 16 [56] 130.00 128.44302642 -1.20 205.86

10 17 [23, 51, 56, 80] 49.1873 49.22967556 0.0862 168.78

11 17 [51, 56, 80] 241.4214 241.42135624 0.0000 9.59

12 25 [51] 21.5470 21.54700538 0.0000 34.56

13 28 [51] 21.5470 21.54700538 0.0000 6.10

Average -0.05 63.46

5.4.3 Comparing with Packomania website [72]

We have mentioned previously that Packomania [72] is a website dedicated to the packing

problem. It considered several different shaped containers for identical and non-identical

circles. This website is frequently updating the best-known results, these come from

different researchers investigating different approaches to obtain better results than those

reported (as well as a continually search). In Table 5.4 we present the comparison

between the best results from our heuristic algorithm and the best-known results reported

in Packomania [72] (February 2012) for the case of non-identical circles for the large

variation instances (Ri = i). We considered instances with n = 5 up to n = 35 circles
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Figure 5.5: Circle packing problem for different instances

inside the unit circle container, we use the % deviation as a measurement of accuracy with

respect to the best-known results and we report the total time spent in each instance.

Results from Table 5.4 indicate that on average the accuracy of a solution with n = 5

to n = 35 circles obtained with our heuristic algorithm is 0.42951263 in 191.09 minutes

which is around 3 hours 11 minutes. Although for instances with n = 5 to n = 16 circles

the % deviation is zero, from instances with n = 17 to n = 35 the % deviation increases

ranging from 0.11630644 to 1.55960440.

Regarding the small variation instances we present a comparison in Table 5.5 report-

ing the number of circles in each instance, the best-known results (Packomania [72]),

the best results from our RD approach, the % deviation and the total computational

time spent. As in the previous table, here we see that for instances with n = 5 to

n = 10 circles the % deviation is zero whilst for instances with n = 12 to n = 35 cir-

cles the % deviation ranges from 0.11031804 to 1.62248045. Results from the bottom

row in Table 5.5 indicate that on average a solution from our heuristic has 0.59493348

accuracy and may be obtained in 331.82 minutes, which is around 5 hours 31 minutes.

It is worth mentioning again that the best-known solutions are the results from many

109



Chapter 5. 5.5. Algorithmic variations

Table 5.4: Comparing RD with Packomania website [72] for large variation instances

(Ri = i ∀i = 1, ..., n)

Best RD RD RD

n known best solution % deviation total

Radius Radius time (min)

5 9.00139775 9.00139775 0.00000000 7.68

6 11.05704040 11.05704040 0.00000000 11.12

7 13.46211068 13.46211068 0.00000000 12.02

8 16.22174668 16.22174668 0.00000000 17.14

9 19.23319391 19.23319391 0.00000000 23.40

10 22.00019301 22.00019301 0.00000000 23.97

11 24.96063429 24.96063429 0.00000000 30.34

12 28.37138944 28.37138944 0.00000000 38.32

13 31.54586702 31.54586702 0.00000000 48.42

14 35.09564714 35.09564714 0.00000000 49.50

15 38.83799551 38.83799682 0.00000339 65.06

16 42.45811644 42.45811644 0.00000000 81.95

17 46.29134212 46.34518193 0.11630644 87.73

18 50.11976262 50.20889346 0.17783572 103.73

19 54.24029359 54.36009421 0.22087015 122.49

20 58.40056748 58.48047359 0.13682420 125.29

21 62.55887709 63.00078332 0.70638452 148.74

22 66.76028624 66.96471591 0.30621449 179.37

23 71.19946161 71.69822657 0.70051789 216.97

24 75.74914258 76.12311970 0.49370475 216.74

25 80.28586444 80.81682360 0.66133580 259.49

26 84.97819107 85.48743800 0.59926780 305.33

27 89.75096268 90.93173506 1.31560971 309.07

28 94.52587710 95.64064140 1.17932183 365.51

29 99.48311156 100.72003130 1.24334645 424.25

30 104.54116445 105.88817223 1.28849510 427.63

31 109.62924066 111.07712597 1.32071088 499.55

32 114.82150552 116.61226677 1.55960440 574.08

35 130.85309617 132.76520032 1.46126015 766.65

Average 0.42951263 191.09

different sources and different approaches hence they represent the gold standard.

5.5 Algorithmic variations

This section is concerned with the exploration of algorithmic variations for the two

different instances that we are addressing: large variation instances and small variation
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Table 5.5: Comparing RD with Packomania web site [72] for small variation instances

(Ri = 1/
√
i ∀i = 1, ..., n)

Best RD RD RD

n known best solution % deviation total

Radius Radius time (min)

5 1.751552455 1.751552455 0.00000000 11.19

6 1.810076939 1.810076939 0.00000000 14.70

7 1.838724068 1.838724068 0.00000000 18.64

8 1.858400955 1.858400955 0.00000000 23.30

9 1.878812755 1.878812756 0.00000002 28.92

10 1.913435515 1.913435515 0.00000000 35.63

12 1.949823437 1.951974444 0.11031804 55.87

14 1.981496158 1.986067647 0.23070898 83.03

16 2.007108056 2.022130232 0.74844878 114.52

18 2.031854924 2.056132595 1.19485259 162.47

20 2.051442268 2.082370823 1.50764927 235.95

25 2.106013266 2.139290050 1.58008426 595.67

30 2.153169187 2.181903797 1.33452633 1173.55

35 2.184151157 2.219588583 1.62248045 2092.05

Average 0.59493348 331.82

instances. Several tests were carried out in order to determine if it was appropriate to

use the Q set, the number of iterations per replication, the number of replications and

we as well present results from considering single formulations.

5.5.1 Q set

One of the algorithmic variations concerns the Q set, below we explain the reason for

not adopting a strategy to reduce its size as we did in Chapter 3.

A fundamental difference between the current heuristic in this chapter and that

presented in Chapter 3 is the size of the Q set, whilst in Chapter 3 we proposed a

strategy to reduce the size of the Q set (which was satisfactory for the case of identical

circles), that strategy has proven to be less effective when the circles to be packed have

different radii. Recalling from Section 3.3.2, in order to decide which pairs of circles

will be elements of the Q set we used a ∆ factor. The main role of ∆ is to generate a

range of movement around the centre of every circle coordinates in the current solution
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to determine a subset of non-overlapping constraints over all possible non-overlapping

constraints. In other words, the idea is to prevent the overlaps to happen, thus we only

consider the subset of non-overlapping constraints that given the current locations of the

centres of the circles, are more likely to overlap.

In this case, for any instance considered all circles will have different size, then to

allow them to move far away enough from their current centre coordinate we need to

use a ∆ factor which depends on the number of circles to be packed n and a numerical

factor denoted as δ. To illustrate let us consider a case with n = 5 circles, δ = 0.05

then ∆ = δn = 0.25. Hence all five circles, although every one has a different size from

the other, their centre coordinates are allocated a range of movement of 0.25 in every

direction. In order to determine the appropriate numerical value δ for ∆ for the case

of large variation instances we conducted a series of tests in which δ arbitrarily ranged

from 0.05 to 0.09. The tests consisted of running our heuristic with n = 5, 10, 15 and

20 non-identical circles, in Table 5.6 we present the results in terms of the average %

deviation.

We can see from Table 5.6 for the case of large variation instances that all attempts for

which ∆ factor depends on δ and the number of circles n give high average % deviation,

however for independent values of ∆ such as the one given at the bottom row of Table 5.6

where ∆ is merely a constant 2 gives the lowest average % deviation of all tests considered.

This has a deeper meaning, considering ∆ = 2 and the unit circle container implies that

no matter where each circle is positioned, all possible pairs of circles may overlap and so

all possible pairs of circles are elements of Q set.

However, for the small variation instances most of the % deviation are around 0.8

whether ∆ depends on the number of circles or not, although with an independent value

for ∆ such as 2 we obtained the lowest % deviation. Hence for the case of small variation

instances we as well deal with all n(n − 1)/2 pairs of circles as elements of the Q set.

From now on all tests conducted considered all possible pairs of circles as elements of
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the Q set.

Table 5.6: Tests to determine ∆ factor

∆ large variation instances small variation instances

variations % deviation % deviation

.05n 1.071668960 15.239515072

.06n 0.857046726 0.895637569

.07n 0.810419474 0.816206424

.08n 1.402197273 0.882275491

.09n 1.799760639 0.851911411

2 0.314269354 0.809402588

5.5.2 Number of iterations

In order to determine the number of iterations for our heuristic for the large variation

instances we conducted a test considering a set of instances with n = 5, 10, 15 and 20

non-identical circles. We ran our heuristic for each instance for four different iteration

limits: 25, 50, 75 and 100. We used the % deviation as indicator of the quality of the

results.

Searching for insight about the behaviour of our heuristic with respect to the number

of iterations we have taken the minimum % deviation up to every iteration for all four

instances (n = 5, 10, 15 and 20), with these four minimum % deviations we calculated

the average and the results are presented in Figure 5.6.

To clarify let us consider four moments depicted in Figure 5.6(a), we see that in

iteration one the average of the minimum of all % deviation for n = 5, 10, 15 and 20

non-identical circles is close to 1, in fact is 0.9615, after 25 it has drop to 0.4134 and

from iteration 50 to 100 the average % deviation is 0.3424.

In Table 5.7 we present in column one the number of iterations being considered and

denoted by k, in column two we present the minimum average % deviation given by the

set of instances with n = 5, 10, 15 and 20 circles after k iterations, column three shows
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the average % deviation up to the respective iteration limit, finally in column four we

give the total time in minutes spent in the test.

Table 5.7: Tests to determine number of iterations

Large variation instances Small variation instances

number Min average Average total time Min average Average total time

of iterations (k) % deviation % deviation in min % deviation % deviation in min

25 0.413391521 0.568639944 26.65 1.042292996 1.167074891 6.52

50 0.342351769 0.479125366 53.30 0.967103469 1.078931979 20.81

75 0.342351769 0.433534167 79.94 0.924653209 1.028071726 56.38

100 0.342351769 0.410738568 106.59 0.921191368 1.002009386 139.43

Results from Table 5.7 indicate that the minimum average % deviation 0.342351769 is

obtained between iteration 25 and iteration 50, it stays at the same value until iteration

100, that is there were no further improvements after iteration 50. However, the average

% deviation from Table 5.7 indicate that on average with 100 iterations it is more likely

that our heuristic algorithm obtain better quality results: having an average % deviation

0.568639944 in 26.62 minutes for 25 iterations and 0.410738568 in 106.59 minutes for 100

iterations, this behaviour can be seen in Figure 5.6(a). As always, balancing quality of

results against computation time is a matter of judgement but here 50 iterations seems

appropriate.

We carried out the same test for the small variation instances, the results are pre-

sented in Table 5.7 indicating the minimum average % deviation per iteration, the average

% deviation up to the respective iteration limit and the total computational time spent.

These results indicate that on average with 50 iterations we may obtain 1.078931979 %

deviation in 20.81 minutes, whilst with 100 iterations the % deviation is 1.002009386 in

139.43 minutes. Here we can see that there is not a significant difference between the %

deviation obtained after 50 iterations and that obtained after 100 iterations. However

adopting 100 iteration in our algorithm would take 139.43/20.81 = 6.7 more time. In

Figure 5.6(b) we show the behaviour of our algorithm in terms of the average % devi-
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ation per iteration, we can see that is from iteration 50 that we obtained the lowest %

deviation. Hence for the small variation instances we set the number of iterations to 50..
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Figure 5.6: Average % deviation per iteration for large variation instances of 5, 10, 15, 20

circles

5.5.3 Number of replications

Regarding the number of replications we conducted a test considering the four instances

as before (n = 5, 10, 15 and 20 circles), running our algorithm with the Q set with all

possible pairs of circles, 50 iterations with 5, 10 and 15 replication limits.

Table 5.8 shows the results of the test, we present the minimum % deviation after k

replications, the average % deviation up to the respective replication limit and the total

time given in minutes. Data from columns two to four correspond to large variation

instances whilst data from columns from five to seven are for small variation instances.

Results from Table 5.8 indicate that for large variation instances the minimum % de-

viation 0.045310242 correspond to 15 replications with 803.81 minutes total time, more-

over it shows based on the average of the minimum % deviation per replication that with

15 replications we obtained a lowest average minimum % deviation 0.135359650. Despite
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the fact that the average % deviation for 15 replications is 0.207935793/0.135359650 =

1.536173 times lower than the average % deviation with 5 replication, the total time spent

with 15 replications takes 803.81/270.07 = 2.976302 times than with 5 replications. With

Table 5.8: Tests to determine the number of replications

Large variation instances Small variation instances

number Minimum Average total time Minimum Average total time

of replications % deviation % deviation in min % deviation % deviation in min

5 0.171330575 0.207935793 270.07 0.593828693 0.631042576 563.53

10 0.071902304 0.169747530 536.50 0.572037683 0.608437022 1121.55

15 0.045310242 0.135359650 803.81 0.475783808 0.571863642 1681.18

respect to small variation instances, we can see that with 15 replications we obtain a

minimum % deviation 0.475783808, on average the % deviation is 0.571863642 in 1681.18

minutes, whilst with 5 replications we obtain a minimum % deviation 0.593828693, on

average the % deviation is 0.631042576 in 563.53 minutes. This means that considering

15 replications for small variation instances we may obtain results that on average might

be 0.631042576/0.571863642 = 1.103484 times better however, in terms of total time 15

replications takes 1681.18/563.53 = 2.983302 more times than 5 replications.

In conclusion based on the insight from the previous test and balancing accuracy with

total computational time we adopted 5 as the number of replications for our heuristic

for both large and small variation instances.

5.5.4 Single formulations

We considered single formulations in order to determine the effectiveness of the mixed

formulation used for the packing problem of identical circles for the case of non-identical

circles. The test conducted consisted of running our heuristic algorithm setting 5 replica-

tions with 50 iterations each for the case of large variation instances with n = 5, 10, 15, 20

non-identical circles using individually a Cartesian and a polar formulation respectively.

Table 5.9 gives the results from the test: in columns two, four and six we present the %
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deviation with respect to each formulation considered: Cartesian only, polar only and a

mixed formulation with Cartesian and polar coordinate systems (as already used earlier

in this chapter). In columns three, five and seven we give the total computational time

in minutes that each approach took.

Table 5.9: Testing single formulations with a mixed formulation for large variation in-

stances Ri = i

n Cartesian only Total Polar only Total Cartesian & Polar Total

% deviation time (min) % deviation time (min) % deviation time (min)

5 0.000000000 45.65 0.000000000 13.41 0.000000000 7.68

10 0.000000001 238.42 0.000000000 37.52 0.000000000 23.97

15 0.208280486 589.18 0.197818272 95.91 0.000003388 65.06

20 0.857517317 1204.30 0.339501056 181.18 0.136824198 125.29

Average 0.266449451 519.39 0.134329832 82.01 0.034206896 55.50

The results obtained from all three approaches indicate that as the mixed formulation

gives the lowest % deviation it is the best option to use in order to obtain a better

solution. Regarding single formulations we can see that for the two aspects that we are

considering: quality of solution and total time spent, the polar formulation dominates the

Cartesian formulation. The % deviation for the polar formulation is 0.134329832 whilst

the % deviation for Cartesian formulation is almost twice that, 0.266449451. In terms of

average total time, polar formulation gives a solution in 82.01 minutes, whilst Cartesian

formulation takes on average a total time of 519.39 minutes, that is approximately 8.65

hours. From this test we can infer that not only the mixed formulation used for the scaled

formulation for the non-identical circles gives better quality solutions but it decreases

the computational time need to obtain a solution.

Conducting the same test for the small variation instances we present the results

in Table 5.10. Column one shows the number of circles to be packed, columns two,

four and six show the minimum % deviation for every case with n = 5, 10, 15 and 20
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circles for the Cartesian single formulation, the polar single formulation and the mixed

formulation respectively. Columns three, five and seven give the total time spent to

obtain the results. In the last row of Table 5.10 we present the average % deviation and

the average total time for every approach.

Table 5.10: Testing single formulations with a mixed formulation for small variation

instances Ri = 1/
√
i

n Cartesian only Total Polar only Total Cartesian & Polar Total

% deviation time (min) % deviation time (min) % deviation time (min)

5 0.000000000 41.36 0.000000000 45.43 0.000000000 11.19

10 0.048676620 153.90 0.000292613 70.05 0.000000001 35.63

15 0.817965905 430.89 1.039114235 119.41 0.704579483 137.98

20 1.370449971 1032.13 1.564140072 307.47 1.507649269 235.95

Average 0.559273124 414.57 0.650886730 135.59 0.553057188 105.19

Regarding the average % deviation from the three approaches from Table 5.10 the

accuracy of the results seems to be similar: 0.559273124 for the Cartesian formulation,

0.650886730 for the polar formulation whilst 0.553057188 % deviation for the mixed

formulation. However, on average the Cartesian formulation takes 414.57 minutes, that

is approximately 6.9 hours, by contrast the polar formulation takes on average 135.59

minutes, which is around 2.2 hours, qhilst for our mixed formulation the average time

spent is 105.19 minutes which is around one hour 45 minutes. These results indicate that

although the quality of a solution may be approximately the same for any formulation

considered, the fastest approach is given by the mixed formulation.

5.6 Conclusions

In this chapter we presented a new approach “the scaling formulation model ” to solve

the circle packing problem with non-identical circles inside the unit circle. It was used

to solve two different categories of instances: the large variation instances (Ri = i with
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i = 1, ..., n) and the small variation instances (Ri = 1/
√
i with i = 1, ..., n). The proposed

heuristic algorithm for the scaling formulation consisted of two phases: optimisation and

improvement. For the optimisation phase we solved the scaled formulation model using

the reformulation descent method, whilst for the improvement phase, we implemented

a strategy whose aim is to improve the solution obtained in the optimisation phase,

this consist of swapping radii of similar sized circles (and inserting smaller circles if

appropriate).

Regarding quality of the results produced for our heuristic for the circular container,

comparisons made indicate that in most cases our heuristic results dominated those

found in the literature for large and small variation instances. We also tested single

formulations (Cartesian formulation only and polar formulation only) and compared the

results with the mixed formulation. Results from the test conducted indicated that using

a mixed formulation for the packing problem with non-identical circles inside the unit

circle container with large variation instances is the most suitable option to obtain more

accurate solutions in less time. By contrast, although single formulations did not give

good quality results, polar formulation dominated the Cartesian formulation in terms

of quality of results and in time spent. Regarding the case of small variation instances

and with respect to the quality of results, single Cartesian formulation, single polar

formulation and the mixed formulation showed a similar behaviour. With respect to

computational time polar formulation gave results three times faster than Cartesian,

however the mixed formulation was shown to be an effective strategy to obtain results

in considerably less time, indeed the lowest of the three approaches.
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Chapter 6
Packing non-identical circles inside

different containers

The aim of this chapter is to extend the scaled formulation for the packing problem of

non-identical circles presented in Chapter 5 to six different containers. The adaptation to

other containers requires minor modifications to the original mathematical model and to

the heuristic algorithm. To the best of our knowledge the containers that we consider in

this chapter have not been addressed before for the case of non-identical circles, hence we

present new results for the small and large variation instances with different containers.

For ease of reference in Section 6.1 we present again the scaled model and the heuristic

algorithm considering the unit circle container. Section 6.2 is divided in four, presenting

in each section the necessary modifications made to adapt the scaled formulation and the

heuristic algorithm to: the rectangular containers consisting of the unit square, two rect-

angular containers with dimensions (L = 5 and L = 10, W = 1); other shaped containers:

the right-angled isosceles triangle, a semicircle and a circular quadrant. In Section 6.3

we present the computational results for the small and large variation instances for all

containers and in Section 6.4 we give some conclusions.
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6.1 Scaled model and algorithm for non-identical circles

Here, for ease of reference we give again the scaled formulation where we consider the

unit circle container and the heuristic algorithm given in Chapter 5.

max ρ (6.1)

subject to

x2i + y2i ≤ (1− ρRi)
2 ∀i ∈ C (6.2)

ri ≤ 1− ρRi ∀i ∈ P (6.3)

(xi − xj)
2 + (yi − yj)

2 ≥ (ρ(Ri +Rj))
2 ∀(i, j) ∈ Q with i, j ∈ C i < j

(6.4)

(xi − rj cos(θj))
2 + (yi − rj sin(θj))

2 ≥ (ρ(Ri +Rj))
2 ∀(i, j) ∈ Q with i ∈ C j ∈ P

(6.5)

r2i + r2j − 2rirj cos(θi − θj) ≥ (ρ(Ri +Rj))
2 ∀(i, j) ∈ Q with i, j ∈ P i < j

(6.6)

− 1 ≤ xi ≤ 1 ∀i ∈ C (6.7)

− 1 ≤ yi ≤ 1 ∀i ∈ C (6.8)

0 ≤ ri ≤ 1 ∀i ∈ P (6.9)

0 ≤ θi ≤ 2π ∀i ∈ P (6.10)

0 ≤ ρ ≤
√

1/Σn
i=1R

2
i (6.11)

Let us recall that the objective function (6.1) maximises the scaling factor associated

with each radius Ri. Constraints that guarantee that all circles are inside the unit circle

container are described by equations (6.2) and (6.3). Equations (6.4), (6.5) and (6.6)

are known as the non-overlapping constraints. Equations (6.7) and (6.8) represent the

limits for the variables that are in the Cartesian system whilst equations (6.9) and (6.10)

represent the limits of the variables that are in the Polar system. Lastly the upper limit
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on ρ is represented in equation (6.11).

The modifications to adapt the scaled formulation given in equations (6.1)-(6.11)

are related to the boundary of the container considered (6.12) whilst the changes to

the heuristic algorithm 6.8 for other types of geometric containers are minor changes in

the correction step, which consist of reducing (if needed) the size of each circle which

is defined by the common scaling factor and their respective radius to prevent overlaps

of any circle with the container equation (6.12) and to avoid overlaps between any two

circles equation (6.13). Hence, the value of the maximum scaling factor is determined

by equation (6.14).

ρ1 = min{(1−
√

x2i + y2i )/Ri|i = 1, ..., n} (6.12)

ρ2 = min

{

√

(xi − xj)2 + (yi − yj)2/(Ri +Rj)|i < j ∀(i, j) ∈ Q)

}

(6.13)

ρcurrent = min{ρ1, ρ2} (6.14)

6.2 Different containers

The scaled formulation model for the packing problem presented in Chapter 5 allowed

us to fit non-identical circles without overlaps inside the unit circle container. This

approach is now applied to other containers: the unit square, two rectangles with length

L = 5, L = 10 and width W = 1, a right-angled isosceles triangle, a semicircle with

radius one and a circular quadrant with radius one. This new scaled point of view where

the aim is to maximise the scaling factor having fixed size circles and a fixed container

is equivalent to minimising the size of the container with fixed size circles.

Without loss of generality, let us say that (xi, yi) with i = 1, ..., n is the solution of the

scaled problem with a scaling factor ρmax for any container, in particular if we consider

the unit square container (L = W = 1), then by using 1/ρmax as the re-scaling factor
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Algorithm 6.8 Reformulation descent for the non-identical circle case

Function (ρmax, X
∗, Y ∗)← RD(n, replication limit, iteration limit)

t rep← 0

repeat

ρmax ← 0 Rindex ← [R1, ..., Rn] |C| ← ⌊n/2⌋ t← 0 {Initialisation}

Phase 1:

repeat

(x0, y0)← Randomly generate an initial solution (X,Y )

C ← {1, ..., n} \ P ; P ← n \ C {set C and P}

(x, y, ρ)← NLP (x0, y0, C, P )

ρcurrent ← Correction(x0, y0, x, y, ρ) {correct the radius}

ρmax ← max{ρmax, ρcurrent} {update ρmax}

(X∗, Y ∗)← (x, y) {save coordinates associated with ρmax}

t← t+ 1 {update iteration counter}

until t = iteration limit

(X∗, Y ∗, ρmax)← Best solution {best solution from phase 1}

Phase 2:

(X∗, Y ∗, ρmax, R
index)← Swapping(X∗, Y ∗, ρmax, R

index) {ρmax best solution after

swap}

repeat

(xbest, ybest)← Insertion(X∗, Y ∗, ρmax, R
index) {best coordinates to insert a

small circle}

(X∗, Y ∗)← (X∗, Y ∗) ∪ (xbest, ybest)

until all circles are being packed

t rep← t rep+ 1 {update replication counter}

until t rep = replication limit
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we obtain (xi/ρmax, yi/ρmax) as the coordinate solution for a square with dimensions

(L = W = 1/ρmax).

In a more general way for any rectangular container with dimension (L,W ) the re-

scaled size would be, length (L/ρmax) and width (W/ρmax). In a similar way the length

L of the equal sides of the right-angled isosceles triangle after re-scaling is L/ρmax. The

semicircle and right quadrant container have radius one, then as with the unit circle

container, the re-scaled size for them is given by 1/ρmax.

6.2.1 Rectangular containers

For the case of a rectangular container we consider a rectangle of length L and width W

with its centre at the origin of the Cartesian plane. Obviously a square has L = W so

need not be considered separately here. As mentioned in 2.4.2 the rectangular container

has being subject of interests specially for industrial applications as in [17], but none

(to the best to our knowledge) address the small and large variation instances that we

consider here. In the literature we have found different approaches for the rectangular

container with identical or non-identical circles as being of fixed size and the container

as being of variable size. Examples of objectives for the rectangular container include:

• for the square (so L = W ) minimise the length of the side, so minimise L, this also

minimises the perimeter and the area of the square

• minimise the perimeter of the rectangle, equivalently minimise L+W

• minimise the area of the rectangle, so minimise LW

• regard one dimension of the rectangle as fixed and minimise the other dimension,

so for a fixed L minimise W , or for a fixed W minimise L. Problems of this type are

often referred to as strip packing problems (SPP) or as the circular open dimension

problem (CODP).
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With our scaled viewpoint we are addressing a different problem. Namely scale the

circles to fit inside the fixed rectangle. There is no direct analogy with any of the other

rectangular container (L 6= W ) objectives listed above. so here we are considering a

problem not considered in the literature before.

Modifications with respect to the formulation (which are minor) and those related

to the insertion process to deal with our scaled view of rectangular containers are given

in detail below.

6.2.2 Formulation modifications

Equations (6.2) and (6.3) ensure that all circles lie inside the container are replaced by

−L/2 ≤ xi + ρRi ≤ L/2 −L/2 ≤ xi − ρRi ≤ L/2, ∀i ∈ C (6.15)

−W/2 ≤ yi + ρRi ≤W/2 −W/2 ≤ yi − ρRi ≤W/2

The polar expression equivalent of equation (6.3) is exactly as equation (6.15) but re-

placing the Cartesian variables by the polar ones. As for the limits on the polar variables

equation (6.9) is changed to:

0 ≤ ri ≤
√

(L/2)2 + (W/2)2 ∀i ∈ P (6.16)

The upper limit on ρ in equation (6.11) becomes

√

√

√

√LW/π
n
∑

i=1

R2
i .

6.2.3 RD heuristic modifications

With respect to the heuristic during the correction step equation (6.12) is replaced by

ρ1 = min {(L/2− |xi|)/Ri, (W/2− |yi|)/Ri|i = 1, ..., n} (6.17)

which represents the maximum possible scaling factor having regard to the edge of the

container and the closest circle centre.
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6.2.4 Insertion process modifications

For the insertion process (where we are seeking to insert a new small circle s into an

already existing packing) we divided the search for free space into two procedures: one

to examine corners and the other to examine the sides of the rectangular container. Both

procedures return a list of possible coordinates for the location of the new small circle,

from these lists we choose the position that is (if possible) feasible (so without overlaps

and inside the container).

6.2.4.1 Corners

While investigating if a corner of a rectangular container represents a feasible location for

circle s with radius Rs, (so ρRs after scaling), we considered three cases: an empty corner

where the free space is left by one circle as shown in Figure 6.1(a), an empty corner where

the free space is left by two tangent circles as shown in Figure 6.1(b) and a non-empty

corner where the free space is left by three circles as shown in Figure 6.1(c). The search

around the corners is done one by one and we apply different methods according to the

respective situation. After having investigated the four corners we will have a pair of

coordinates that represents the best candidate location for circle s in one corner.

For illustration we consider in detail here the upper left corner of the rectangular

container, the other three corners are dealt with in a similar fashion. Suppose that the

corner under investigation is as depicted in Figure 6.1(a), if it happens to have a big

circle but still with enough space to allocate circle s we have coordinates that depend

on that corner, here (x̂, ŷ) = (−L/2 + ρmaxRs,W/2− ρmaxRs) as a possible location to

position circle s.

If the situation that we are facing is as for the case where there is an empty corner

as depicted in Figure 6.1(b), then we build a non-linear system of equations that will

be given to the solver to find a feasible solution (x̂, ŷ) if possible. The elements of this

non-linear system are equations (5.15) and (5.16) to guarantee no overlaps between circle
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Figure 6.1: Example of the four cases considered to insert a small circle near the corner

of a rectangular container

s, circle i and circle j, and equation (6.18) that defines the range for the centre of the

new circle.

−L/2 + ρmaxRs ≤ x ≤ xi − ρmaxRi yj + ρmaxRj ≤ y ≤W/2− ρmaxRs (6.18)

For the case depicted in Figure 6.1(c), we can see two tangent circles (i and j) and one

circle (k) in the top left corner, the coordinates of circle s must be found in the grey area,

for that we used equations (5.15), (5.16), (6.18) and (6.19). As before equations (5.15)
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and (5.16) prevent the overlap of circle s with circles i and j, equation (6.18) restricts

the range for the circle centre. Equation (6.19) deals with non-overlap between circles k

and s. In equation (6.19) ρmaxRk is the radius of the circle in the corner.

(x− xk)
2 + (y − yk)

2 − (ρmaxRs + ρmaxRk)
2 ≥ 0 (6.19)

This forms a non-linear system that will be given to the solver to find (if possible) a

feasible solution.

As the total number of circles to be packed increases, more small circles need to be

packed in the insertion process (recall in the optimisation phase we only consider 70% of

the circles, leaving 30% for the insertion process). In Figure 6.1(d) we consider the case

where there are two pairs of circles around the corner, in this case the pairs of circles are

(i, j) and (i, k) not considering circles u, v and w because the search is based on circles

that are tangent to the container and between themselves. The pair (u, i) fall in the

category described in Section 6.2.4.2 below. Investigating these cases around the corner

we take the two pairs of circles (i, j) and (i, k) creating a limit on the x-coordinate and

on the y-coordinate as denoted by the dotted lines in Figure 6.1(d). If there are circles

that are neither i, j nor k near the corner within these dotted lines, as for example circles

u, v and w, we search for the nearest pair of circles or the nearest single circle to the

corner. If the nearest turns out to be a pair like (v, j) then the case is treated as that

depicted in Figure 6.1(c); if the nearest is one circle let us say circle v then it will be

tackled as depicted in Figure 6.1(a).

6.2.4.2 Sides

In this section we describe the way the coordinates of circle s are determined on one side

of the container. For illustration we consider the left side of the rectangular container,

the other three sides are dealt with in a similar manner.

As we can see in Figure 6.2(a) circles i and j are touching the left side of the rectan-

gular container whilst in Figure 6.2(b) we can see that circle j is slightly separated from
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the edge of the container. We consider that a circle is close enough to the edge of the

container if the distance from its edge to the edge of the container is less than ρmaxRs.

These two cases are slightly different but will be tackled in the same way. To find the

coordinates (x̂, ŷ) of circle s we need to solve the non-linear system given by equations

(5.15) and (5.16) with equation (6.20).

x− ρmaxRs ≥ −L/2 (6.20)

s

i

j

x = −L/2

(a) Space left by circles i and

j

s

i

j

x = −L/2

< ρmaxRs

(b) Space left by circles i and j

k

s i

j

x = −L/2

2ρmaxRs + ρmaxRi

(c) Space left by circles i, j

and k

Figure 6.2: Example of the empty space left by two tangent circles to allocate a smaller

circle on a side of a rectangular container

For the last case let us consider Figure 6.2(c), here we are interested to know if the

distance between circle i and the edge of the container is big enough (2ρmaxRs) to insert

circle s, as we are considering the left side of the container then the coordinates for the

centre of circle s would be given by x̂ = −L/2+ ρmaxRs and ŷ = yi. If the area happens

to be smaller we still consider coordinates (x̂, ŷ) as defined previously to form part of

the current solution but taken now as the initial solution for the solver.
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6.2.5 Triangular container

For the right-angled isosceles triangle the modifications for the formulation and heuristic

algorithm are related to boundary constraints of the container. Additionally we present

an adaptation to the insertion process for this particular container, although we used

those described for the rectangle in 6.2.4.2 that concern to the sides of the container, we

incorporated here one more strategy to insert small circles around the diagonal of the

triangular container.

6.2.5.1 Formulation modifications

Regarding the formulation changes equation (6.2) is replaced by equation (6.21), whilst

equation (6.3) is replaced by the polar equivalent to equation (6.21).

xi + yi +
√
2ρRi ≤ L ∀i ∈ C (6.21)

To fully ensure that all circles are inside the triangle container we need to add equa-

tions (6.22) with its polar equivalent equation.

xi ≥ ρRi yi ≥ ρRi ∀i ∈ C (6.22)

With respect to the variable limits for circles expressed in the Cartesian system,

equations (6.7) and (6.8) are deleted, whilst for circles expressed in the polar system we

keep constraints as in equations (4.19). The upper limit for variable ρ is replaced by

L/

√

√

√

√2π
n
∑

i=1

R2
i .

6.2.5.2 RD heuristic modifications

Equation (6.12), to ensure that the circles are fully inside the container, is replaced by

ρ1 = min
{

xi/Ri, yi/Ri, (L− xi − yi)/(
√
2Ri) | i = 1, ..., n

}

(6.23)
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6.2.5.3 Insertion process modifications

The modifications needed for this container for the insertion process are associated with

those described in Section 6.2.4.2 which are related to the sides of the container. Hence,

here we present the modifications related to the diagonal of the triangle. To illustrate

how we determine if it is possible to locate small circles around the diagonal of the

triangle let us consider Figure 6.3.

i

j

s

x+ y = L

Figure 6.3: Inserting small circles around the diagonal of the right-angled isosceles tri-

angle

Investigating for a feasible location for circle s with radius Rs, (so ρRs after scaling)

around the diagonal of the triangle, we look for all circles that are tangent to the diagonal,

from those tangent circles we form pairs of circles which as well as tangent to the diagonal

of the container are tangent circles one to another, as circles i and j in Figure (6.3). We

consider the pair of circles (i, j) to form the non-linear system given in equations (5.15),

(5.16) and equation (6.24) to find a centre coordinate (x, y) for circle s with radius Rs.

x+ y +
√
2ρmaxRs ≤ L (6.24)
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6.2.6 Semicircular container

The semicircular container has not been considered in the literature before (to the best

of our knowledge) for the small nor the large variation instances that we are addressing,

hence here we present the modification to the scaled formulation and the heuristic.

6.2.6.1 Formulation modifications

For this container we add equation (6.25) with its equivalent polar form.

yi ≥ ρRi ∀i ∈ C (6.25)

Regarding the limits of the centres expressed in Cartesian coordinate system, equa-

tion (6.8) is replaced by 0 ≤ yi ≤ 1 ∀i ∈ C, whilst for centres expressed in polar coordi-

nate system equation (6.10) is modified as 0 ≤ θi ≤ π. The upper limit for variable ρ is

replaced by

√

√

√

√1/2
n
∑

i=1

R2
i .

6.2.6.2 RD heuristic modifications

Equation (6.12), to ensure that the circles are fully inside the container, is replaced by

ρ1 = min

{

yi/Ri, (1−
√

x2i + y2i )/Ri | i = 1, ..., n

}

(6.26)

6.2.6.3 Insertion process modifications

Modifications to the insertion process for the semicircular container have been already

described: inserting small circles around the curve of the semicircle follow the same

strategy as for the unit circle container detailed in Section 5.3.5, whilst for the bottom

side of the semicircle we follow the strategy described in Section 6.2.4.2.
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6.2.7 Circular quadrant container

The circular quadrant as well as the semicircular container has not been considered

before for the packing problem with non-identical circles. Here we considered the upper

right circular quadrant. The modifications to the scaled formulation and the heuristic

algorithm to have the circular quadrant with radius one as container will be given below.

6.2.7.1 Formulation modifications

For this container we add equation (6.27) with its equivalent polar form.

xi ≥ ρRi yi ≥ ρRi ∀i ∈ C (6.27)

Regarding the limits of the centres expressed in Cartesian coordinate system, equa-

tions (6.7) and (6.8) are replaced by 0 ≤ xi ≤ 1 and 0 ≤ yi ≤ 1, both ∀i ∈ C whilst for

centres expressed in polar coordinate system equation (6.10) is modified as 0 ≤ θi ≤ π/2.

The upper limit for variable ρ is replaced by

√

√

√

√1/4
n
∑

i=1

R2
i .

6.2.7.2 RD heuristic modifications

Equation (6.12), to ensure that the circles are fully inside the container, is replaced by

ρ1 = min

{

xi/Ri, yi/Ri, (1−
√

x2i + y2i )/Ri | i = 1, ..., n

}

(6.28)

6.2.7.3 Insertion process modifications

Modifications to the insertion process for the circular quadrant container are similar to

those for the semicircle: inserting small circles around the curve of the circular quadrant

follow the strategy as for the unit circle container given in Section 5.3.5, whilst for

the bottom and left side of the circular quadrant we adopt the strategy described in

Section 6.2.4.2.
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6.3 Computational results

The instances presented here consider six different containers; the unit square (so a

rectangle of length L = 1 and width W = 1), a rectangle of length L = 5 and width

W = 1, a rectangle of length L = 10 and width W = 1, a right-angled isosceles triangle,

a semicircle with radius one and a circular quadrant with radius one. For these six

containers we address the case when the radii of the circles to be packed are defined

by Ri = i and Ri = 1/
√
i for all i = 1, ..., n, giving the best solution obtained by our

heuristic. For the rectangular cases we present results for instances where length L = 5

and L = 10 and width W = 1 considering Ri =
√
i for all i = 1, ..., n. Instances of the

type Ri = i we treat as large variation instances whilst those with Ri = 1/
√
i or Ri =

√
i

we treat as small variation instances.

The hardware used is an Intel(R) Core(TM) i5-2500 3.30 GHz CPU with 4.00 GB.

The algorithm was coded in MatLab 7.9.0 using SNOPT [18, 35] as the non-linear solver.

6.3.1 Rectangular containers

Recall that, for rectangular containers, our scaled view of the unequal circles packing

problem leads to new problems that have not been considered previously in the literature.

In this section we present results for scaled problems involving three different rectangular

containers: the unit square, a rectangle of length L = 5 and width W = 1 and a rectangle

of length L = 10 and width W = 1. Here we again consider Ri = i (so large variation

instances) and Ri = 1/
√
i (so small variation instances) as in Table 5.1 and Table 5.2.

We found that the small variation instances (Ri = 1/
√
i) with a rectangle of length

L = 5 and width W = 1 always (for n ≤ 35) gave a solution ρmax = 0.5. The reason for

this is explained in the next paragraph. So here we consider small variation instances of

the form Ri =
√
i for the rectangle L = 5, W = 1. A similar situation is encountered for

the rectangle with dimensions (L = 10,W = 1), hence the small variation instances for
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this container is with Ri =
√
i.

When Ri = 1/
√
i the largest circle has radius after scaling of ρR1 = ρ whilst the

smallest circle has radius ρ/
√
n. As the objective is to find the maximum scaling factor

ρ to fit the circles without overlaps, for the case L = 5, W = 1 ρ will be bounded by the

largest circle and the width of the rectangular container, hence as the largest circle has

radius 1 (diameter 2) and W = 1 then with ρ = 0.5, the largest circle with scaled radius

0.5 is inside and touching the top and bottom sides of the container. Hence ρ = 0.5

will pack the largest circle into the rectangle L = 5, W = 1. Computational experience

indicated that for n ≤ 35 we could also pack the other circles with ρ = 0.5. If we wish to

find the value for n for which we definitely cannot pack the n circles into the rectangle

with ρ = 0.5 then, from area considerations, n must satisfy
∑n

i=1 π(0.5Ri)
2 > LW

i.e.
∑n

i=1 π(0.5)
2(1/
√
i)2 = 0.25π

∑n
i=1(1/i) > LW . This is a harmonic series and it is

easy to verify numerically that when L = 5, W = 1 we need n ≥ 327. Such a large value

of n would be outside the effective computational range of our RD heuristic and so we

do not consider the case Ri = 1/
√
i for the rectangle L = 5, W = 1 here. Similarly for

L = 10, W = 1 we also do not consider the case Ri = 1/
√
i.

In Table 6.1 we present the best results from our RD heuristic after five replications.

Each replication consists of 50 iterations for the unit square, whilst for the rectangular

containers with L = 5, W = 1 and L = 10, W = 1 we (for computational reasons) halved

the number of iterations from 50 to 25.

The instances considered range from n = 5 to n = 35 circles. The results presented in

Table 6.1 are presented in terms of ρmax which is the maximum common scaling factor,

such that multiplying each radius by ρmax enables all circles to be packed into the con-

tainer considered. In Figure 6.4 we present a picture that shows the best results obtained

by our RD heuristic for the rectangular containers with n = 35 circles. Considering the

average times at the foot of Table 6.1 and Table 6.2 it is clear that our RD heuristic is

computationally more demanding when we have the rectangular container with L = 10
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and W = 1 than when we have the the rectangular container with L = 5 and W = 1 or

the unit square container.

Because the scaled view for rectangular containers has not been considered in the

literature previously we cannot make any comparison between the results in Table 6.1

and previous work in the literature. However we believe that the scaled view is a natural

way to view the problem of packing unequal circles into containers (of any type) and

expect that later work in the literature will adopt the same view and so future workers

will be comparing their results against the ones we have presented in Tables 6.1 and 6.2.
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Table 6.1: RD results for the large variation instances Ri = i for the unit square and two rectangles of length L = 5, L = 10 and width

W = 1

Best result Total Best result Total Best result Total

found ρmax time found ρmax time found ρmax time

Unit square in Rectangle in Rectangle in

n L = W = 1 minutes L = 5 W = 1 minutes L = 10 W = 1 minutes

5 0.06408909 61.35 0.10000000 25.29 0.10000000 21.71

6 0.05148561 63.91 0.08333333 42.96 0.08333333 36.99

7 0.04198350 71.10 0.07142857 66.75 0.07142857 62.06

8 0.03435803 68.24 0.06250000 71.45 0.06250000 64.27

9 0.02962585 85.54 0.05555556 103.52 0.05555556 95.15

10 0.02591988 103.81 0.05000000 138.56 0.05000000 141.45

11 0.02237621 125.08 0.04545455 184.89 0.04545455 198.31

12 0.01991135 121.35 0.04166667 176.87 0.04166667 206.60

13 0.01775996 147.63 0.03804136 218.81 0.03846154 271.91

14 0.01600778 171.13 0.03410353 273.82 0.03571429 350.14

15 0.01453245 204.66 0.03065862 339.24 0.03333333 461.34

16 0.01324257 200.47 0.02804934 353.39 0.03125000 454.01

17 0.01213436 238.52 0.02556902 434.54 0.02941176 573.40

18 0.01116368 279.11 0.02360413 497.38 0.02777778 708.75

19 0.01029409 318.65 0.02193570 587.17 0.02631579 863.57

20 0.00955011 316.77 0.02049985 598.45 0.02500000 872.58

25 0.00688601 598.91 0.01490721 1167.88 0.02000000 1662.87

30 0.00529005 1024.13 0.01151872 1959.20 0.01563915 3296.32

35 0.00421150 1665.16 0.00922810 3298.13 0.01245317 5557.62

Average 308.71 554.65 836.79
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Table 6.2: RD results for the small variation instances for the unit square and two rectangles of length L = 5, L = 10 and width W = 1

(a) Results when Ri = 1/
√
i ∀i = 1, ..., n

Best result Total

found ρmax time

Unit square in

n L = W = 1 minutes

5 0.32330862 17.32

6 0.30882677 21.34

7 0.30571049 24.95

8 0.30270079 28.87

9 0.30048241 34.29

10 0.29769203 41.66

11 0.29380771 48.91

12 0.28859081 58.79

13 0.28574260 70.34

14 0.28244379 84.15

15 0.28115079 99.87

16 0.27906616 118.61

17 0.27518822 140.17

18 0.27413312 165.28

19 0.27190253 191.76

20 0.27056353 223.22

25 0.26257532 444.55

30 0.25828123 828.73

35 0.25330659 1466.18

Average 216.26

(b) Results when Ri =
√
i ∀i = 1, ..., n

Best result Total Best result Total

found ρmax time found ρmax time

Rectangle in Rectangle in

n L = 5 W = 1 minutes L = 10 W = 1 minutes

5 0.22360680 28.39 0.22360680 28.20

6 0.20412415 39.06 0.20412415 44.23

7 0.18898224 52.64 0.18898224 72.09

8 0.17677670 58.44 0.17677670 103.47

9 0.15820579 74.93 0.16666667 145.01

10 0.14202479 94.98 0.15811388 189.79

11 0.12973535 120.15 0.15075567 237.79

12 0.11970014 146.63 0.14433757 294.21

13 0.11083253 181.17 0.13867505 343.42

14 0.10351509 218.03 0.13363062 397.54

15 0.09723726 263.12 0.12909944 444.69

16 0.09235499 313.29 0.12500000 477.04

17 0.08733291 374.53 0.12126781 482.40

18 0.08345285 446.17 0.11461741 577.36

19 0.07943738 524.95 0.10989643 697.41

20 0.07617540 617.6 0.10273367 846.55

25 0.06224501 1341.57 0.08205458 1955.45

30 0.05193559 2668.18 0.06950574 3687.23

35 0.04464354 4458.87 0.06059512 5408.43

Average 632.77 864.86
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√
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(c) Rectangle L = 5, W = 1, Ri = i
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(d) Rectangle L = 5, W = 1, Ri =
√
i
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(e) Rectangle L = 10, W = 1, Ri = i
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(f) Rectangle L = 10, W = 1, Ri =
√
i

Figure 6.4: Circle packing problem with n = 35 non-identical circles
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6.3.2 Other containers

Here we present the computational results that correspond to a new set of instances for

the right-angled isosceles triangle, the semicircle and circular quadrant container. For

each container we considered the large and the small variation instances (Ri = i and

Ri = 1/
√
i). The number of circles considered in each set range from n = 5, 6, ...20, 25, 30

and 35. The results were produced with our RD heuristic after 5 replications, where each

replication consisted of 25 iterations.

In Table 6.3 we present the results for the large variation instances, that is, when

the radii is defined as Ri = i i = 1, ..., n (before scaling) and the total computation time

given in minutes for the three containers considered. In Table 6.3 we can see from the

last row that the right-angled isosceles triangle is the container that on average takes

most computation time to solve large variation instances with an average total time of

104.49 min, followed by the semicircular container with an average total time of 60.06

min. and lastly the circular quadrant with an average total time of 58.63 min.

In a similar way, Table 6.4 is as Table 6.3 but for the small variation instances

considering the same three containers. Here again, the right-angled isosceles triangle is

the container that requires more time to solve a small variation instance, from the bottom

row in Table 6.4, this container on average takes 119.66 min, whilst the semicircular and

circular quadrant containers take an average total time of 106.31 min and 102.68 min

respectively.

For illustrative purpose we give Figure 6.5 that shows the packing of 35 non-identical

circles for large variation instances for the right-angled isosceles triangle, a semicircle

and a circular quadrant container in Figures 6.5(a), 6.5(c) and 6.5(e) respectively, whilst

an example of small variation instances are in Figures 6.5(b), 6.5(d) and 6.5(f).

As for the rectangular container, to the best of our knowledge there is not yet work

considering the large and/or the small variations instances with these containers, hence

it was not possible to make any comparisons for both.
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Table 6.3: RD heuristic results for the triangle, the semicircle and the circular quadrant when Ri = i i = 1, ..., n

Best result Total time Best result Total time Best result Total time

n found ρmax in min found ρmax in min found ρmax in min

Triangle Semicircle Circular quadrant

5 0.04322180 19.54 0.08276031 4.23 0.05760692 3.97

6 0.03402663 24.39 0.06509192 5.82 0.04483669 5.57

7 0.02799637 17.72 0.05251289 7.85 0.03721518 7.39

8 0.02362081 20.82 0.04402540 7.99 0.03085453 7.95

9 0.02044733 21.28 0.03699919 10.65 0.02633990 10.08

10 0.01751620 22.15 0.03221533 13.75 0.02284130 13.11

11 0.01540367 25.78 0.02825222 17.59 0.01995210 16.65

12 0.01359076 26.36 0.02510088 17.94 0.01762054 17.42

13 0.01220424 30.01 0.02232198 22.09 0.01571118 21.55

14 0.01096585 35.12 0.02000427 27.54 0.01420988 26.55

15 0.00995738 42.28 0.01820520 33.86 0.01282254 31.99

16 0.00906386 43.80 0.01655209 34.67 0.01172732 33.18

17 0.00831046 54.37 0.01510383 42.11 0.01077823 40.47

18 0.00767919 66.25 0.01394521 49.76 0.00985276 47.99

19 0.00707264 80.75 0.01290924 59.56 0.00913019 57.03

20 0.00660630 84.51 0.01205116 62.57 0.00848638 58.27

25 0.00474646 192.00 0.00861995 119.84 0.00609799 119.90

30 0.00365469 402.23 0.00662500 219.63 0.00470227 224.49

35 0.00291360 775.91 0.00526477 383.78 0.00374555 370.47

Average 104.49 60.06 58.63
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Table 6.4: RD heuristic results for the triangle, the semicircle and the circular quadrant when Ri = 1/
√
i i = 1, ..., n

Best result Total time Best result Total time Best result Total time

n found ρmax in min found ρmax in min found ρmax in min

Triangle Semicircle Circular quadrant

5 0.20000000 21.51 0.40102148 5.22 0.28920238 5.06

6 0.16666667 18.84 0.39455239 6.64 0.28048620 6.77

7 0.14285714 17.05 0.38354371 8.60 0.27389807 8.89

8 0.12500000 18.33 0.37892907 10.91 0.26977048 10.74

9 0.11111111 19.76 0.37528528 13.80 0.26721593 13.54

10 0.10000000 23.35 0.36933870 17.11 0.26344525 16.93

11 0.09090909 27.23 0.36423389 21.09 0.25909024 20.96

12 0.08333333 32.77 0.36091472 25.94 0.25585662 25.74

13 0.07692308 40.26 0.35905701 31.65 0.25324214 31.44

14 0.07142857 46.87 0.35340477 38.26 0.25120939 37.94

15 0.06666667 55.67 0.35041621 46.14 0.24886577 45.52

16 0.06250000 66.44 0.34764393 55.11 0.24675495 54.32

17 0.05882353 76.85 0.34577669 65.37 0.24342555 64.52

18 0.05555556 91.83 0.34257623 77.38 0.24291361 76.27

19 0.05263158 104.62 0.34046525 91.29 0.24124194 89.47

20 0.05000000 121.03 0.33808797 107.09 0.23973491 104.80

25 0.04000000 248.92 0.32990049 224.41 0.23267521 215.85

30 0.03333333 456.78 0.32341164 423.06 0.22829197 405.29

35 0.02857143 785.38 0.31721067 750.74 0.22495966 716.81

Average 119.66 106.31 102.68
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Figure 6.5: Circle packing problem with n = 35 non-identical circles
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6.4 Conclusions

In this chapter we extended the new scaled formulation model for packing non-identical

circles originally given for the unit circle container in the previous chapter to other

containers. The containers considered are: the unit square, a rectangle with length

L = 5 and width W = 1, a rectangle with length L = 10 and width W = 1, a right-

angled isosceles triangle, a semicircle with radius one and a circular quadrant with radius

one. For all these containers we considered a set of n = 5, 6, ..., 20, 25, 30, 35 non-identical

circles for the small variation instances and the large variation instances. We described

in detail the appropriate modification to the mathematical model and to the heuristic

algorithm.

To the best of our knowledge, there is no work that addresses the packing problem

with non-identical circles for other containers than the circular one with which we can

compare our results. Some problems found in the literature although address the packing

problem with rectangular containers are not equivalent to the problem we are presenting

in this thesis. Hence, we are considering a new problem and the results from the large

and small variation instances represent a contribution for the six containers considered

here.

144



Chapter 7
MINLP through FSS

In this chapter we present two implementations of formulation space search (FSS) to

solve Mixed-Integer Non-linear Programming problems, denoted as MINLP. We focus

on problems where the integer variables are zero-one, so binary variables. In Section 7.1

we give a brief overview on the applications where we can find MINLP problems, we

present their general formulation model. Section 7.2 presents the reformulation pro-

posed whilst in Section 7.3 we describe our first approach implementing FSS to solve

MINLP problems denoted as FSS-MINLP-1, we give the implementation used and draw

conclusions over limited computational results. this led us to rethink our approach and

to consider a different non-linear solver hence, Section 7.4 presents our second and more

successful approach denoted FSS-MINLP-2. Finally in Section 7.5 we end the chapter

with conclusions.

7.1 MINLP problem

Mixed-integer non-linear problems (MINLP’s) frequently appear in industry, some of

the applications are: process flow sheets, portfolio selection, batch processing in chemical

engineering, optimal design of gas or water transmission networks [65]. MINLP problems

are by nature challenging as they combine discrete and continuous variables and are non-
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Chapter 7. 7.1. MINLP problem

linear. Problems of this type have been subject of the development of software capable

to solve them, in [13] the authors give a descriptive summary of the available solvers such

as: αBB, αECP, AOA, BARON, BNB, BONAMI, COUENNE, DICOPT, FICO Xpress-

SLP, FILMINT, FMINCONSET, KNITRO, LAGO, LINDOAPI, LOGMIP, MIDACO,

MILANO, MINLP BB, MISQP, MOSEK, OQNLP, SBB and SCIP along with their

compatibility with modelling languages such as AIMMS, AMPL, GAMS, and NEOS.

One difficulty for researchers into MINLP is that, as this list demonstrates, there are so

many possible software packages which can be used. Which one might be best for any

particular MINLP is a very open question.

In [22] Grossmann gives an overview of the methods that have been more studied

and implemented for MINLP problems such as: branch and bound, outer approximation,

generalized benders and extended cutting plane methods. In [11] the authors present

the algorithms that were implemented and resulted in the creation of an open-source

environment called COIN-OR.

Literature related with mixed-integer non-linear problems is abundant, here we only

focused on those with a general perspective, however there are several works addressing

the particular problems found in industry that are being tackled as MINLP problems.

The general form of a mixed-integer (zero-one) non-linear problem is

min c(x, y) (7.1)

subject to A(x, y) ≤ b (7.2)

x zero-one (7.3)

y continuous (7.4)

Objective (7.1) describes the aim of the problem which is minimize function c that

depends on zero-one variables (x) and/or continuous variables (y). Equation (7.2) repre-

sents the constraints. Let us note that c and A are general functions (linear or non-linear)

of the zero-one variables x and the continuous variables y. Let us consider the number
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Chapter 7. 7.2. FSS formulation for MINLP problems

of zero-one variable be n and be denoted as xi i = 1, ..., n. Expressions (7.3) and (7.4)

represent the limits on zero-one variables and continuous variables respectively.

7.2 FSS formulation for MINLP problems

To solve mixed-integer (zero-one) non-linear programming problems we propose an ap-

proach that is based on formulation space search. As we explained in section 2.5 for-

mulation space search consists of solving a problem using equivalent formulations of the

original problem that will allow escape from stationary points thus increasing our chances

to obtain a better solution.

The basis of the approach presented here considers an equivalent formulation to the

original problem.This is based on

n
∑

i=1

xi(1− xi) = 0 (7.5)

0 ≤ xi ≤ 1 i = 1, ..., n (7.6)

In essence this single non-linear equality, plus the relaxation of the zero-one requirement

to allow xi to be continuous will automatically ensure that the xi actually assume zero-

one values in the solution. Although this reformulation of the problem is descriptively

accurate, and enforces variables xi to be equal zero or one, equation 7.5 may impose

a harder condition to be satisfied, hence we have adopted a more flexible version of

equation 7.5 to be the framework of our first approach presented in Section 7.3.

7.3 First approach FSS-MINLP-1

The basic approach involves decomposing equation (7.5) into different constraints, each

one of these constraints will be converted into inequalities with right hand side δk, this

will make the new constraint more easily satisfied.

Before presenting the model let us consider some notation:

147



Chapter 7. 7.3. First approach FSS-MINLP-1

• K represents the number of sets we divide the zero-one variables into, having K

mutually exclusive sets

• Pk = {i|variable i ∈ set k} k ∈ {1, ...,K}

• α a convergence factor

• T is the iterative counter

The general model for this approach is presented in equations (7.7)-(7.11)

min c(x, y) (7.7)

subject to A(x, y) ≤ b (7.8)

∑

i∈Pk

xi(1− xi) ≤ δk k = 1, ...,K if T 6= 1 (7.9)

0 ≤ xi ≤ 1 i = 1, ..., n (7.10)

[xi], y continuous (7.11)

the explicit definition of δk will be given in detail in Section 7.3.1.

7.3.1 Algorithm

The pseudocode of the algorithm proposed to implement the FSS approach to solve

mixed-integer non-linear problems is presented in Algorithm 7.9. The general idea of

the FSS approach for mixed-integer zero-one non-linear programming problems is to

solve in an iterative way continuous non-linear problems that in every iteration force the

currently continuous variables xi to approach zero-one through equation 7.9.

The algorithm starts with randomly assigning the zero-one variables to a set k (where

k ∈ {1, ...,K}) where Pk = {i|variable i ∈ set k} k = 1, ...,K. At this point we relax the

zero-one variables to continuous variables in the interval [0, 1].
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For the iteration process we solve the non-linear problem represented with equa-

tions (7.7)-(7.11), this process is denoted in the pseudocode as NLP (x, y), here let us

notice that the additional constraints are not considered in iteration one (T = 1), that

is, for iteration one we have maximum flexibility in deciding values for the zero-one vari-

ables [xi]. Once we have obtained a solution from the continuous formulation we record

the values of the zero-one variable [xi] in the current solution using Xi = xi i = 1, ..., n.

Clearly the Xi may well be continuous in the previous solution arrived at, hence we

round Xi i = 1, ..., n to its nearest integer {0, 1} values giving [Ri]. Fixing this integer

values to the zero-one variables, we resolve to seek continuous variables that satisfy the

constraints (7.12)-(7.14). This problem in the pseudocode is denoted as NLP (R, y).

min c(R, y) (7.12)

subject to A(R, y) ≤ b (7.13)

y continuous (7.14)

Achieving feasible solution for MINLP problems may be difficult, hence if a feasible

solution from constraints (7.12)-(7.14) is obtained then we have a feasible solution to the

mixed-integer zero-one non-linear problem. The iterative process finishes when
K
∑

k=1

δk ≤

10−5, if this condition has not been met we can proceed to the next iteration with a

different space search by changing both Pk and δk k = 1, ...,K. We randomly assign

each of the zero-one variables to a set k as before. To change δk we know that given

the current continuous values Xi for the zero-one variables the current left-hand side of

the subset sum constraints is
∑

i∈Pk

Xi(1 −Xi). Hence set δk = [
∑

i∈Pk

Xi(1 −Xi)]/α with

k = 1, ...,K. Here we divide the current right-hand side of the subset sum constraints

by the factor α at each iteration. The larger the value of α the quicker we force this

right-hand side down towards zero.
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Algorithm 7.9 FSS-MINLP-1 for mixed-integer non-linear problems pseudocode

Function (x, y)← FSS-MINLP-1(replication limit)

t← 0

repeat

Initialisation: K ← n
3 α← 2 T ← 1

Randomly assign each zero-one variables to a set k

while not termination condition do

(x, y)← NLP (x, y) {solves a continuous problem}

Xi ← xi {record current cont sol}

Ri ← 0 if Xi ≤ 0.5, Ri = 1 otherwise {rounding to nearest integer}

y ← NLP (R, y) {solves a continuous problem}

if

K
∑

k=1

δk ≤ 10e−5 then

STOP

else

T ← T + 1 {update iteration counter}

end if

change Pk and δk with k = 1, ...,K

δk ← [
∑

i∈Pk

Xi(1−Xi)]/α {set δk to the new constraints}

end while

until t = replication limit

7.3.2 Three variants of our approach

In order to increase our chances to reach the best-known solution with our heuristic we

have adopted three variants of the formulation described in equations (7.7)-(7.11), the

algorithm used is that given in pseudocode 7.9.

Variant 1. The first formulation variant consists of modifying the objective func-
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tion leaving the set of constraints as in the original problem, essentially we consider a

penalty function with a µ parameter. The formulation variant 1 is represented with

equation (7.15) as the objective function and with equations (7.8)-(7.11) as the set of

constraints.

min c(x, y) + µ

n
∑

i=1

xi(1− xi) (7.15)

The idea for this formulation is to avoid imposing a subset of constraints that may well

be more difficult to be satisfied, instead we used a big enough parameter µ, hence when

in the objective function solution the part with the parameter is equal to zero, then we

know that we have found a feasible solution of the original problem.

Variant 2 and Variant 3. For numerical reasons related to rounding errors we have

adopted as Variant 2 a modification of the formulation given in equations (7.8)-(7.11)

by considering equation (7.9) as

n
∑

i=1

|xi||(1− xi)| ≤ δk k = 1, ...,K. (7.16)

In a similar way Variant 3 is a modification of Variant 1 where the objective function

given in equation (7.15) is now considered as

min c(x, y) + µ

n
∑

i=1

|xi||(1− xi)| (7.17)

7.3.3 Computational results

Results presented in this section were produced using an Intel Core 2 pc (2.26GHz,

4GB RAM). Our heuristic was coded in MATLAB 7.0 (using Windows XP) and as a

subroutine we used the non-linear optimisation solver SNOPT [18, 35].

As a first attempt to solve the MINLP problems we implemented the FFS approach

described in 7.9 with two different problems that are available at [16] under the name

st e35 and gasnet. The tests were conducted considering that all four versions of the

heuristic algorithm will be running for five replications, here the number of iterations
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depend on the stopping criteria which if we recall from pseudocode 7.9 is when

K
∑

k=1

δk ≤

10−5. Results presented in Table 7.1 reflect the behaviour of the FSS approach. The

first row of Table 7.1 shows the name of the instances considered, the next five rows give

general information about each instance followed by the best-known solution and the

solver used, all of this taken from [16]. Below there are four blocks of results recorded

from the FSS implementation and the three variants explained above. We present the

value achieved for the objective function, in order to have an insight we present the

proportion of feasible solutions (number of times that we obtained a feasible solution

over the total number of solutions), the proportion of optimal solutions over those being

feasible (number of optimal solutions/number of feasible solutions) and finally we report

the total computational time spent.

Results from Table 7.1 indicate that for “st e35” problem the FSS implementation

along with the other three tested variants reached the best-known solution. In terms

of computation time “st e35” problem can be solved within a range of 72.27 to 90.27

seconds. By contrast, results in Table 7.1 for “gasnet” problem indicate that our best

solution 6999400.00 was obtained with the original FSS approach in 11.24 hours. This

contrasting computational time spent between the two problems may be explained by

their own nature, “st e35” problem consist of linear constraints and a non-linear objective

function, however “gasnet” problem consist of a linear objective function with linear

and non-linear constraints, which makes it more difficult to find a feasible solution.

Considering that this implementation of our FSS approach did not reach the best solution

for both instances tested (solely for the problem with only linear constraints) we did not

pursue it into more instances, instead we decided to rethink our approach and to change

of non-linear solver. The work carried out is fully described in section 7.4.
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Table 7.1: Results from FSS implementation

Problem name st e35 gasnet

objective function non-linear linear

No of linear constraints 39 25

No of non-linear constraints 0 44

Total no of variables 32 90

No of binary variables 7 10

Best-known solution (from [16]) 64868.08 6999381.56

Solver used (from [16]) Baron Baron

Results from adding Σi∈Pk
xi(1− xi) ≤ δk k = 1, ...,K

objective function value 64868.0768 6999400.00

(feasible/total) snopt solutions 0.88 0.10

(optimal/feasible) snopt solutions 0.07 0.20

Total time in seconds 72.36 40472 (11.24 hrs)

Results from considering min c(x, y) + µΣixi(1− xi)

Objective function value 64868.0768 7004600.00

(feasible/total) snopt solutions 0.88 0.07

(optimal/feasible) snopt solutions 0.07 0.33

time in seconds 90.27 29188 (8.11 hrs)

Results from adding Σi∈Pk
|xi||(1− xi)| ≤ δk k = 1, ...,K

objective function value 64868.0768 7007449.96

(feasible/total) snopt solutions 0.88 0.11

(optimal/feasible) snopt solutions 0.21 0.14

time in seconds 72.27 45541.62 (12.65hrs)

Results from considering min c(x, y) + µΣi|xi||(1− xi)|

objective function value 64868.0768 7004607.81

(feasible/total) snopt solutions 1.00 0.14

(optimal/feasible) snopt solutions 0.06 0.02

time in seconds 85.08 8 hrs
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7.4 Second approach FSS-MINLP-2

As a consequence of the results obtained in 7.3.3 we continued our research and in this

section we present a new adaptation of the FSS approach proposed in 7.3.1 to solve

mixed-integer non-linear problems. We present computational results using a recently

developed solver called Minotaur [46].

Let us recall here that an MINLP problem is given by equations (7.1)-(7.4), in order to

motivate our FSS approach first observe that the condition x is zero-one (equation (7.3))

can be replaced by equations (7.5) and (7.6)

Here we have replaced the explicit integrality condition on x given in equation (7.3)

by the condition that x is continuous (between zero and one, equation (7.6)), but with

integrality being enforced by the single non-linear equality constraint, equation (7.5).

Now given the capabilities of non-linear optimisation software one might suspect

that simply replacing an explicit integrality condition by equations (7.5) and (7.6) would

not be computationally successful, since we would be hoping to generate a (globally

optimal) solution to a continuous non-linear optimisation problem with a very tight

equality constraint (equation (7.5)). Limited computational experience with the solver

we used, Minotaur [46], in fact indicated that even generating feasible solutions when

equation (7.5) was present in the formulation was difficult.

Hence, drawing on our experience with FSS, we replace equation (7.5) by:

n
∑

i=1

xi(1− xi) ≤ δ (7.18)

Conceptually by initially setting δ to a suitably high value, then reducing it in systematic

fashion, we are solving a sequence of different formulations of the problem. In this process

we hope to be able to generate good-quality feasible solutions. Our algorithm for this is

given in section 7.4.1.
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7.4.1 Algorithm

The pseudocode for our FSS algorithm for MINLP’s is presented in Algorithm 7.10. We

start by removing the integrality requirement and solving the continuous relaxation of

the problem (equations (7.1)-(7.2),(7.4),(7.6)). Let the solution for the relaxed zero-

one variables be Xi i = 1, . . . , n. We can then set an initial value for δ using δ =

∑n
i=1Xi(1−Xi).

We now iterate, solving equations (7.1)-(7.4),(7.18) and reducing δ by a factor α

(0 < α < 1) at each iteration. Note that the optimisation problem we solve here is the

original MINLP (equations (7.1)-(7.4)), with the addition of equation (7.18). The idea

is that adding this constraint perturbs the formulation and hence, given the nature of

any non-linear solution software, may well lead to a different solution. We terminate

when δ is small (≤ 10−5) or we have performed a number of consecutive iterations (three

iterations) without changing the value of the best solution found. Based on limited

computational experience we reduced δ by a factor α = 0.9 at each iteration. In the

pseudocode seen in Algorithm 7.10 zbest is the best feasible solution found.

7.4.2 Computational results

7.4.2.1 Test problems

The results from our approach were obtained using an Intel(R) Core(TM) 3.3 GHz

CPU with 4.0 GB. The algorithm was implemented in AMPL [69] using the Minotaur

solver [46]. Minotaur is a recently developed toolkit for solving mixed-integer non-linear

optimisation problems. It has two main solvers, one based on non-linear branch-and-

bound denoted as bnb, the other an implementation of a QP-diving algorithm. Here we

used the bnb solver.

We considered 51 standard benchmark problems taken from MINLPLib [12, 16].

Table 7.2 shows the problem considered. Note that many of these problems are very
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Algorithm 7.10 FSS-MINLP-2 for mixed-integer non-linear problems pseudocode

Initialisation: α← 0.9 zbest ←∞ t← 0 tz ← 0

[Xi]← solve equations (7.1)− (7.2), (7.4), (7.6)) {Solve the continuous relaxation}

Set δ ←∑n
i=1Xi(1−Xi)

Iterative process:

repeat

t← t+ 1 {Update the iteration counter}

z ← solve equations (7.1)− (7.4), (7.18)

zbest ← min[z, zbest] {Update the best solution found}

if zbest = zbest at iteration (t− 1) then

tz ← tz + 1 {Update counter tz in iteration t}

end if

update δ ← αδ

until δ ≤ 10−5 or tz = 3

large. On average these problems have 1073 constraints and 721 continuous, 566 zero-

one, variables each.

With regard to whether (or not) these MINLP’s are convex MINLPlib does not

categorise problems as to their convexity status [77]. Hence we have attempted a cate-

gorisation based on information given by other authors (Tables 8.1 and 8.2 in [15], Table

6 in [47]) and this is shown in the last column of Table 7.2. In that column n/k indicates

not known, unclear indicates that the sources cited differ as to their classification of a

problem. As is stressed in [15] this convexity classification should not be regarded as com-

pletely accurate, however the information shown with regard to convexity in Table 7.2

is the best that we could obtain.

With reference to our choice of solver note here that results given recently in [61]

indicate that Minotaur is currently one of the best solvers for the MINLP’s in MINLPLib.
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Table 7.2: MINLPLib problems considered

Name Number of Convex?

constraints continuous variables zero-one variables

contvar 285 209 88 n/k

csched1 23 14 63 no

csched2 138 93 308 unclear

csched2a 138 93 140 no

deb10 130 161 22 no

deb6 508 456 20 no

deb7 898 794 20 no

deb8 898 804 20 no

deb9 918 794 20 no

eniplac 190 118 24 no

enpro48pb 215 62 92 no

enpro56pb 192 55 73 no

ex1265 75 31 100 no

ex1266 96 43 138 no

gasnet 70 81 10 no

minlphix 93 65 20 n/k

netmod dol1 3138 1537 462 n/k

netmod dol2 3081 1537 462 n/k

nuclear10a 3340 2091 10920 no

nuclear14 1227 987 576 no

nuclear14a 634 393 600 no

nuclear14b 1786 969 600 no

nuclear24 1227 987 576 no

nuclear24a 634 393 600 no

nuclear24b 1786 969 600 no

nuclear25 1304 1054 625 no

nuclear25a 660 409 650 no

nuclear25b 1910 1034 650 no

nuclear49 3874 3335 2401 no

nuclear49a 1432 892 2450 no

nuclear49b 6234 3293 2450 no

nuclearvf 318 184 168 no

ortez 75 70 18 no

parallel 116 181 25 no

ravempb 187 59 54 no

risk2b 581 450 14 n/k

risk2bpb 581 450 14 yes

saa 2 6206 4008 400 no

space25 236 144 750 no

spectra2 73 40 30 no

stockcycle 98 49 432 yes

super1 1659 1264 44 no

super2 1659 1264 44 no

super3 1659 1264 44 no

super3t 1343 1012 44 no

synheat 65 45 12 no

util 168 118 28 no

waste 1992 2085 400 no

water4 138 70 126 no

waterful2 384 182 448 n/k

waterx 55 57 14 no
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7.4.3 FSS versus Minotaur

Our computational results for FSS and Minotaur are given in Table 7.3. In the first

column we give the name of the problem and in the second column the value of the best-

known solution as taken directly from [16]. Columns three and four give the solution

obtained by Minotaur when it solves the original MINLP together with the corresponding

computation time (in seconds). Here if the solution is equal to the best-known solution

we indicate this by the word “best”. Note that for some of these problems Minotaur is

unable to generate a feasible solution. Columns five and six give the solution obtained

by our FSS approach, together with the corresponding solution time. Column seven

compares the FSS solution value with that obtained by Minotaur. With regard to time

limits we imposed a time limit of 18000 seconds (5 hours) for both Minotaur and FSS

and problems that terminated at time limit are shown by the time being bracketed in

Table 7.3.

Considering Table 7.3 and the last column comparing the FSS solution with the

Minotaur solution we have that:

• for 30 of the 51 problems considered the two approaches give the same solution,

with the average time for FSS being 1665.9 seconds, as compared with 1731.6

seconds for Minotaur. Hence for these problems we can conclude that FSS is com-

putationally competitive with Minotaur, giving the same result in approximately

the same (average) time.

• for 10 of the 51 problems considered (namely csched2a, enpro56pb, ex1265, gasnet,

nuclearvf, risk2b, risk2bpb, water4, waterful2 and waterx) FSS gives a better qual-

ity solution than Minotaur. Here the average times are 459.7 seconds for FSS, but

1529.0 seconds for Minotaur. In other words FSS gives ten better quality solutions

in (on average) 30% of the time taken by Minotaur. Looking at the average per-

centage solution gap (as measured by averaging 100(solution value - best-known
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Table 7.3: FSS results

Name Best-known Minotaur FSS FSS solution versus

solution Solution Time (s) Solution Time (s) Minotaur solution

contvar 809149.8 best 9.7 best 59.8 equal

csched1 -30639.3 best 0.1 best 0.7 equal

csched2 -166102 infeasible 0.1 infeasible 0.1 equal

csched2a -165399 -163906 44.5 best 224.6 better

deb10 209.43 best 0.2 best 1.0 equal

deb6 201.7393 229.0111 3.3 229.0111 3.7 equal

deb7 116.5846 168.9588 29.7 infeasible 0.9 worse

deb8 116.5846 168.9588 38.0 168.9588 47.1 equal

deb9 116.5846 168.9588 23.4 infeasible 0.7 worse

eniplac -132117 best 193.8 best 718.6 equal

enpro48pb 187277.3 best 2.6 best 11.5 equal

enpro56pb 263428.3 infeasible 0.1 best 19.7 better

ex1265 10.3 15.1 0.1 best 261.3 better

ex1266 16.3 best 1.4 best 6.1 equal

gasnet 6999382 7004608 0.3 best 0.7 better

minlphix 316.6927 best 0.1 best 0.1 equal

netmod dol1 -0.56 best (18000) infeasible 5.4 worse

netmod dol2 -0.56 best 511.8 best 17352.0 equal

nuclear10a - infeasible (18000) infeasible (18000) equal

nuclear14 -1.1277 -1.1286 12.4 -1.1286 12.3 equal

nuclear14a -1.1296 -1.1292 5.7 -1.1292 5.8 equal

nuclear14b -1.1169 -1.123 10203.5 -1.121 14405.1 worse

nuclear24 -1.1277 -1.1286 12.3 -1.1286 12.2 equal

nuclear24a -1.1296 -1.1292 5.6 -1.1292 5.8 equal

nuclear24b -1.1169 -1.12301 (18000) -1.121 14403.4 worse

nuclear25 -1.1186 -1.11983 540.0 -1.11937 539.8 worse

nuclear25a -1.1202 -1.12001 3731.4 -1.12001 3787.4 equal

nuclear25b -1.101 -1.10807 (18000) -1.1062 10802.8 worse

nuclear49 -1.1514 -1.1513 10085.7 -1.1513 5193.1 equal

nuclear49a -1.1514 best 1225.1 best 198.4 equal

nuclear49b -1.1169 infeasible (18000) infeasible 3609.9 equal

nuclearvf -1.0225 -1.01612 2.7 -1.01944 23.5 better

ortez -9532.04 best 0.1 best 0.2 equal

parallel 924.2956 best 0.2 best 1.3 equal

ravempb 269590.2 best 0.3 best 1.8 equal

risk2b -56.8208 -55.8761 1.0 best 6.3 better

risk2bpb -56.8208 -55.8761 1.0 best 6.3 better

saa 2 12.1613 infeasible 10.7 infeasible 8.3 equal

space25 484.3286 best 27.2 infeasible 0.4 worse

spectra2 13.9783 best 0.7 best 4.0 equal

stockcycle 119948.7 best 56.5 best 919.2 equal

super1 12.6284 infeasible 3.5 infeasible 3.4 equal

super2 9.5079 infeasible 28.2 infeasible 7.0 equal

super3 4.9345 infeasible 7.5 infeasible 5.0 equal

super3t -0.6689 -0.6825 8141.8 infeasible 0.3 worse

synheat 154997.3 189521.1 0.1 infeasible 0.1 worse

util 999.5788 999.5866 0.3 infeasible 0.1 worse

waste 598.9192 infeasible 0.1 infeasible 0.1 equal

water4 907.017 910.6469 89.5 best 451.6 better

waterful2 1012.609 980.9673 15148.4 968.1149 3602.3 better

waterx 909.0401 934.8622 1.9 934.8594 0.2 better
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solution)/(| best-known solution |) over the ten problems) this is -0.13% for FSS

but 5.74% for Minotaur. Here the negative sign for the FSS gap indicates that

(on average) FSS improved on the best-known solution values given in [16]. In

calculating this average percentage solution gap we ignore the single problem (en-

pro56pb) where Minotaur did not find a feasible solution. Hence for these problems

we can conclude that FSS is far superior to Minotaur, achieving significantly higher

quality solutions in much less time.

• for 11 of the 51 problems considered (namely deb7, deb9, netmod dol1, nuclear14b,

nuclear24b, nuclear25, nuclear25b, space25, super3t, synheat and util) FSS gives

a worse solution than Minotaur. Here the average times are 3650.8 seconds for

FSS, but 6633.3 seconds for Minotaur. Within these 11 problems there are four

problems (nuclear14b, nuclear24b, nuclear25 and nuclear25b) where both FSS and

Minotaur find a feasible solution. For these four problems the average percentage

solution gap is -0.32% for FSS and -0.46% for Minotaur, with the average times

being 10037.8 and 11685.9 seconds for FSS and Minotaur respectively. For all four

of these problems both FSS and Minotaur improved on the best-known solution

given in [16]. For the remaining seven problems FSS did not find a feasible solution

(average time 1.1 seconds), whilst Minotaur did find feasible solutions, the average

percentage solution gap being 15.73% in an average time of 3746.1 seconds).

7.4.4 FSS versus minlp bb and RECIPE

Table 7.3 has compared our FSS approach against applying a single MINLP solver

(Minotaur) directly. In order to see how our FSS approach compares against other

approaches in the literature for finding good MINLP solutions we can compare our FSS

results against those recently published by Liberti et al [47] who presented results for a

Relaxed-Exact Continuous-Integer Problem Exploration algorithm (RECIPE). RECIPE

combines a global search phase based on variable neighbourhood search (using two sep-
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arate neighbourhoods) and a local search phase based on a MINLP heuristic. They also

presented results for solving MINLP’s directly using minlp bb, a MINLP solver which

Liberti et al [47] found to be extremely fast. See also Liberti et al [44].

Table 7.4 shows the comparison. In that table we show the FSS results (as in Ta-

ble 7.3, but repeated here for ease of comparison) and the minlp bb and RECIPE results.

These minlp bb and RECIPE results have been taken directly from Table 1 of [47], but

have been adjusted to give the benefit of the doubt to minlp bb and RECIPE where the

solution value given in [47] is numerically very close (but not identical) to the best-known

solution value. Table 7.4 contains 50 problems, one less than Table 7.3 (waterful2 not

being solved in [47] for technical reasons). The computation times given for minlp bb

and RECIPE are in seconds on an Intel Xeon X3353 2.66 GHz with 24 GB RAM running

Linux.

In Table 7.4 there are two sets of columns for RECIPE, one where Ipopt is used as

the nonlinear solver, the other where filterSQP is used as the nonlinear solver (these

are continuous non-linear solvers, in both cases minlp bb is used as the MINLP solver).

Computationally a time limit of two hours (7600 seconds) was applied to the results for

minlp bb and RECIPE shown in Table 7.4.

Table 7.5 compares FSS with the various algorithms in Table 7.4, as well as with

the results from Table 7.3. In that table we give the number of problems where the

solution from FSS and that of another algorithm are better, equal or worse. In terms of

computation time the average time for FSS for the 50 problems in Table 7.4 was 1822.6

seconds, albeit on a different pc from the one used to produce the results for Liberti et

al [47].

In terms of quality of solution it seems clear from Table 7.5 that FSS produces

better solutions than minlp bb or RECIPE/filterSQP. Over the 50 problems considered

minlp bb only produces a better solution than FSS 7 times, RECIPE/filterSQP only

produces a better solution than FSS 9 times.
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Table 7.4: Liberti et al [47] results

Name Best-known FSS minlp bb RECIPE/Ipopt RECIPE/filterSQP

solution Solution Time (s) Solution Time (s) Solution Time (s) Solution Time (s)

contvar 809149.8 best 59.8 best 115.62 best 7201.72 infeasible 99.69

csched1 -30639.3 best 0.7 best 0.64 best 156.50 best 1.73

csched2 -166102 infeasible 0.1 infeasible 0.07 best 7315.06 infeasible 18.06

csched2a -165399 best 224.6 infeasible 0.01 best 3286.04 infeasible 72.76

deb10 209.43 best 1.0 infeasible 0.10 infeasible 674.73 infeasible 4.97

deb6 201.7393 229.0111 3.7 best 12.98 infeasible 1217.27 infeasible 3.41

deb7 116.5846 infeasible 0.9 infeasible 121.30 infeasible 4544.21 infeasible 10.89

deb8 116.5846 168.9588 47.1 infeasible 91.30 infeasible 4482.77 infeasible 17.06

deb9 116.5846 infeasible 0.7 infeasible 119.40 infeasible 4920.32 infeasible 11.05

eniplac -132117 best 718.6 -131863.6349 25.27 best 7200.05 best 477.89

enpro48pb 187277.3 best 11.5 best 2.57 best 560.52 best 14.08

enpro56pb 263428.3 best 19.7 best 20.36 best 2515.05 best 49.50

ex1265 10.3 best 261.3 15.1 0.04 15.1 8.92 best 6.40

ex1266 16.3 best 6.1 best 0.16 best 19.24 best 7.52

gasnet 6999382 best 0.7 7004607.8064 6.60 6999391.6436 117.70 7045336.9264 153.55

minlphix 316.6927 best 0.1 infeasible 0.00 best 54.76 best 3.38

netmod dol1 -0.56 infeasible 5.4 infeasible 9698.77 infeasible 9720.59 infeasible 9716.51

netmod dol2 -0.56 best 17352.0 best 2470.45 -0.5535 8930.19 best 9008.98

nuclear10a — infeasible (18000) infeasible 0.00 infeasible 0.00 infeasible 0.00

nuclear14 -1.1277 -1.1286 12.3 infeasible 41.10 -1.1257 6062.20 infeasible 1378.68

nuclear14a -1.1296 -1.1292 5.8 -1.128 160.73 best 2732.95 -1.128 1270.87

nuclear14b -1.1169 -1.121 14405.1 -1.0896 7221.04 -1.1093 7200.37 -1.0936 7200.60

nuclear24 -1.1277 -1.1286 12.2 infeasible 41.04 -1.1257 6006.97 infeasible 1383.67

nuclear24a -1.1296 -1.1292 5.8 -1.128 160.40 best 2769.73 -1.128 1272.52

nuclear24b -1.1169 -1.121 14403.4 -1.0896 7212.66 -1.1093 7201.06 -1.0936 7205.14

nuclear25 -1.1186 -1.11937 539.8 infeasible 64.80 -1.1171 7225.31 infeasible 1840.91

nuclear25a -1.1202 -1.12001 3787.4 -1.1193 622.00 infeasible 0.00 -1.1 7217.52

nuclear25b -1.101 -1.1062 10802.8 -1.0851 7200.35 -1.0977 7201.25 infeasible 7202.16

nuclear49 -1.1514 -1.1513 5193.1 infeasible 865.66 infeasible 7200.83 infeasible 7298.06

nuclear49a -1.1514 best 198.4 best 4185.18 infeasible 8293.68 infeasible 8188.66

nuclear49b -1.1169 infeasible 3609.9 infeasible 0.00 infeasible 0.00 infeasible 0.00

nuclearvf -1.0225 -1.01944 23.5 infeasible 2.52 best 1911.18 infeasible 212.76

ortez -9532.04 best 0.2 best 0.07 best 68.70 best 0.77

parallel 924.2956 best 1.3 best 0.59 best 1.14 best 3.31

ravempb 269590.2 best 1.8 best 0.43 best 57.39 best 19.68

risk2b -56.8208 best 6.3 infeasible 0.02 best 305.67 infeasible 4.20

risk2bpb -56.8208 best 6.3 -55.8761 3.36 best 1631.20 best 25.52

saa 2 12.1613 infeasible 8.3 infeasible 67.32 infeasible 0.00 infeasible 7230.22

space25 484.3286 infeasible 0.4 best 72.29 best 1146.59 best 223.88

spectra2 13.9783 best 4.0 best 0.12 best 228.87 best 5.90

stockcycle 119948.7 best 919.2 best 31.34 best 5124.47 best 3515.12

super1 12.6284 infeasible 3.4 infeasible 51.04 9.6438 7224.29 9.8913 7207.42

super2 9.5079 infeasible 7.0 infeasible 33.80 5.2468 7221.22 5.2907 7210.68

super3 4.9345 infeasible 5.0 infeasible 45.77 12.9385 7205.99 13.4772 7210.18

super3t -0.6689 infeasible 0.3 -0.6744 7206.93 -0.6684 7206.03 -0.6673 7201.32

synheat 154997.3 infeasible 0.1 best 0.09 best 11.13 best 1.56

util 999.5788 infeasible 0.1 best 2.00 best 313.65 best 4.31

waste 598.9192 infeasible 0.1 732.2534 7200.18 679.0943 7208.15 903.8701 7200.66

water4 907.017 best 451.6 best 66.48 best 298.20 best 63.23

waterx 909.0401 934.8594 0.2 926.5789 3.27 914.1837 142.69 919.051 9.07
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In terms of a comparison between FSS and RECIPE/Ipopt the situation is less clear-

cut. Looking in detail at those results:

• of the 15 problems where FSS give a better solution: for six problems FSS produces

a feasible solution whereas RECIPE/Ipopt does not, for the other nine problems the

average percentage solution gap is -0.16% for FSS but 5.55% for RECIPE/Ipopt.

• of the 13 problems where RECIPE/Ipopt give a better solution: for nine problems

RECIPE/Ipopt produces a feasible solution whereas FSS does not, for the other

four problems the average percentage solution gap is 0.80% for FSS but 0.14% for

RECIPE/Ipopt.

We would note here however that, as Table 7.5 shows, RECIPE/Ipopt is the compu-

tationally most expensive algorithm of those given in Liberti et al [47].

7.4.4.1 Discussion

Table 7.5 indicates that our FSS approach has a role to play within MINLP. As can be

seen there it is competitive, in terms of quality of solution, with other approaches: either

stand-alone general MINLP solvers such as Minotaur or minlp bb, or more specialised

algorithms such as RECIPE/Ipopt and RECIPE/filterSQP.

In more detail Table 7.5 indicates that (in terms of solution quality) FSS is (on

balance) superior to both minlp bb and RECIPE/filterSQP, roughly equivalent to both

Minotaur and RECIPE/Ipopt. In terms of computation time the different hardware

used makes a direct comparison difficult, but the average times quoted in Table 7.5 do

not seem to significantly favour one approach over any other.

7.5 Conclusions

In this chapter we have addressed two approaches based on formulation space search to

solve mixed-integer non-linear (zero-one) programming problems.
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Table 7.5: FSS comparison

FSS versus FSS versus FSS versus FSS versus

Minotaur minlp bb RECIPE/Ipopt RECIPE/filterSQP

Number of better solutions using FSS 10 20 15 19

Number of equal solutions using FSS 30 23 22 22

Number of worse solutions using FSS 11 7 13 9

Average FSS time (seconds, Intel 3.3 GHz) 1857.5

Average Minotaur time (seconds, Intel 3.3 GHz) 2749.1

Average FSS time (seconds, Intel 3.3 GHz) 1822.6 1822.6 1822.6

Average minlp bb time (seconds, Intel Xeon 2.66 GHz) 1105.0

Average RECIPE/Ipopt time (seconds, Intel Xeon 2.66 GHz) 3442.5

Average RECIPE/filterSQP time (seconds, Intel Xeon 2.66 GHz) 2369.7

With regards to our first approach (FSS-MINLP-1), limited computational experience

suggested that we needed to consider a different way to tackle mixed-integer non-linear

problems using formulation space search and certainly a different non-linear solver.

Our second approach (FSS-MINLP-2) is an iterative process based on adding a single

non-linear inequality constraint of increasing tightness to the original problem. Computa-

tional results were presented for 51 standard benchmark problems taken fromMINLPLib.

We compared our formulation space search approach (FSS-MINLP-2) against the

Minotaur non-linear solver, as well as against the minlp bb non-linear solver and the

recently published RECIPE algorithms.

Overall, in terms of quality of solution, our approach was superior to minlp bb and

one of the RECIPE algorithms (RECIPE/filterSQP), competitive with respect to Mino-

taur and another RECIPE algorithm (RECIPE/Ipopt).

Formulation space search is a new and emerging metaheuristic, especially applicable

to non-linear optimisation problems, and we believe that the results presented here with

FSS-MINLP-2 indicate that it provides a useful addition to the armoury of algorithms

available to solve mixed-integer non-linear (zero-one) programming problems.
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Chapter 8
Conclusions, contributions and future

work

This final chapter presents a summary of the implementation of the formulation space

search method for the circle packing problem with identical circles and the reformulation

descent method for the circle packing problem with non-identical circles considering

different variants in both cases. As well we discuss the extension of the formulation

space search algorithm to the mixed integer non-linear integer programming problem, in

particular we focused on those problems where integer variables are defined as zero-one

variables (binary variables).

8.1 Conclusions

This dissertation has investigated the scope of the formulation space search and reformu-

lation descent methods in particular when implemented through a heuristic algorithm

to solve circle packing problems.

We have presented a general overview of the most relevant literature (to our approach)

concerning the packing problem addressing the case for identical circles and non-identical

circles, and considering different shaped containers such as: circular, square, rectangular
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and triangular containers. We as well presented a brief historical note on the packing

problem highlighting applications. We also presented the literature related to formulation

space search and its applications.

We have proposed and implemented a heuristic algorithm based on the formulation

space search method for the packing problem with identical circles, the aim of this

approach consisted of maximising the radius of the circles to be packed inside a container

of fixed size. We successfully implemented our heuristic and considered seven different

instances that depend on the shape of the container chosen: the unit circle, the unit

square, a rectangle with dimensions (L = 5,W = 1), a rectangle with dimensions (L =

10,W = 1), a right-angled isosceles triangle with length (L = 1), a semicircle with radius

1 and a right-circular quadrant with radius 1.

For the case of non-identical circles we investigated an approach using the formula-

tion space search aiming to find the minimum size of the circular container where the

circles to be packed have fixed size. For this approach in order to guarantee a feasible

solution we adopted a correction step based on a greedy strategy that for small number

of circles achieved and even improved the best-known solution however, when increasing

the size of the problem there was enough evidence suggesting that we should rethink the

approach. Hence, we moved on and implemented the packing problem with non-identical

circles with a new scaled formulation adopting a reformulation descent approach, this

time we were able to consider the seven instances that depend on the shaped container

that we described above. Although in the literature we found some packing problems

considering rectangular containers, the problems being addressed (minimise the perime-

ter of the rectangle, regard one dimension of the rectangle as fixed and minimise the

other dimension) are not equivalent to the scaled problem we presented in this thesis,

hence we considered a new problem.

In order to explore the capabilities of the formulation space search we decided to

implement it for mixed-integer non-linear programming problems, in particular we fo-
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cused on problems with integer variables defined as zero-one variables (binary). The

results obtained from the first implementation suggest that we have not chosen an ad-

equate solver for our purpose, for one of the problems the results achieved the optimal

solution in a fast total time, while for the other problem which by nature constitutes

a harder problem to solve (having linear and non-linear constraints) we only achieve a

feasible solution close, but subjectively not enough, to the best-known solution. Regard-

ing our second implementation, this was tested using a set benchmark problems, the

results obtained suggest that using this approach provides a competitive way to solve

mixed-integer non-linear programming problems when compared with other approaches.

8.2 Contributions

We have given a competitive heuristic algorithm for the packing problem for the case

of identical circles when balancing accuracy of solution and computational time spent.

We also were able to produce improvements over the previous best-known solutions

for containers such as the semicircle, the right-angled triangle and the right-circular

quadrant. All this work is presented in the paper [54] that we published in the European

Journal of Operational Research in 2011.

We provided a new approach for the solution of the packing problem with non-

identical circles based on a scaled formulation model using reformulation descent. Al-

though the scaled formulation of the packing problem is an equivalent formulation of the

approach adopted before with a greedy strategy, results suggest that in practice it is more

likely to obtain better quality solutions with this scaled formulation. The work carried

out is presented in the paper [55] that was published in the Computers & Operations

Research journal early in 2013.

The instances considered are classified as large variation instances and small variation

instances. Here we gave results for the unit circle container and presented new results for

another six different containers for both large and small variation instances. Although for
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the case of non-identical circles it was not possible to generalize a strategy to reduce the

size of the non-overlapping constraints, we considered dropping the smaller circles for the

optimisation process only for the large variation instances, and after the improvement

process we adopted an efficient way (the insertion process) to locate the remaining circles.

According to the solutions available from our implementation of FSS to mixed-integer

non-linear zero-one problems, based on a couple of instances, suggest that solely using

a non-linear solver such as SNOPT [18, 35] may not be enough to give a solution to

such problems. Although our findings are limited they indicate that when the problem

at hand has only linear constraints and non-linear objective function SNOPT is able to

produce the optimal solution, however a different scenario is presented when we consider

more difficult problems. In the light of this information we believe that adopting a more

suitable solver may lead us to better results when implementing our FFS approach.

Hence, we decided to implement a modified version of the FSS approach for mixed-

integer non-linear zero-one problems using a different solver called Minotaur [46]. Our

findings (based on 51 benchmark problems taken from MINLPLib [16]) showed that this

FSS implementation was competitive when compared with other algorithms. This work

can be found in the paper [53] that was recently accepted in the Optimization Letters

journal early in 2013.

8.3 Future Work

This research has thrown up many paths to follow relating to the circle packing problem

and as well addressing mixed-integer non-linear programming problems.

The 3-Dimensional packing problem. As an extension of the work done for

the 2-dimensional case of the packing problem we could apply our heuristic to the 3-

dimensional case which is as well known as the sphere packing problem. The problem

concerns with arrangement of a certain number n of identical spheres inside the unit

sphere aiming to find the maximum radius for the small spheres satisfying the non-
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overlapping conditions between the spheres and the container.

In the same vein we could consider as well the implementation of our FSS heuristic

algorithm to the packing problem with identical spheres in different containers, having

as basis those considered in Chapter 4 in three dimensions such as: a unit box, several

rectangular boxes with length (L), width(W) and depth (D) determined as (L = 5,W =

1, D = 1) or (L = 5,W = 1, D = 5) or (L = 10,W = 1, D = 1) or (L = 10,W =

1, D = 10) just to mention some examples related with the original 2-dimensional case

of rectangle (L = 5,W = 1) and rectangles (L = 10,W = 1), in a similar way we

could consider some variants of the right-angle isosceles triangle with length L = 1, the

semicircular and the right-quadrant circular container with radius one, having depth

greater than zero.

Another interesting avenue for future work would be implementing the scaled for-

mulation for non-identical circles presented in Chapter 5 to the 3-dimensional version

of packing spheres with non-identical size, from here an obvious extension would be

considering different containers as those given in Chapter 6 this time in 3-dimensions.

Packings of variable-sized containers with maximum total sum of perime-

ters or areas. This packing problem has an interesting point of view, it is available

in Packomania web site [72]. The problem involves a fixed size rectangular container

aiming to determine the size of each non-identical circle in order to maximize the total

area covered by them, or to maximise the sum of the perimeters of the circles packed.

As the perimeter is a function of the radius we can see this as the maximum of the sum

of the radii of the circles. Using our FSS approach we could addresses this problem and

also consider extending the problem to different containers.

The circle packing problem with forbidden areas. Extending the FSS method

to the packing problem with forbidden areas. This problem was recently presented in [75],

the aim of this problem is to maximize the number of identical circles inside a container

with fixed circular and/or union of circular prohibited areas.
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Appendix A
An alternative approach for the case of

non-identical circles

Our first attempt to solve the packing problem with non-identical circles aiming to

minimise the size of the circular container for large variation instances it is generally

based on the reformulation descent approach. However, in order to minimise the size of

the container we put special attention to the correction step by implementing a strategy

based on the general procedure of a greedy algorithm. In what follows we present the

formulation used, the heuristic, and the description of the correction step that follows

a greedy approach. We also present computational results, although this approach was

less successful than the scaled formulation given in Chapter 5.

A.1 Formulation and heuristic

Based on the reformulation descent we give the mixed formulation in equations (A.1)-

(A.11). The objective function (A.1) minimises the size of the circular container, equa-

tion (A.2) ensure that the circles are fully inside the container for those expressed in

Cartesian coordinates whilst equation (A.3) is the polar equivalent. Equation (A.4)

prevent overlaps for any two circles, hence they are known as the non-overlapping con-
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straints. Equations (A.5)-(A.6) are as equation (A.4) but they consider that one or both

centres are expressed in polar coordinates. Equations (A.7)-(A.11) are the limits on the

variables. Here Roverlap =
√

∑n
i=1R

2
i is the lower bound on the variable R, it is deduced

by area considerations (πR2
overlap =

∑n
i=1 πR

2
i ).

min R (A.1)

st

x2i + y2i ≤ (R−Ri)
2 ∀i ∈ C (A.2)

ri ≤ R−Ri ∀i ∈ P (A.3)

(xi − xj)
2 + (yi − yj)

2 ≥ (Ri +Rj)
2 ∀(i, j) ∈ Q with i, j ∈ C i < j

(A.4)

(xi − rj cos(θj))
2 + (yi − rj sin(θj))

2 ≥ (Ri +Rj)
2 ∀(i, j) ∈ Q with i ∈ C j ∈ P

(A.5)

r2i + r2j − 2rirj cos(θi − θj) ≥ (Ri +Rj)
2 ∀(i, j) ∈ Q with i, j ∈ P i < j

(A.6)

−
n
∑

i=1

Ri ≤ xi ≤
n
∑

i=1

Ri ∀i ∈ C (A.7)

−
n
∑

i=1

Ri ≤ yi ≤
n
∑

i=1

Ri ∀i ∈ C (A.8)

0 ≤ ri ≤
n
∑

i=1

Ri ∀i ∈ P (A.9)

0 ≤ θi ≤ 2π ∀i ∈ P (A.10)

Roverlap ≤ R (A.11)

In pseudocode A.11 we give an overview of the heuristic algorithm implemented

using the reformulation descent approach. This implementation is essentially the same

as Algorithm 3.5 for the case of identical circle: in the initialisation step we set the Rbest

as ∞ in order to keep the minimum size of the container at every iteration, we generate
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Algorithm A.11 Reformulation descent pseudocode for the case of non-identical circles

Function (Rbest, Xbest, Ybest)← FSS(n, replication limit, iteration limit)

Initialisation: |C| ← ⌊n/2⌋ Rbest ←∞ t rep← 0

repeat

t← 0

(x0, y0)← InitialSolution(n, |C|) {a first initial solution}

repeat

Q← OverlapSet(n) {give the overlap set Q}

(x, y,R)← NLP (x0, y0, C, P,Q,Roverlap)

(R∗, x, y)← Correction(x0, y0, x, y) {correct the radius}

Rbest ← max{Rbest, R
∗} {update Rbest}

(Xbest, Ybest)← (x, y) {save coordinates associated with Rbest}

t← t+ 1 {update iteration counter}

(x0, y0)← (x, y) {sets initial solution}

C ← P P ← {1, ..., n} \ C {switch the sets C and P}

until t = iteration limit

t rep← t rep+ 1 {update replication counter}

until t rep = replication limit

a random initial solution. In step two we generate n(n − 1)/2 different pairs of circles

that will be elements of the Q set (the set with pair of circles that may overlap). In

step three we obtain a solution from the non-linear solver, the solution obtained may

or may not be feasible by overlapping considerations, hence it will be amended by the

correction step, here the size of the circular container is updated (if it is needed) by

means of a greedy approach. After the updates of the correction step a new iteration

starts by switching the centres expressed in Cartesian coordinates to polar coordinates

and vice-versa, the coordinates from this switching are considered as the initial solution
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for current iteration, the process continue until the stopping criteria is met (number of

iterations).

A.2 Correction step

Correction step procedures aim to detect possible overlaps among the circles and resolve

them thereby obtaining at the end of each iteration of the heuristic algorithm a feasible

solution. The correction step consist of two procedures: in the first procedure it resolves

the overlaps found whilst in the second procedure the size of the container is updated.

For the first procedure we use a greedy approach that we explain below.

A.2.1 Resolving overlaps through a greedy approach

As greedy approaches find local optima at every stage of the process, here we adapt that

philosophy to resolve any overlap found. As we know every centre of a circle is defined

by Cartesian coordinates (xi, yi) and at the same time by polar coordinates (ri, θi) with

the associated radius Ri for all i = 1, ..., n. To implement the greedy approach we

consider all circle centres in their polar equivalent and consider them in ascending order,

that is, the first circle to be investigated is the one whose polar coordinates (ri, θi)

with component ri is the smallest, hence the closest one to the origin of the Cartesian

plane. The investigation consists of detecting and resolving the overlaps that other

circles may be creating with circle i. The position of circle i is fixed and if there are

other circles overlapping with it, they are moved outward until circle i and the ones

originally overlapping it are merely touching. Once we have resolved all the overlaps

found with circle i we update the coordinates of all circles (except circle i because is

the closest one) and continue the procedure with the next closest circle to the origin, we

terminate this procedure when all circles have been investigated.

Taking Figure A.1 to explain and illustrate how we resolved the overlaps encountered,

let us consider ri = min1≤k≤n{rk} the minimum component from the polar coordinates
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and the correspondent Cartesian coordinates (xi, yi). To proceed to detect the overlaps

we take the Euclidean distance between point (xi, yi) and all (xj , yj) j 6= i, j = 1, ..., n.

If there is an overlap let us say, with circle j with coordinates (xj , yj) then we draw

a line that passes through the origin with slope yj/xj , (in Figure A.1 this is the grey

dotted line). To find the new coordinates for circle j we draw a circle with centre

(xi, yi) with radius Ri + Rj , depicted in Figure A.1 as the blue dotted circle, the new

coordinates(x̄j , ȳj) for circle j (the red one) will be defined by the intersection between

the blue circle and the grey line. In other words, we move circle j outward along the ray

from the origin through its centre until circle i and circle j are just touching.

Given this graphical description in technical terms, we just need to find the inter-

section between a circle and a line, in general the equation of a circle with centre (a, b)

and radius r is given by (x − a)2 + (y − b)2 = r2, for this particular case the centre of

the blue circle is (a = xi, b = yi), and radius r = Ri + Rj . Regarding for the equation

of a line that passes through the origin is defined by y = mx, here the slope is given by

m = yj/xj .

For ease of notation let us find the new coordinates of circle j of the centre (a, b)

and radius r of blue circle and the slope of the grey line as m. Expanding the quadratic

expression we have

x2 − 2ax+ a2 + y2 − 2by + b2 = r2 (A.12)

by substituting y = mx in equation A.12 we obtain

x2 − 2ax+ a2 + (mx)2 − 2b(mx) + b2 = r2 (A.13)

which is reduced to

(1 +m2)x2 − 2(a+ bm)x+ (a2 + b2 − r2) = 0 (A.14)

The general solution of the quadratic equation A.14 is

x1,2 =
−B ±

√
B2 − 4AC

2A
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where: A = (1 +m2), B = −2(a+ bm), C = (a2 + b2 − r2) then the two solutions are

(x1, y1) = (a+bm−t1
t2

, m(a+bm−t1)
t2

)

(x2, y2) = (a+bm+t1
t2

, m(a+bm+t1)
t2

)

where: t1 =
√

−(b− am)2 + (1 +m2)r2 and t2 = 1 +m2

From these two solutions [(x1, y1) and (x2, y2)]we keep the one whose polar component

satisfy r̄j > rj , in other words, given the new point (x̄j , ȳj) has polar coordinates (r̄j , θj).

In this way circle j will be the red one and the distance between centre of circle i and

circle j will be Ri +Rj .

(xi, yi)

(xj , yj)

Ri + Rj

(x̄j , ȳj)

θi
θj

O x

y

rj

ri

Figure A.1: Example of how the overlaps are resolved using the greedy approach

For the second part of the correction step, in order to determine the size (if it needs

to be updated) of the container we consider the polar coordinates of all circles (ri, θi)

for all i = 1, ..., n. We take R∗ = max1≤k≤n{rk + Rk} as the current size of the circular
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container corresponding to a feasible solution, where rk is the polar coordinate associated

with circle k and Rk the radius of circle k.

A.3 Computational results

Regarding computational results we considered different values for the ∆, we first defined

∆i =
2Ri

3R∗ as having a different value depending on the size of the circle. The results

from that test were not as successful as we expected, in the light of that we decided to

drop ∆. Essentially it means that all circles may overlap and also they are free to move,

hence with n circles to be packed the elements of the Q set are all possible (n(n− 1)/2)

pairs of circles (i, j) with i 6= j and i, j = 1, ..., n. The best computational results are

present in Table A.1, they were obtained considering 5 replications, each consisted of

50 iterations. For the test we considered instances with n = 5, 10, 15, 20 non-identical

circles from the large variation instances (Ri = i). In Table A.1 we present the best-

known results, our best results, the % deviation and the total time that our heuristic

took to obtain the results.

Table A.1: Comparison with Packomania web site [72] for the circular container

n Best-known OUR Best % deviation Total time

solution solution (min)

5 9.001397746 9.001392658 -0.000056522 1226.57

10 22.000193013 22.000193013 0.000000000 2564.63

15 38.837995508 39.151355478 0.806838678 6731.92

20 58.400567479 59.901665481 2.570348315 11282.67

Average 0.844282618 5451.45

From the bottom row of Table A.1 we can see that the average % deviation for the

four instances considered is 0.844282618 with an average total time of 5451.45 minutes

which is around 90.85 hours on average to obtain a solution. Although it seems that we

176



Appendix A. A.4. Conclusions

have good solutions for n=5, 10, for 15 and 20 non-identical circles the quality of the

solutions are not as close to the best-known solution as we have expected. However, for

n = 5 circles we improved over the best previously known and for n = 10 circles our

results present same accuracy as the best-known. In Figure A.2 we show two pictures

that represent the best solutions obtained using the greedy approach.

1

2

3

45

(a) 5 non-identical circles inside a circular con-

tainer with radius 9.001392658

1

2

3

4

5

6

7

8

9

10

(b) 10 non-identical circles inside a circular con-

tainer with radius 22.000193013

Figure A.2: Packing n non-identical circles with Ri = i inside a circular container

A.4 Conclusions

In the light of the results presented here we decided not to pursue the approach outlined

above. Instead we developed the scaled approach which was presented in Chapter 5.
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