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A bstract

This thesis defines and investigates a generalized circle packing problem, called 

Packing Equal Circles into a Damaged Square (PECDS). We introduce a new heuris­

tic algorithm that enhances and combines the Greedy Vacancy Search (GVS) and 

Simulated Annealing (SA), and demonstrate, through a series of experiments, its 

ability to find better solutions than either GVS or SA alone. The synergy between 

the enhanced GVS and SA, along with explicit convergence detection, makes the 

algorithm robust in escaping the points of local optimum.
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Chapter 1

Introduction

1.1 Overview

A packing problem is a problem of finding a minimum-size container of a specific 

shape that can hold a given number of identical objects of given shape and size 

without overlapping. For instance, one may seek the smallest square that contains 

a given number of identical circles of a given size; This problem is known as Packing 

Equal Circles in a Squares (PECS)[2\\. Packing problems raises in many practi­

cal applications; e.g., PECS is associated with the packing tubes into rectangular 

crates, as well as with strategic placement of cellular towers. W ith the increasing 

number of objects, the number of valid packings increases exponentially and finding 

an optimal solution becomes computationally difficult. Many packing problems, in­

cluding PECS are known to be AP-hard [48], which motivates research in heuristic 

algorithms.

The earliest reference to the problems of this class was recorded nearly 500 years 

ago, when the famous astronomer Johannes Kepler tackled the problem of finding 

the most efficient way to densely pack equal-sized spheres into a large crate without
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overlaps. He proposed a solution called the orange-pile arrangement [38], formally 

known as a face-centred cubic lattice. Later in the 19,/l century, 350 years after the 

original announcement of the problem, German mathematician and physicist Carl 

Friedrich Gauss proved that Kepler’s method was the most efficient solution for all 

“lattice packings”. A lattice packing is one where the centres of the spheres are 

arranged in a regular 3-dimensional grid.

From the second half of the 20th century, a number of Hungarian mathematicians 

have been trying to solve this problem by using computers. A website [44] created 

by Specht is dedicated to those pioneers. Since then, this field has been increasingly 

well studied by researchers. Many different heuristic algorithms have been proposed 

to find good solutions for the packing problems. These algorithms usually run 

in polynomial-time within their search space. Some of the popular models and 

strategies published in recent years are briefly explained in Chapter 2.

1.2 Contribution

In this thesis, I investigate heuristic algorithm for the equal circle packing problem 

where the square shape container may have a damaged interior. The damage is 

represented by a number of identical square-shape obstacles. I refer to this general­

ized version of PECS as Packing Equal Circles in a Damaged Square (PECDS). The 

heuristic algorithms that perform well on PECS are not necessary as effective on 

PECDS. In particular, our experiments demonstrate that Greedy Vacancy Search 

(GVS) algorithm [21] and the Simulated Annealing (SA) algorithm [24] exhibit sig­

nificant inefficiencies when apply to some instances of PECDS.

The main contribution of this thesis is the introduction of a new heuristic algo­

rithm for PECDS and an experimental demonstration of its ability to find better

2



solutions than either GVS or SA. The new algorithm iterates an enhanced version of 

Greedy Vacancy Search algorithm followed by a modified Simulated Annealing algo­

rithm, until the termination condition is met. The new algorithm is called Enhanced 

Greedy Vacancy Search optimised by Simulated Annealing (eGVSXSA).

A key feature of eGVSXSA is that its termination is based on convergence detec­

tion (using fixed-size window of successive values of the objective function) rather 

than a fixed number of iteration. This principle applies to the inner loops within 

the GVSX and SA components as well as the main loop that iterates GVSX and 

SA. A consequence of this is that the running time of the algorithm varies, since in 

the absence of an imposed limit it keeps running as long as significant improvement 

are possible. The synergy of GVSX and SA, along with an explicit convergence 

detection, makes the algorithm robust in escaping the points of local optimum.

The remainder of this thesis is structured as follows: Chapter 2 briefly introduces 

three popular models for solving circle packing problems. Chapter 3 contains the 

problem statement and a list of definitions of terms frequently used in this thesis. 

Chapter 4 details the main algorithms eGVSXSA proposed in this thesis. Chapter 5 

presents the results of the main experiments. The graphical representation of the 

experiment results is given in the appendix.

3



Chapter 2

Literature R eview

In this chapter, I briefly review three popular models for solving circle packing 

problems published in the scientific literature. The review indicates in recent years, 

circle packing problems have been resolved by many different, approaches [44]. These 

approaches are used to solve circles packing problems in various sizes of regular-shape 

container.

2.1 Linear M odel for approxim ation

Galiev and Lisafina [13] proposed a linear model for packing equal circles in a domain 

G. The model was built upon a number of input arguments:

•  A closed bounded domain G.

• Fixed circle radius r.

A finite set of points T is then constructed based on domain G. These points form 

a rectangular grid of size A, r =  k x A, k £ Z+, along both horizontal and vertical 

direction. The linearity of this model relies on the assumption that the center of 

the circles can only be placed on the grid.
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The objective is to search the maximum number of non-overlapping circles placed 

in domain G and determine the center points of each circles. A feasible packing 

is evaluated by the weight levels q  corresponding to individual circle position .r,, 

converted to Z{.

1 Xu € T
(2 . 1)

0 otherwise

The measurement of a packing is denoted as N, given by the following equation.

crt

^  =  Z / C' X ^  ( 2 - 2 )
j=i

The higher value of N is preferred and is achieved when more circles are on the 

grid (zi = 1). Galiev and Lisafina [13] proposed a heuristic algorithm that approx­

imates the maximum number of circles with the linear model and the performance 

of the algorithm depends on the selected A. Their work demonstrated an instance 

of packing a number of circles with fixed radius into a rectangle in which two fixed 

circle areas can be considered as damages.

2.2 Quasi-Physical M ethod

In this model, each circle is considered as an elastic cylinder. The container edges are 

enforced by elastic springs. Overlaps among the circles and their container cause 

increment of the elastic energy, the accumulation of which indicates the overall 

energy. The size of the container is determined by the arrangement of the packing 

itself. The goal of the problem is to find a solution so that the objective function 

(or fitness function[23]) which depends on cumulative energy and size of container 

is minimized.
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In 2011, Huang used the similar concepts to solve equal circle packing in a 

circular container and renewed over 40 best-known benchmarks (densely packed as 

well). The core algorithm for the global search is Basin-Hopping Search algorithm 

which simulates abrupt movements for the circles to escape from trapping in a local 

optimum. Although there are a number of scaling factors that they used with 

fixed values derived from computational experiments, the computational results 

proved the robustness of their proposed algorithm. In 2013, He et al. [16] further 

improved the concept of Quasi-Physical model to study Circle Packing Problem with 

Equilibrium Constraints (CPPEC) and generated 34 new CPPEC instances. Their 

methods used the overlapping depth represented by either elastic force or elastic 

energy as a measurement which is expected to be minimised. In Figure 2.1, the 

overlap is A B  =  0 when 2 x r — dtJ < 0 . A perfect global minimum when the energy 

represented by the overlaps and the size of the container are minimized.

A foundation method for Greedy Vacancy Search is BFGS (Broyden Fletcher 

Goldfarb Shanno algorithm for solving unconstrained optimization problem), also 

known as a Newton Downhill method which is used to search for the minimum 

of a function. I will not discuss the details of how BFGS [35, p. 194-201] and 

Limited-memory BFGS [35, p. 222-248], as it is not the purpose of this thesis. 

The substitution can be done if any good local optimization method such as Basin- 

Hopping Algorithm or improved Steepest Gradient Descent can produce better local 

optimum.

By using the unit test, BFGS(fminunc) implementation by MathWorks [31] 

compared to the two methods : BFGS implementation and Steepest Gradient De- 

scent(SGD) developed by D.Kroon [12] gives better results as is shown in Figure 2.2. 

In this test, the same parameters are used in all methods. The unit test indicates 

that the BFGS by MathWorks [31] has the best overall performance. Despite the

6



AH = 2

Figure 2.1: Overlapping Depth between two equal circles with radius r

fact that the BFGS by D.Kroon [12] found the minimum objective function value 

of all 100 iterations, the BFGS by MathWorks [31] has a more overall stability of 

performance. Therefore, I have adopted MathWorks [31] ’s implementation.

2.3 Evolutionary Algorithm s

One popular evolutionary algorithm is Genetic Algorithm, inspired by a biologi­

cal evolution theory named natural selection. The term natural selection was first 

introduced by Charles Darwin in 1859 setting up one of the cornerstones of mod­

ern biology. Likewise, Genetic Algorithm inherits the main components of natural 

selection process such as inheritance, mutation, selection and crossover. The first 

generation offspring carries better information with respect to the fitness function. 

The mutation and crossover among the offspring require an explicit selection driven
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SGD by D.Kroon 
BFGS by MathWorks 

BFGS by D.Kroon
220

ao

1  160.*—5
o

140

0 10 20 30 40 50 60 70 80 90 100
Number of Iteration

Figure 2.2: Performance statistics of 2 different BFGS implement ations and SGD

by fitness function which evaluates the quality of evolution process for each new 

offspring. In order to use Genetic Algorithm to solve PECS problem, a linear rep­

resentation of the solution is required. For this algorithm, each packing must be 

translated into an array of feasible types and structures that can evolve to a better 

packing. In 1996, Jakobs [23] manages to represent the packing pattern with a per­

mutation in which the order of the position is generated by Bottom-Left strategy. 

This representation was effectively used to perform crossover and mutation process 

for unequal size rectangular packing. Their algorithm was then further extended to 

solve packing a number of unequal size of polygons in a rectangular container. This 

concept is further optimized by De-fu [11] in 2007 to solve strip rectangular packing 

problem.

Another popular algorithm is Simulated Annealing. The method simulates the



annealing in metallurgy [25], a process of heating the material to its melting point, 

then slowly cooling down the temperature to reduce the defects, thus minimize the 

system’s thermodynamic free energy and obtain a satisfying solution. In many circle 

packing problem with NP Complexity, this algorithm can often achieve good results 

[19, 46, 26, 51, 20]. The Simulated Annealing algorithm is based the neighbour 

searching mechanism, where the neighbours are generated based on the temperature 

and the current sate of solution constrained by an upper and lower bound. The 

temperature is represented by a parameter whose value decrease from 1 to 0.

The solution under higher temperature has higher probability to be accepted 

as the current solution in each iteration which often produces less optimized pack­

ing. In lower temperature, whether a solution is accepted or rejected depends on a 

probability and its objective function value.
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Chapter 3

Problem  Statem ent

In this chapter, I define the research problem addressed in this thesis. The inspira­

tion for my research comes from studying the packing problem of equal circles in a 

regular shaped container, and the possibility to solve a more general version of the 

problem by introducing damaged square container.

3.1 Packing Equal Circles in a Dam aged Square

To generalize the current problem of equal-radius circle packing in a regular shape 

container, I consider packing equal-radius circles in a damaged square container 

with the center of the container placed in the origin of the Cartesian Coordinate 

System. The damage square is a square whose interior contains randomly generated 

square obstacle's. I define the damage areas by dividing the sides of the square 

container into n (n 6 Z+) parts producing n2 small squares. I then randomly select 

n (n E Z +) squares to represent damaged areas. An example of randomly select 3 

damaged regions out of 25 candidates is shown in Figure 3.1.

The problem can be defined in two ways depending whether we are looking at

10



Figure 3.1: An example of damaged areas (distortions). [3/52]

packing unit circles into a minimum size square or packing a number of maximum 

size circles in a unit square. In both cases, the number of circles is given. In the 

following paragraphs, I formally define two versions of the problem: PECuS (Packing 

Equal Circles in a Unit damage Square) and PEuCS (Packing Equal unit Circles in 

a damaged Square).

•  PECuS: Let the length of the damaged square container be S =  1. The ob­

jective is to arrange 01 equal circles with maximum radius r inside a damaged 

unit square without overlapping.

• PEuCS: Let the circle radius be r — 1. The objective is to arrange 01 unit 

circles inside a minimum damaged square of size S without overlapping.

These two definitions describe the same problem of packing non-overlapping 

circles in a damaged square but with two different objectives. In PECuS we are 

optimizing the radius of circles while keeping unchanged container size and in PEuCS 

we are minimizing the size of the square container while keeping the radius of circles

11



unchanged. However, it is possible to mutually convert these two solutions for the 

problem. This conversion can be done under the condition that the side-to-radius

ratio in PECuS is equal to side-to-radius ratio in PEuCS.

Let us defii 

packing P us is

§
Let us define the A variable to be A =  —. The definition of A for PECuS with

r

= T2 = 7- (3-D

For PEuCS with packing P uc, A is:

uc

If Aus =  Auc then the conversion can be calculated using the following equation:

P„, = Pl"! ^  + 0.5 (3.3)
ÛC

where, Xu is the horizontal coordinate of the bottom-left corner of the square 

container.

Figure 3.2 shows an example of converting a packing solution of 33 circles from 

solution space in PEuCS(left) to PECuS(right) using the above defined equations 

and conditions.

12



Figure 3.2: An example of converting optimal packing solution of 33 circles 
between solution space in PECuS and PEuCS.

3.2 Frequently used Terminology

To maintain the consistency of terms and symbols, let’s define a number of fre­

quently referred symbols and terms that are used throughout this thesis listed in 

Table 3.1, details regarding to what particular symbols stand for are explained under 

the description column.



Symbol Description
S The side length of the square container.

r The radius of a circle.

m The number of circles, also known as the number of variables (in 
this thesis 91 > 2).

p ' 91 x 2 matrix of center coordinates; a feasible packing of non­
overlapping circles in a square.

p 91 x 2 matrix of center coordinates; a global optimal packing

H Convergence value of the objective function.

PECuS Packing equal circles in a damaged unit square.

PEuCS Packing unit circles in a damaged square of size S.

A
g

Side-to-radius ratio which equals —.
T

©
f

The upper bound of S for 91 circles.

Q The lower bound of S for 91 circles.

The center coordinates for circle i in Cartesian Coordinate System.

(xbhVbi) The coordinates of the bottom left point of a square container in 
Cartesian Coordinate System.

(x 'bny'bi) The coordinates of the bottom left point of a damage region inside 
the square container.

d-ij The center distance between circle i and circle j.

f The objective function.

The cumulative overlapping depths between all the circles and the 
damaged regions.

E' Elastic energy, the cumulative overlapping depths between a new 
circle and an existing packing.

E Overall Energy, the cumulative overlapping depths of among all 
circles and the square container as well as the circles and damage 
regions

T The temperature schedule for simulated annealing.

eps Floating-point relative accuracy (3 x 1CT12) that specify the mini­
mum overlapping tolerance.

Table 3.1: List of frequently used symbols in this thesis

14



Chapter 4

Proposed Solutions

In this chapter, I formulate the problem search space and propose the solutions for 

the problem of packing equal circles in a damaged square container.

4.1 Search Space Formulation

The search space of the packing problem of equal circles in a damaged square con­

tainer consists of the center points of the given number of circles within the damaged 

square container of size S which is positioned in the center of the Cartesian Coor­

dinate System. Next, I define a feasible packing P* of equal circles in a damaged 

container.

A feasible packing P  of Tt (91 £ Z f ) non-overlapping unit circles in a damaged 

square container of size S is a packing with overall energy E =  0. The damages are 

represented by a number of small square obstacles inside the container.

15



4.1.1 Feasible Packing

The feasible packing P  in the Cartesian Coordinate System is defined as:

p' = [x,y] =

Xi y\

*2 1/2

Xi y-i (4.1)

y<n_

where (xl,y l),i  € [1..91] is the center point of circle i.

Also, I introduce Xu is the horizontal bottom left coordinate of the square con­

tainer and yu is the vertical bottom left coordinate of the square container whose 

value are:

^bl X-min f
(4.2)

ybl I f n m  l

where, X min = rnin{[xu x 2l ....avnf) and Ymin = min{[yu y2, ...,y^}').

Given a feasible packing solution P  , the square size can be calculated by follow­

ing equation:

^ Tfldxi^Xmax X mjn 2, Ymax TAjn d- ^) (d*d)

In order for the circles to be inside the container, their center coordinates have to 

satisfy the follow conditions:

xu + 1 ^ Xt ^ xhi + S -  1 

+ 1 ^ yi ^ ybi + S -  1
(4.4)

The distance di;j between circle i (xi: y,) and circle j  {xj ,y3) can be calculated as

16



follow:

mm (4.5)

where i , j  E Z 4 and i ^  j ,  dmin = 2 — eps.

4.1.2 T he Energy

The overall energy of a packing consists of all overlapping depths among the circles, 

circles and square container, and circles and damages.

The energy between circle i and circle j  is defined as:

where eps is the floating-point relative accuracy (3 x 10~12) specifying the minimum 

overlapping tolerance and dij is the distance between circle i and circle j .

The energies eXi and eVt between circle i and the horizontal boundary, and circle 

i and vortical boundary are defined as:

2 — eps — djj if 2 — eps — du > 0

0 Otherwise
(4.6)

xu +  |  -  | | 11 — Xi — eps if Xu + |  — 11 — 11 — Xi — eps > 0

Otherwise0
(4.7)

Vbi +  |  -  11 11 -  y{ -  eps if yu +  f  — | f  — 11 — y, — eps > 0

Otherwise0
\
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The third type of energy is between the circles and the damage region. The

boundary of overlaps between a circle and a damaged region is shown in Figure 4.1.

Each damage region is a square that can be denoted by the bottom-left coordinates
S

(xhl,yhl) and its side length s =  —. The boundary is a square shape with rounded 

corner with radius r. An overlap between a circle and the damage area occurs when 

the center coordinates of the circle are inside the boundary. An example of the 

boundary of the damaged region is shown in Figure 4.1.

4
II \

I \

II II
S '  s.(«« + 2 >yw + j )

•

III

(*w. Vu)

V I II I j/

Figure 4.1: Boundary of overlaps between a circle and a damaged region

The overlap of a circle (ay, yt) and the damaged region (x'hl,y'bl, s') occurs when 

the center points satisfy the following equations:

4  =  \xi -  (x'hl + ^-)| < 1  +  1

s' s' (4‘8)
4  =  I Vi -  ( Vbi +  <  ~2 +  1

/

d' =  JdZ  + q | < j j ,  + 1  (4.9)
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where dx, dy are horizontal and vertical distance between the center of circle i and 

the center point of a damage region respectively, d' is the center distance between 

circle i and the damage region.

The energy ez between a circle and the four rounded corners of a damaged 

region and the energy ez between a circle and the horizontal/vertical boundary of a 

damaged region are defined as:

/

se z — —j=  +  1 — d

V 2 (4.10)
/  s

ez =  — + 1 — max(dx, dy)

where s is the size of the small square.

The cumulative energy of the overlapping depths between a circle and the 

damaged area is defined as:

e2z if the circle is Area I (Fig 4.1)

=  e 2 if the circle is in Area II or III (411)

0 else

The energy E of all overlaps is defined as:

91-151 91 91 n

e=E E 4 + ]Oex, + eV + (4-12)
is=l +1 7=1 7=1 j =  1

where, n is the number of damage regions.

In next section, I define the objective function for the problem.
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4.1.3 O bjective Function

To evaluate the feasible packing P , I define the objective function as:

/ (  P ')  =  S2 +  (^x E (4.13)

where S is the size of the damaged square container, <p is the penalty parameter, 

and E  is the energy.

4.2 The search m ethods

In this section, I introduce three search algorithms, Local Search, Enhanced Greedy 

Vacancy Search, Simulated Annealing, that are used in solving the stated problem 

(Chapter 3)

4.2.1 Local Search and Convergence D etection

The local search algorithm is based on the quasi-downhill method such as BFGS 

for finding local optimum, in order to produce the initial feasible packing P  . This 

algorithm first uses BFGS to find a packing that minimize the objective function 

/ ( P  ) (Eq (4.13)), then minimize the energy function E (Eq (4.12)) to find a feasible 

packing P  .

There are many ways to detect the convergence of the objective function. I 

propose a runtime monitoring mechanism to determine the termination condition 

for the search method, namely convergence detection. This mechanism keeps a 

historical record of the current best objective function values found by any heuristic 

search algorithm (i.e. GVS or SA). The termination condition is determined by 

the difference between the first and last obtained values record, i.e stop when this
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Ratio = 14.04707335895953 Energy = 0

Figure 4.2: An example of finding a feasible packing with local search algorithm

difference is lower than eps. An example of feasible packing 33 unit disks is shown 

in Figure 4.2.

To detect the convergence: h -+* H, I use a queue Q of size m  to record the 

objective function value of the currently found best packing P \  Q(i) = / ( P  ).

H = Q (l), i f  |Q(1) -  Q (m )| < eps (4.14)

The Local Search algorithm is given in Algorithm 4.1.
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A lgorith m  4.1 Local Search Algorithm
Input: 91 circles
O utput: A local optima P  .

1 fu n ction  Localsearch(91)
2 s  4 -  91 * 2
3 £ 4 — 0 0

4 w hile  h  -/» H  do
• i  s  s

5 p  4— random center points between - -  to -

6 (p ,s )< -B F G S (/,p )
7 if  E(p) > e p s  th en
8 ( p , s )  4 -  B F G S ( E , p )

9 end  if
10 h  4 -  f ( p )

11 if  h  < e  th en
12 P ' 4 - p

13 £ 4—  h

14 end  if
15 end  w hile
16 R etu rn  P'
17 end  fu n ction
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4.2.2 Enhanced G reedy V acancy Search (G V SX )

The Greedy Vacancy Search (GVS) algorithm was first introduced by Huang and Ye 

[21]. The ways GVS works, is by fixing the size of the square container at a relatively 

large initial value, rearranging the current packing to the most vacant area at each 

iteration and then minimizing tin; energy of the packing inside the fixed square.

A candidate packing with lowest energy for the current container size is then 

chosen and passed to their local search procedure. The calculation of the container 

size of the packing with minimum energy is done in the local search. If the calcu­

lated size of the container is less than the current container’s size, then the current 

container size is updated. The algorithm stops when the specified running time for 

the algorithm is reached. The run time depends on the given number of circles.

The original GVS has been proven to generate good results due to the physical 

model of the packing problem. The model assumes that the surfaces of the circles 

and the damaged container are perfectly smooth (coefficient of friction =  0). Ac­

cording to the First Law of Friction, the friction between any two surfaces is strictly 

proportional to the pressure between them. In other words, the friction is only 

caused by the spatial movement among the circles and between the circles and the 

damaged container. Using this model, the Vacancy Search (Algorithm 4.2) finds the 

biggest vacant area and relocates one of the circles to that area. The initial size of 

the relocated circle is set to be infinitely small and then increases the radius to the 

limit of 1. This will cause spatial movements of all the circles in the container. If 

this circle successfully reaches to its radius limit, a new local minimum is created. 

Otherwise, the container has to be enlarged as the radius of that circle increases and 

the overall movement all the circles. If this process is repeated enough, the better 

packing can be found. This turns out, as Huang and Ye [21] explains, to be the 

a series of deterministic mutation operations. An example of finding the vacancy
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areas in a local optimum is shown in Figure 4.3.

The algorithm of finding the biggest vacant area can be seen in Algorithm 4.2. 

The approximate size of any vacant area is inversely proportional to the size of its 

elastic energy E \  The elastic energy is higher when the circle is placed in a smaller 

vacant area that causes more overlaps. This is used to find the biggest vacant area. 

The elastic energy is an energy generated by relocation of a circle to the vacant area. 

This can be calculated in the follow way:

or— 1
E = +  el + el )  (4-15)

i—1

where, ec are the overlapping depths between the modified circle and other circles, 

ex an ey are overlapped to the vertical and horizontal boundary of the container 

respectively.

A lgorith m  4.2  Most Vacant Area Search Algorithm
Input: A (preferably feasible) packing p of 91 circles.
O utput: The center coordinates of the most vacant area C.

1 fu n ction  F ind Vac a n c y (p )
2 c <— Randomly scatter 3 x 04 circles inside container of p
3 &m in   ̂ 27i f
4 for i i— 1 to 3 x 04 do
5 e c- E '(c(i, :),p) > Evaluate elastic energy of c(i. :) over p
6 if  e < emin th en
7 ^m in  ̂ ^
8 C <— c(i, :) > Assign the i th circle to C
9 en d  if

10 en d  for
11 R etu rn  C
12 end  fu n ction

In order for the original Vacancy Search to work for our problem, the elastic 

energy has to include the energy between the relocated circle and the damaged 

areas. The elastic energy between the relocated circle and one damage region is
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Ratio = 12.87935061646121, Enorgy -  0

Figure 4.4: Optimising 33 dense packing circles with GVSX 

denoted by E^. Thus the elastic for our problem is defined as followed:

E ' = J 2 ( e2c + el  + e2y) + '5 2 E Z (4T6)
t=l 3=1

where n is the number of damaged regions.

When considering the original GVS method for solving the problem of packing 

equal circle in a damaged container, I noticed the possible issues related to the ter­

mination condition of the algorithm and their search criteria for finding the optimum 

solution. The termination criteria for this algorithm is a predefined runtime which 

depends on the number of packing circles. As for the issue for search criteria, by 

fixing the size of the container to search for a feasible packing does not guarantee 

the right solution due to the termination criteria. The algorithm may not converge 

during the given runtime. To avoid these two issues, an adaptive vacancy search 

algorithm named Enhanced Greedy Vacancy Search (GVSX) is proposed and shown 

in Algorithm 4.3.
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In GVSX, the convergence detection proposed in Section 4.2.1 is adopted to 

solve the convergence problem. The search criteria problem is resolved by using 

a multi-objective search which iteratively minimises the objective function and if 

necessary the energy to find a local minimum. By using this criteria, the algorithm 

explore more possible local optimum than the original implementation and always 

terminates.

The implementation of GVSX adopts the Local Search (Algorithm 4.1) and 

Vacancy Search (Algorithm 4.2). It is an iterative process that takes an initial 

packing, relocate one of the circles to the biggest vacant area founded by Vacancy 

Search and then use Local Search to perform “downhill climbing” . At each iteration, 

the current best packing is updated if a better local minimum (evaluated using our 

objective function, Eq (4.13)) is found and passed to the upcoming iteration until 

the objective function converges. An example of optimizing 33 dense packing circles 

by GVSX is shown in Figure 4.4.
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A lgorithm  4.3 Enhanced Greedy Vacancy Search Algorithm (GVSX)
Input: A feasible packing of 01 circles xq

Output: An optimal packing P \
1 function GVS(rr0)
2 s < -  N  * 2 o Initial side of square
3 P <r- Xq t> p is the current testing solution
4 E f{p)  t> £ is the current best objective function value
5 h «— inf > h is the objective function value of the current testing solution
6 i i— 1
7 while h H  do > While h does not converge
8 p(i) <- F i n d V a c a n c y ( p )  

vacant area
> Find and relocate circle i to the most

9 p «— B F G S (/,p ) t> Minimize objective function
10 if E(p) > eps then
11 p ^  B F G S (£ ,p ) > Minimize energy function
12 end if
13 h  < -  f ( p )
14 if  h  <  e  then
15 P' <— p > Update the current best solution
16 E A— h
17 end if
18 i i 4 - 1
19 if i >  0T then
20 i 1 t> Reset current index
21 end if
22 end while
23 R eturn P
24 end function
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4.2.3 Sim ulated A nnealing

The idea of Simulated Annealing (SA) search method comes from the simulation 

of the annealing process of iterative heating and cooling solids. The materials are 

heated up by increasing the temperature to a very high value, followed by a slow 

cooling process to lower the temperature such that the molecules of the annealing 

material are able to better arrange themselves in a low energy state. The standard 

SA algorithm has a temperature variable to simulate the heating process. This 

variable has a high initial value and then slowly decreases as the algorithm iterates. 

In each iteration, an equal number of the solution points are randomly generated 

constrained by the given upper and lower bounds as well as the current temperature. 

These points are evaluated in comparison with the current solution by the objective 

function (less is better). There are two different conditions to choose the current 

best solution. The first is to evaluate the objective function of the current test 

solution and choose the one with smaller value of the objective function than the 

current best solution. The second condition is taking a probability of accepting the 

current test solution regardless whether it is better than the current best solution. 

The second condition represents the re-heating process of annealing.

The most important contribution that Simulated Annealing(SA) provides to the 

solution of the stated problem is its nature of searching for as many local minimums 

as possible with sufficient amount of different initial guesses. It selects the best 

local minima as the global optimal. SA is very capable of finding a good solution 

for bound-constrained global optimization problem although it doesn’t guarantee to 

yield a proven global optimum, it often finds satisfying solutions.

To demonstrate how original SA works, I use SA to optimize 33 circles pack­

ing in a damaged square container (Figure 3.1). As the temperature is scheduled 

from maximum 1.0 to minimum 0.0, 6 internal results are extracted in descending

29



temperature, these results demonstrate the gradual movement of the current best 

packings, which reflects how SA successively obtains a better packing. As shown in 

Figure 4.5

SA starts with an initial guess array of points po, the same dimension array lower 

bound Q and upper bound 0  [5], maximum iteration I  and function tolerance h (de­

fault value is 10-4). At each iteration, a number of new testing points are randomly 

generated (denoted pi) using uniform random vector transformed by the inverse 

//-law [50, p.334-337]. These points must be constrained by the upper bound(0) 

and lower bound(Q) in order to become an eligible guess. Essentially what each 

iteration does, it shifts the current points p within the bounds by Ap generating 

P(l) as the new guessing points. These points (pi =  p +  Ap) are then taken as the 

current points (better solution) if they result in negative arousal (A h  < 0) to the 

objective function.

Algorithm 4.4 describes the implementation of the SA where array p represents 

the packing solutions. The SA method is modified based on the original implemen­

tation developed by Corte [8]. The modifications consists of applying my proposed 

convergence detection to stop the algorithm, dynamically updating the upper and 

lower bounds, and fixing the temperature to be .0 (0%).

The important aspect of this algorithm is fixing the temperature to .0 which 

causes the acceptance probability to .30. This probability can be determined by the 

following equation:

A h—Tx-------------
p(Ap) =  e I / ( p ) x ^I 5 fo r  A h  > 0  (4-17)

TTl £
where T  = — = -  =  1, /(p ) is the objective function value of p, and h is the 

function tolerance h (default value is 10”4).
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Figure 4.5: Optimising 33 dense packing circles with Simulated Annealing
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p(Ap)  remains closely to e 1 for I-tt-tI =  h. which means that when the tem-
f(P)

perature cools down to 0, the probability of escaping the local minima by increasing 

the objective function with the value A h  =  |/(p ) | x h remains 30%. This explains 

why the inverse temperature is used in the implementation of SA.
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A lgorithm  4.4 Modified Simulated Annealing with Convergence Detection

Input: Any packing p0 of 91 circles 
Output: A feasible packing P \

1 fu n c tio n  SA(p0)
2 P<~Po o p is current point, p0 is current solution
3 K  <- f(p)
4 /lo 4— hp
5 m  4— 1
6 w h ile  h0 H  do
7 if  E (P ) <  eps th e n

size of the current container of P8 (Q, 0 )  4— half the
9 e n d  if

10 T  4— m / i  o T is calculated as inverse of temperature, from 0 to 1
11 if  T  >  1 th e n
12 T 4— 1
13 e n d  if
14 m u 4 - 10T*1()O
15 for k 4— 0 lo k d o  > k is the max number of guess points,default 1000
16 y 4- random center points of 91 circles
17 A P ((((1 +  m u). y| -  1 ) /m u), * sign(y)). *  ( 0  -  fi)

o .* is dot product in matrix notation
18 P \ 4- p  + A p > pi is current test point
19 Pi 4— (joj <  Q). * D +  (D <  pi). * ( p i  < 0 ). * p i  +  ( 0  < pi). * 0

o Keep solution within bounds
20 t —  / (Pi)
21 A h  4 —  h \  —  hp

A h

22 if  A h  <  0 or rand <  e x ^  th e n
23 p 4 - p i

24 hp 4 —  h  i

25 e n d  if
26 if  h \  <  h 0  th e n
27 P' 4 -  p i

28 h o  4— h i

29 e n d  if > h is function tolerance
30 e n d  for
31 m 4 —  m + 1
32 e n d  w h ile
33 R e tu r n  P
34 e n d  fu n c tio n
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4.3 Main Algorithm  : eG V SX SA

In this section. I define the main algorithm Enhanced Greedy Vacancy Search op­

timised by Simulated Annealing feGV5XSA,)(Algorithm 4.5), for solving the stated 

problem. The eGVSXSA utilizes the unique capability of Simulated Annealing in 

a lower energy state to enhanced GVSX in solving circle packing in various dam­

aged containers. The results are encouraging and robust. In the previous chapter, 

we have introduced 3 methods: Local Search, GVSX and SA. Each of these three 

algorithms has its unique way of minimising the objective function.

A lgorithm  4.5 Main Algorithm : eGVSXSA 
Input: Tt
Output: A global optimal P.

1: function eGVSXSA(TI)
£4— i n f  i> Initial value of current best objective function value
Pis LoCALSEARCH (O fl)  > Get the initial local optimum
while h -*> H  do > while h does not converge

Pgvs GVSX(p(s) > Optimize local optimum using GVSX
psa <— SA (pgvs) > From lower state (0%) of temperature.
h f{psa) 
if h <  e then

P  ~ Psa
£ ^ h  

end if 
end while 
Return P  

end function

2
3

4

5

6
7

8 
9

10
11
12
13

14

The representation of the damages in the container is denoted by [n /n 2], where 

n 2 is the number of equal squares from which n squares are randomly selected as 

damages. For example, [20/302] means that the side of the container is divided by 

30 generating 900 equal squares from which 20 are randomly selected as damages.

The eGVSXSA first uses Local Search to obtain a initial local optimum, then 

applies GVSX to escape the newly generated local optimums. Finally, it uses SA
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Table 4.1: 33 circles with [3/52] by Local Search, GVS, and SA

Ratio(A

R adius(-)
A

Energy(E)

eGVSXSA Local Search GVS Simulated Annealing 

S) 12.69633 14.04707 12.879351 12.77624

0.078763 0.071189 0.077644 0.078270
0.000000 0.000000 0.000000 0.000000

Ratio = 12 6963374219234910 Enemy: 0.0000000000000000

Figure 4.6: Better 33 circle packing in a damaged square [3/52] found by
eGVSXSA.

to optimize the solution from GVSX. This process is iterated until the convergence 

condition is reached. An example of using eGVSXSA is shown in Figure 4.6. Ta­

ble 4.1 shows the comparison of the eGVSXSA with Local Search as well as the 

original GVS and SA.
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Chapter 5

Experim ental R esults

In order to test the performance of GVSX and eGVSXSA in comparison with the 

original GVS and SA, we have conducted an experiment with two packings, 69 

and 70 equal circles in a damaged square. The damages are randomly generated. 

The number of divided regions for selecting the damages is 900, and the number of 

selected damages is set to be 20, 30 and 40 respectively.

The tests are conducted in MATLAB on Windows 7 64-bit Operation Sys­

tem. The Process specification is 2 CPUs of Intel(R) Xeon(R), CPU E5-2603 0 

@1.80GHz. The runtime of the tests are shown in Table 5.3.

I conducted two types of experiments. In the first experiment, the number of 

circles to be packed is 69 and 70 while the number of damages ranges from 20 to 40 

(increment of 10). In the second experiment, the number of damages is 20 while the 

number of circles ranges from 30 to 68. The results demonstrate that as the amount 

of damages increases. eGVSXSA suffers the least impact and is able to search much 

smaller ratio while keeping the energy at zero. The graphical results are shown from 

Figure 5.2 to Figure 5.6. The numerical results of the second type of experiments 

are shown in Table 5.2 and the graphical results are shown in Figure 5.7.
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Pairs P-value
SA vs eGVXSA 3.62593 x 10~14
SA vs GVSX 0.243103314
GVS vs SA 0.006631256
GVS vs eGVXSA 2.084685 x 10~14
GVS vs GVSX 0.008093876
GVSX vs eGVXSA 1.32381 x 10~n

Table 5.1: Significant test of objective function value (One tailed distribution, 
two-sample unequal variance, significance level : 5VA)

The results also indicate that the original Simulated Annealing has better perfor­

mance than the original GVS. This experiment indicates that GVSX and Simulated

Annealing have overall better performance than the original GVS under the same

amount of damages, while eGVSXSA has the best performance of all. This state­

ment is confirmed by the significant tost, (shown in Table 5.1), where P-value is a 

function of the observed sample data set used for testing null hypothesis.
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Figure 5.1: Experimental Result: 69 circle packing in a damaged square, [20/302].
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Figure 5.2: Experimental Result: 70 circle packing in a damaged square, [20/302].
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Figure 5.3: Experimental Result: 69 circle packing in a damaged square, [30/302].
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Figure 5.4: Experimental Result: 70 circle packing in a damaged square, [30/302].
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Figure 5.5: Experimental Result: 69 circle packing in a damaged square, [40/302].
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Figure 5.6: Experimental Result: 70 circle packing in a damaged square, [40/302].
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Figure 5.7: Comparison of side-to-radius A found by the GVS, SA, GVSX and 
the eGVSXSA Schema on packing 30 to 70 circles in [20/302]
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Original GVS[21] Original Sim ulated Anncaling[25. 8] GVSX eGVSXSA
Name ratio(A) energy(E) ratio(A) energy(E) ratio(A) energy (E) rat io(A) energy! E)
30 15.3600595286619530 O.IXHHHXXHXHHXHXXX) 15.1399605925879260 O.(XXHKXHXMXXXXHXX) 14.3826278646760880 0.(XX)2240120286048 12.2093151957066580 O.IXXXXXXXXXXXXXXX)
31 18.8670356238221650 0.0000000000000000 15.2549934154604380 O.(XXKKXXXMXXXXMXX) 14.8581009108464850 0.(XXX)151281121134 12.6885282922690460 O.(HXXKXHXXXHHXKXH)
32 14.9696484620882750 0.0000000000000000 14.9013305688750620 ().(XXXKXXXXXXX>1541 14.7018982435651980 0. (XX) 1707994965878 12.141967469,3214910 O.OIXXXXXXXXXXXXXX)
33 15.7645933469033230 O.IHHXXHXKXHHXHXXX) 14.5230422987142780 ().(XX)154877(H) 13863 15.8098780197681100 0.(X)02106945302558 12.7868,329042972770 O.(XXXXXXXXXXXXXXX)
34 15.9942702018679730 O.(XXXXXXKXXXXHXXX) 15.5314291096676950 O.OIXHKXMXHXXXXHXXI 14.7609(X)9216,372660 0.(X)1017351873(X)69 12.95496959,39498510 O.IXXXXXXXXXXXXXXX)
3!> 16.4097078658035540 O.IXXXXXXXXXXXXXXX) 16.5007250070161680 0.0000000000000000 14.9588207328809930 0.(MXM)692192811028 13.2737793110457730 0.0000000000000000
36 17.8132436114625320 O.(XXXXXXHXHHXXXXX) 16.65 79411)035363300 0.0004374548367536 17.9983054824610990 0.(XXXX)2103806(X)58 13.2166621666882060 O.(XXXKXXXXXXXXKXX)
37 16.9011896715064720 O.(XXKXXXHXMHXXXHX) 15.6226598064113520 0.0(X)(KX)(X)(XHHXHX)4 14.7881484813926110 0.(X)0 111 1867128159 13.4738615182292010 O.(HXKHXXXKXHHXHXX)
38 16.9162168575059230 O.(XXXXXXKXHXXXXHX) 15.9959717085076320 O.(XXH)792624976757 15.61364291915924,30 0.(XXXX)87161965128 13.2810603306348810 O.O(XHKXXXMXHXXXXX)
39 18.9470034253808780 O.(XXXXXXHXXKXXXXX) 16.0261538110410340 0.0(X)0(XKXKXHHXHX)5 17.4278889487935520 O.IXXXXXXXXXXXXXXX) 13.8541289(X)9979420 O.(HXHKXHXXHKHXHXH)
40 19.9608070182522790 O.(XXKXKXKXXXXKXHX) 17.1850332095822830 0.(XX)0(X)1805099090 15.6489440065234260 0.(X)00231201062777 14.2012007503842330 O.(XXXKXXXKXKXXXXH)
41 19.2151778721519580 O.(XXXXHXHXMXXXXKX) 18.70850331097.34550 0.(KXX)249257384063 16.4148758832177780 O.(XXXXXXXXXXXXXXX) 1.3.9012950678297.320 O.(XXXXXXXXXXXXXXX)
42 18.1941661579948860 O.(XKXXXXKXXKXKXKK) 18.2761368287915720 0.0(X)0169116199289 15.6321237237956830 0.(XXX)205269003421 14.08638(X)2425641(X) O.(XXXXXXXXXXXXXXX)
43 17.7227944524425740 O.(XMHXKXKXMXXMXXX) 17.7478541462638050 <).(KXK)233723754611 17.018174,3695146320 0.(XXXX)05575159553 14.461497530579,3830 O.IXXXXXXXXXXXXXXX)
44 18.1250235526118040 O.(XXXXKXKXXXXKXKK) 18.0368102026227890 0. (H X)0336132245724 18.8824(X)4531564430 0.(X)00461266018298 15.0000000026352570 O.(KXMXXKXHKKXXXXX)
45 17.8262453053923690 O.(XKXXMXMXXXXXXXX) 17.8657474197645140 0.(KXK)267224046387 18.017185(X)93788780 0.(XXXXX)6701217764 14.999999998,3601140 (UXXMKXKXHKHKXXXK)
46 18.019817.3300403540 O.(XMHXKXXXXXXXXKM) 18.71024.32057285810 0.0005458122081565 16.6464281575256800 0.(XXX)140465280713 15. (XXXXXX)l 38566630 O.OIXXXXXXXXXXXXXX)
47 19.3888798663019200 O.(XKXXXXMKXXXKXKX) 17.4882450895097110 0.00002.34538172212 18.2190029945049550 0.(XXXX)98346567999 14.79920814.3.3500540 O.IXXXXXXXXXXXXXXX)
48 20.5894727185166420 O.(XMHXKXXXKXXMXKX) 19.7626240812427980 0.00058438598594,34 17.8476020318845060 0.(XXXX)68722649220 15.06674798614088(X) O.OIXXXXXXXXXXXXXX)
49 19.0043463770487120 O.(XHXXMXHXKXXKXKX) 19.40572338199167(H) 0.0002048795889991 18.66526619692537.30 0.(XXX)256952201961 15.3278537971023600 O.IXXXXXXXXXXXXXXX)
50 19.2711312048271490 O.(XKKXMXMXKXXHXHX) 17.7303040250089300 0.0001654228229829 19.4268786101901650 0.(XKKX)38.362150174 15.1427729388373140 O.OIXXXXXXXXXXXXXX)
51 19.0284455848120330 O.IXKHXHXHXKHXHXHX) 17.6312918397617440 0.0011816468849379 17.1791025325968580 0.(XXXX).38022455152 15.1392713211858500 O.IXXXXXXXXXXXXXXX)
52 18.5565478814627270 O.IXXKXXXHXHHXHHHX) 18.9687760278743550 0.0053207440326906 18.5675419781556920 0.(XMXX)55917118162 15.5359600790415190 O.IXXXXXXXXXXXXXXX)
53 19..3709236859500140 O.OOOIHXHHKKHHKXXX) 19.39195672.37183940 0.0000434253101611 19.5089902749047680 0.(XX)10961741.32748 15.7058796373065230 O.IXXXXXXXXXXXXXXX)
54 23.7742963901871250 O.IXHKXXXHXHHHKXKX) 19.8589942846831780 0.000.3168520991790 19.9999996042115.350 0.(XKKXXXXXXXXX)985 15.9702247(X)6575390 O.IXXXXXXXXXXXXXXX)
55 20.5402758791071460 O.IKHXXXXXXXHXXXMX) 19.76.33858855938730 0.0000(XM)0(X)0(XH)76 18.275252193.3491(X)0 0.(XXHX)411(X)904624 15.8223173750945740 O.IXXXXXXXXXXXXXXX)
56 23.3217176420905050 O.IXXXXXXHXHKXHXHX) 20.76146952253,39040 0.0000938260910861 20.0227822646496630 O.(XXXX) 15225708013 16.6225689758416910 O.IXXXXXXXXXXXXXXX)
57 20.2711818824910100 0.(X)0(X)00000(XXXXX> 19.9508310148817360 0.00000344.37490742 20.0433272584658580 0.0000028290737546 16.1192520723505550 O.(HXHXXHXXXXHXKHK)
58 21.0420944841323350 O.OOOOIXXHXXXXXXXX) 20.01179.39428323980 0.0000207358545542 21.1017121019110830 0.(XXXX)07738487568 16.2184043091221780 O.IXXXXXXXXXXXXXXX)
59 21.8157155518828710 0.(XX)0000000(XHXXH> 21.6477380656723350 O.OIXHHXHXXXXKKKXX) 22.6331169181481120 0.(XXXX)38267806840 16.3543161150830120 O.OIXXXXXXXXXXXXXX)
60 20.8791313298842810 O.(XXXXXXMXXHXMXHH) 19.8726721992353180 0.0005858754169480 20.2263083927024140 0.(X)09435256269657 17.0710770476096410 O.OIXXXXXXXXXXXXXX)
61 22.7450835034601940 O.IXXXXXXXXXXXXXXX) 20.0406019.3933486.30 0. (XX)0()46853140467 20.4.3986756207244,30 0.(X)00406298071780 16.5437244928949170 O.IXXXXXXXXXXXXXXX)
62 21.9664306457316840 O.IXXXXXXXXXXXXXXX) 21.1965611539959160 O.IXXXXXXXXXXXXXXX) 19.3706568822843440 0.00008(X)464749259 16.7838241775306220 O.OIXXXXXXXXXXXXXX)
63 21.4128503812925570 ().(XXXXHXXX)00(KXXX) 20.328891X5501482740 0.0(X)90.38728601756 19 9235831532264600 0.(XX) 1257498.398068 17.0720126328351040 O.OIXXXXXXXXXXXXXX)
64 21.1689575763450190 O.IXHHXHXXXHHXHHKX) 21.0774314442015510 0.0(X)(XX)(XXXXXXHX)0 20.0524199293439980 0.(XHXX)2049.3487108 1G. 9396027888065430 O.IXXXXXXXXXXXXXXX)
65 22.1016766234400530 (l.(XXHXHXXXHXXHXHX) 19.8387286772959040 0.(XX)1.349402888516 19.982526(XX)6059580 0.000(X)34441865068 17.8590193117760380 O.IXXXXXXXXXXXXXXX)
66 21.80219332505.30400 O.(XHXXXXXXKXXMXHX) 19.8985855189225380 0.0010816923798531 20.0187590935122160 0.(XH)(K)53 706602399 17.3346681558371710 O.OIXXXXXXXXXXXXXX)
67 21.3016008834996.310 O.(XXMXXXXXXXXXXXX) 20.1000089458578660 ().(XXX)604551098218 23.2751147588678510 (t.(X)O(X) 17158736915 17.2802025151309380 O.IXXXXXXXXXXXXXXX)
68 21.9337352319386800 O.(XXXXXXXXMHXHXXX) 20.3414660527200230 ().(X)19751265880884 20.2456101682339380 0.(XXXX)28678641098 17.6925026111845440 O.OIXXXXXXXXXXXXXX)
69 25.11927344206098.30 O.(XMKXXXHXMXXXXXX) 21.2660506545390430 0.(XXX)316018831713 22.24.36619963907770 0.(XXXX)2.3116616007 17.9157166266140210 O.IXXXXXXXXXXXXXXX)
70 21.8295378399979820 O.IXXXXXXXXXXXXXXX) 21.7815871311081040 0.(XXXXX)2774038483 21.64656995632230.30 0.(XXX )468996040701 17.9645197599917270 O.OIXXXXXXXXXXXXXX)

Table 5.2: Statistics of comparing GVS, SA, GVSX and eGVSXSA Schema on packing 30 to 70 circles, [20/302]
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Figure 5.8: Comparison of energy E  found by GVS, SA, GVSX and the eGVSXSA
on packing 30 to 70 circles in [20/302]
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Original GVS Original SA GVSX eGVSXSA
Name hour(s) hour(s) hour(s) hour(s)
30 2.0000 1.4165 1.7394 14.0637
31 2.0000 1.4283 1.6459 14.1356
32 2.0000 1.4474 2.4097 14.1266
33 2.0000 1.4934 0.8685 14.2185
34 2.0000 1.4145 1.8828 14.2212
35 2.0000 1.4224 1.5015 14.3389
36 2.0000 1.4294 0.6387 14.3233
37 2.0000 1.4339 2.2288 14.3469
38 2.0000 1.4487 2.4358 14.2483
39 2.0000 1.4497 1.6351 14.3095
40 2.0000 1.4645 1.8326 14.3296
41 2.0000 1.4383 1.6822 14.4491
42 2.0000 1.4705 0.1409 14.8928
43 2.0000 1.4158 2.1513 15.1305
44 2.0000 1.4445 2.2258 15.4049
45 2.0000 1.4801 1.8268 15.5403
46 2.0000 1.4581 1.6444 15.5308
47 2.0000 1.4196 1.7586 15.5308
48 2.0000 1.4891 1.3118 15.5259
49 2.0000 1.4194 1.8303 16.5543
50 2.0000 1.4572 2.0021 16.5825
51 2.0000 1.4569 2.9529 16.5403
52 2.0000 1.4231 2.5265 16.5308
53 2.0000 1.4852 2.0318 16.5259
54 2.0000 1.4354 2.1203 16.5543
55 2.0000 1.4948 1.5365 16.5825
56 2.0000 1.4385 1.8649 17.3924
57 2.0000 1.4754 1.9031 17.9593
58 2.0000 1.4992 1.5663 17.0502
59 2.0000 1.4789 1.8976 17.4033
60 2.0000 1.4518 2.6554 17.6073
61 2.0000 1.4774 2.7225 17.8174
62 2.0000 1.4655 1.7768 17.1332
63 2.0000 1.4854 1.7445 17.0832
64 2.0000 1.4057 2.7633 17.8319
65 2.0000 1.4235 2.0689 17.9612
66 2.0000 1.4513 1.6117 17.8262
67 2.0000 1.4975 2.7734 17.3774
68 2.0000 1.4708 2.0806 17.0377
69 2.0000 1.4068 2.4094 17.5065
70 2.0000 1.4853 2.3352 17.4252

Table 5.3: Computational time by GVS, SA, GVSX and eGVSXSA on packing 30
to 70 circles, [20/302]
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Chapter 6

Summary

In this thesis, I have introduced a variation of the problem of Packing Equal Circles 

in a Square (PECS) in which the interior of the container may be damaged; the 

damages are represented by identical square shape objects. I refer to this generalized 

version of PECS as Packing Equal Circles in a Damaged Square (PECDS).

I have introduced a new heuristic algorithm called Enhanced Greedy Vacancy 

Search optimised by Simulated Annealing (eGVSXSA) for PECDS. The new algo­

rithm iterates an enhanced version of Greedy Vacancy Search algorithm followed by 

a modified Simulated Annealing algorithm, until the termination condition is met.

I performed a number of experiments to demonstrate the significant advantages 

of eGVSXSA over the original GVS and SA. The experimental results presented in 

Chapter 5, indicate a robust performance of eGVSXSA (Figure 5.7).

For future work, we may consider using the eGVSXSA to solve different shapes 

of damage container such as circle, triangle or rectangular container, etc.
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Figure 1: Experimental Result: 30 circle packing in a damaged square, [20/302].
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Figure 2: Experimental Result: 31 circle packing in a damaged square, [20 /302].
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Figure 3: Experimental Result: 32 circle packing in a damaged square, [20/302].
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Figure 4: Experimental Result: 33 circle packing in a damaged square, [20/302].
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Figure 5: Experimental Result: 34 circle packing in a damaged square, [20/302].
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Figure 6: Experimental Result: 35 circle packing in a damaged square, [20/302].
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Figure 7: Experimental Result: 36 circle packing in a damaged square, [20/302].
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Figure 8: Experimental Result: 37 circle packing in a damaged square, [20/302].
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Figure 9: Experimental Result: 38 circle packing in a damaged square, [20/302
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Figure 10: Experimental Result: 39 circle packing in a damaged square, [20/302].
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Figure 11: Experimental Result: 40 circle packing in a damaged square, [20/302].
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Figure 12: Experimental Result: 41 circle packing in a damaged square, [20/302].
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Figure 13: Experimental Result: 42 circle packing in a damaged square, [20/302].
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Figure 14: Experimental Result: 43 circle packing in a damaged square, [20/302].
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Figure 15: Experimental Result: 44 circle packing in a damaged square, [20/302].
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Figure 16: Experimental Result: 45 circle packing in a damaged square, [20/302].
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Figure 17: Experimental Result: 46 circle packing in a damaged square, [20/302].
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Figure 18: Experimental Result: 47 circle packing in a damaged square, [20/302].
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Figure 19: Experimental Result: 48 circle packing in a damaged square, [20/302].
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Figure 20: Experimental Result: 49 circle packing in a damaged square, [20/302].
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Figure 21: Experimental Result: 50 circle packing in a damaged square, [20/302].
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Figure 22: Experimental Result: 51 circle packing in a damaged square, [20/302].
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Figure 23: Experimental Result: 52 circle packing in a damaged square, [20/302].
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Figure 24: Experimental Result: 53 circle packing in a damaged square, [20/302].
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Figure 25: Experimental Result: 54 circle packing in a damaged square, [20/302].
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Figure 26: Experimental Result: 55 circle packing in a damaged square, [20/302].
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Figure 27: Experimental Result: 56 circle packing in a damaged square, [20/302].
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Figure 28: Experimental Result: 57 circle packing in a damaged square, [20/302].
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Figure 29: Experimental Result: 58 circle packing in a damaged square, [20/302].
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Figure 30: Experimental Result: 59 circle packing in a damaged square, [20/302].
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Figure 31: Experimental Result: 60 circle packing in a damaged square, [20/302].
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Figure 32: Experimental Result: 61 circle packing in a damaged square, [20/302].
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Figure 33: Experimental Result: 62 circle packing in a damaged square, [20/302].
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Figure 34: Experimental Result: 63 circle packing in a damaged square, [20/302].
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Figure 35: Experimental Result: 64 circle packing in a damaged square, [20/302].
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Figure 36: Experimental Result: 65 circle packing in a damaged square, [20/302].
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Figure 37: Experimental Result: 66 circle packing in a damaged square, [20/302].
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Figure 38: Experimental Result: 67 circle packing in a damaged square, [20/302].
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Figure 39: Experimental Result: 68 circle packing in a damaged square, [20/302].
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