4,411 research outputs found

    Polylogarithmic Approximation for Generalized Minimum Manhattan Networks

    Full text link
    Given a set of nn terminals, which are points in dd-dimensional Euclidean space, the minimum Manhattan network problem (MMN) asks for a minimum-length rectilinear network that connects each pair of terminals by a Manhattan path, that is, a path consisting of axis-parallel segments whose total length equals the pair's Manhattan distance. Even for d=2d=2, the problem is NP-hard, but constant-factor approximations are known. For d3d \ge 3, the problem is APX-hard; it is known to admit, for any \eps > 0, an O(n^\eps)-approximation. In the generalized minimum Manhattan network problem (GMMN), we are given a set RR of nn terminal pairs, and the goal is to find a minimum-length rectilinear network such that each pair in RR is connected by a Manhattan path. GMMN is a generalization of both MMN and the well-known rectilinear Steiner arborescence problem (RSA). So far, only special cases of GMMN have been considered. We present an O(logd+1n)O(\log^{d+1} n)-approximation algorithm for GMMN (and, hence, MMN) in d2d \ge 2 dimensions and an O(logn)O(\log n)-approximation algorithm for 2D. We show that an existing O(logn)O(\log n)-approximation algorithm for RSA in 2D generalizes easily to d>2d>2 dimensions.Comment: 14 pages, 5 figures; added appendix and figure

    Halving Balls in Deterministic Linear Time

    Full text link
    Let \D be a set of nn pairwise disjoint unit balls in Rd\R^d and PP the set of their center points. A hyperplane \Hy is an \emph{mm-separator} for \D if each closed halfspace bounded by \Hy contains at least mm points from PP. This generalizes the notion of halving hyperplanes, which correspond to n/2n/2-separators. The analogous notion for point sets has been well studied. Separators have various applications, for instance, in divide-and-conquer schemes. In such a scheme any ball that is intersected by the separating hyperplane may still interact with both sides of the partition. Therefore it is desirable that the separating hyperplane intersects a small number of balls only. We present three deterministic algorithms to bisect or approximately bisect a given set of disjoint unit balls by a hyperplane: Firstly, we present a simple linear-time algorithm to construct an αn\alpha n-separator for balls in Rd\R^d, for any 0<α<1/20<\alpha<1/2, that intersects at most cn(d1)/dcn^{(d-1)/d} balls, for some constant cc that depends on dd and α\alpha. The number of intersected balls is best possible up to the constant cc. Secondly, we present a near-linear time algorithm to construct an (n/2o(n))(n/2-o(n))-separator in Rd\R^d that intersects o(n)o(n) balls. Finally, we give a linear-time algorithm to construct a halving line in R2\R^2 that intersects O(n(5/6)+ϵ)O(n^{(5/6)+\epsilon}) disks. Our results improve the runtime of a disk sliding algorithm by Bereg, Dumitrescu and Pach. In addition, our results improve and derandomize an algorithm to construct a space decomposition used by L{\"o}ffler and Mulzer to construct an onion (convex layer) decomposition for imprecise points (any point resides at an unknown location within a given disk)

    Minimum d-dimensional arrangement with fixed points

    Full text link
    In the Minimum dd-Dimensional Arrangement Problem (d-dimAP) we are given a graph with edge weights, and the goal is to find a 1-1 map of the vertices into Zd\mathbb{Z}^d (for some fixed dimension d1d\geq 1) minimizing the total weighted stretch of the edges. This problem arises in VLSI placement and chip design. Motivated by these applications, we consider a generalization of d-dimAP, where the positions of some of the vertices (pins) is fixed and specified as part of the input. We are asked to extend this partial map to a map of all the vertices, again minimizing the weighted stretch of edges. This generalization, which we refer to as d-dimAP+, arises naturally in these application domains (since it can capture blocked-off parts of the board, or the requirement of power-carrying pins to be in certain locations, etc.). Perhaps surprisingly, very little is known about this problem from an approximation viewpoint. For dimension d=2d=2, we obtain an O(k1/2logn)O(k^{1/2} \cdot \log n)-approximation algorithm, based on a strengthening of the spreading-metric LP for 2-dimAP. The integrality gap for this LP is shown to be Ω(k1/4)\Omega(k^{1/4}). We also show that it is NP-hard to approximate 2-dimAP+ within a factor better than \Omega(k^{1/4-\eps}). We also consider a (conceptually harder, but practically even more interesting) variant of 2-dimAP+, where the target space is the grid Zn×Zn\mathbb{Z}_{\sqrt{n}} \times \mathbb{Z}_{\sqrt{n}}, instead of the entire integer lattice Z2\mathbb{Z}^2. For this problem, we obtain a O(klog2n)O(k \cdot \log^2{n})-approximation using the same LP relaxation. We complement this upper bound by showing an integrality gap of Ω(k1/2)\Omega(k^{1/2}), and an \Omega(k^{1/2-\eps})-inapproximability result. Our results naturally extend to the case of arbitrary fixed target dimension d1d\geq 1

    An Optimal Algorithm for Higher-Order Voronoi Diagrams in the Plane: The Usefulness of Nondeterminism

    Full text link
    We present the first optimal randomized algorithm for constructing the order-kk Voronoi diagram of nn points in two dimensions. The expected running time is O(nlogn+nk)O(n\log n + nk), which improves the previous, two-decades-old result of Ramos (SoCG'99) by a 2O(logk)2^{O(\log^*k)} factor. To obtain our result, we (i) use a recent decision-tree technique of Chan and Zheng (SODA'22) in combination with Ramos's cutting construction, to reduce the problem to verifying an order-kk Voronoi diagram, and (ii) solve the verification problem by a new divide-and-conquer algorithm using planar-graph separators. We also describe a deterministic algorithm for constructing the kk-level of nn lines in two dimensions in O(nlogn+nk1/3)O(n\log n + nk^{1/3}) time, and constructing the kk-level of nn planes in three dimensions in O(nlogn+nk3/2)O(n\log n + nk^{3/2}) time. These time bounds (ignoring the nlognn\log n term) match the current best upper bounds on the combinatorial complexity of the kk-level. Previously, the same time bound in two dimensions was obtained by Chan (1999) but with randomization.Comment: To appear in SODA 2024. 16 pages, 1 figur

    Higher-order Voronoi diagrams of polygonal objects

    Get PDF
    Higher-order Voronoi diagrams are fundamental geometric structures which encode the k-nearest neighbor information. Thus, they aid in computations that require proximity information beyond the nearest neighbor. They are related to various favorite structures in computational geometry and are a fascinating combinatorial problem to study. While higher-order Voronoi diagrams of points have been studied a lot, they have not been considered for other types of sites. Points lack dimensionality which makes them unable to represent various real-life instances. Points are the simplest kind of geometric object and therefore higher- order Voronoi diagrams of points can be considered as the corner case of all higher-order Voronoi diagrams. The goal of this dissertation is to move away from the corner and bring the higher-order Voronoi diagram to more general geometric instances. We focus on certain polygonal objects as they provide flexibility and are able to represent real-life instances. Before this dissertation, higher-order Voronoi diagrams of polygonal objects had been studied only for the nearest neighbor and farthest Voronoi diagrams. In this dissertation we investigate structural and combinatorial properties and discover that the dimensionality of geometric objects manifests itself in numerous ways which do not exist in the case of points. We prove that the structural complexity of the order-k Voronoi diagram of non-crossing line segments is O(k(n-k)), as in the case of points. We study disjoint line segments, intersecting line segments, line segments forming a planar straight-line graph and extend the results to the Lp metric, 1<=p<=infty. We also establish the connection between two mathematical abstractions: abstract Voronoi diagrams and the Clarkson-Shor framework. We design several construction algorithms that cover the case of non-point sites. While computational geometry provides several approaches to study the structural complexity that give tight realizable bounds, developing an effective construction algorithm is still a challenging problem even for points. Most of the construction algorithms are designed to work with points as they utilize their simplicity and relations with data-structures that work specifically for points. We extend the iterative and the sweepline approaches that are quite efficient in constructing all order-i Voronoi diagrams, for i<=k and we also give three randomized construction algorithms for abstract higher-order Voronoi diagrams that deal specifically with the construction of the order-k Voronoi diagrams

    An Elimination Method for Solving Bivariate Polynomial Systems: Eliminating the Usual Drawbacks

    Full text link
    We present an exact and complete algorithm to isolate the real solutions of a zero-dimensional bivariate polynomial system. The proposed algorithm constitutes an elimination method which improves upon existing approaches in a number of points. First, the amount of purely symbolic operations is significantly reduced, that is, only resultant computation and square-free factorization is still needed. Second, our algorithm neither assumes generic position of the input system nor demands for any change of the coordinate system. The latter is due to a novel inclusion predicate to certify that a certain region is isolating for a solution. Our implementation exploits graphics hardware to expedite the resultant computation. Furthermore, we integrate a number of filtering techniques to improve the overall performance. Efficiency of the proposed method is proven by a comparison of our implementation with two state-of-the-art implementations, that is, LPG and Maple's isolate. For a series of challenging benchmark instances, experiments show that our implementation outperforms both contestants.Comment: 16 pages with appendix, 1 figure, submitted to ALENEX 201
    corecore