1,048 research outputs found

    Monopoly Pricing in a Vertical Market with Demand Uncertainty

    Get PDF
    We study a vertical market with an upsteam supplier and multiple downstream retailers. Demand uncertainty falls to the supplier who acts first and sets a uniform wholesale price before the retailers observe the realized demand and engage in retail competition. Our focus is on the supplier's optimal pricing decision. We express the price elasticity of expected demand in terms of the mean residual demand (MRD) function of the demand distribution. This allows for a closed form characterization of the points of unitary elasticity that maximize the supplier's profits and the derivation of a mild unimodality condition for the supplier's objective function that generalizes the widely used increasing generalized failure rate (IGFR) condition. A direct implication is that optimal prices between different markets can be ordered if the markets can be stochastically ordered according to their MRD functions or equivalently to their elasticities. Based on this, we apply the theory of stochastic orders to study the response of the supplier's optimal price to various features of the demand distribution. Our findings challenge previously established economic insights about the effects of market size, demand transformations and demand variability on wholesale prices and indicate that the conclusions largely depend on the exact notion that will be employed. We then turn to measure market performance and derive a distribution free and tight bound on the probability of no trade between the supplier and the retailers. If trade takes place, our findings indicate that ovarall performance depends on the interplay between demand uncertainty and level of retail competition

    Mixed contracts for the newsvendor problem with real options

    Get PDF
    In this paper we consider the newsvendor model with real options. We consider a mixed contract where the retailer can order a combination of q units subject to the conditions in a classical newsvendor contract and Q real options on the same items. We provide a closed form solution to this mixed contract when the demand is discrete and study some of its properties. We also offer an explicit solution for the continuous case. In particular we demonstrate that a mixed contract may be superior to a real option contract when a manufacturer has a bound on how much variance she is willing to accept.Newsvendor model; real options; discrete demand; mixed contract

    Robust Solutions of Optimization Problems Affected by Uncertain Probabilities

    Get PDF
    In this paper we focus on robust linear optimization problems with uncertainty regions defined by ø-divergences (for example, chi-squared, Hellinger, Kullback-Leibler). We show how uncertainty regions based on ø-divergences arise in a natural way as confidence sets if the uncertain parameters contain elements of a probability vector. Such problems frequently occur in, for example, optimization problems in inventory control or finance that involve terms containing moments of random variables, expected utility, etc. We show that the robust counterpart of a linear optimization problem with ø-divergence uncertainty is tractable for most of the choices of ø typically considered in the literature. We extend the results to problems that are nonlinear in the optimization variables. Several applications, including an asset pricing example and a numerical multi-item newsvendor example, illustrate the relevance of the proposed approach.robust optimization;ø-divergence;goodness-of-fit statistics

    Constructive solution methodologies to the capacitated newsvendor problem and surrogate extension

    Get PDF
    The newsvendor problem is a single-period stochastic model used to determine the order quantity of perishable product that maximizes/minimizes the profit/cost of the vendor under uncertain demand. The goal is to fmd an initial order quantity that can offset the impact of backlog or shortage caused by mismatch between the procurement amount and uncertain demand. If there are multiple products and substitution between them is feasible, overstocking and understocking can be further reduced and hence, the vendor\u27s overall profit is improved compared to the standard problem. When there are one or more resource constraints, such as budget, volume or weight, it becomes a constrained newsvendor problem. In the past few decades, many researchers have proposed solution methods to solve the newsvendor problem. The literature is first reviewed where the performance of each of existing model is examined and its contribution is reported. To add to these works, it is complemented through developing constructive solution methods and extending the existing published works by introducing the product substitution models which so far has not received sufficient attention despite its importance to supply chain management decisions. To illustrate this dissertation provides an easy-to-use approach that utilizes the known network flow problem or knapsack problem. Then, a polynomial in fashion algorithm is developed to solve it. Extensive numerical experiments are conducted to compare the performance of the proposed method and some existing ones. Results show that the proposed approach though approximates, yet, it simplifies the solution steps without sacrificing accuracy. Further, this dissertation addresses the important arena of product substitute models. These models deal with two perishable products, a primary product and a surrogate one. The primary product yields higher profit than the surrogate. If the demand of the primary exceeds the available quantity and there is excess amount of the surrogate, this excess quantity can be utilized to fulfill the shortage. The objective is to find the optimal lot sizes of both products, that minimize the total cost (alternatively, maximize the profit). Simulation is utilized to validate the developed model. Since the analytical solutions are difficult to obtain, Mathematical software is employed to find the optimal results. Numerical experiments are also conducted to analyze the behavior of the optimal results versus the governing parameters. The results show the contribution of surrogate approach to the overall performance of the policy. From a practical perspective, this dissertation introduces the applications of the proposed models and methods in different industries such as inventory management, grocery retailing, fashion sector and hotel reservation

    A maximum entropy approach to the newsvendor problem with partial information

    Get PDF
    In this paper, we consider the newsvendor model under partial information, i.e., where the demand distribution D is partly unknown. We focus on the classical case where the retailer only knows the expectation and variance of D. The standard approach is then to determine the order quantity using conservative rules such as minimax regret or Scarf's rule. We compute instead the most likely demand distribution in the sense of maximum entropy. We then compare the performance of the maximum entropy approach with minimax regret and Scarf's rule on large samples of randomly drawn demand distributions. We show that the average performance of the maximum entropy approach is considerably better than either alternative, and more surprisingly, that it is in most cases a better hedge against bad results.Newsvendor model; entropy; partial information

    The Newsvendor Problem: Review and Directions for Future Research

    Get PDF
    In this paper, we review the contributions to date for analyzing the newsvendor problem. Our focus is on examining the specific extensions for analyzing this problem in the context of modeling customer demand, supplier costs, and the buyer risk profile. More specifically, we analyze the impact of market price, marketing effort, and stocking quantity on customer demand; how supplier prices can serve as a coordination mechanism in a supply chain setting; integrating alternative supplier pricing policies within the newsvendor framework; and how the buyer’s risk profile moderates the newsvendor order quantity decision. For each of these areas,we summarize the current literature and develop extensions. Finally, we also propose directions for future research

    Optimal Dynamic Procurement Policies for a Storable Commodity with L\'evy Prices and Convex Holding Costs

    Get PDF
    In this paper we study a continuous time stochastic inventory model for a commodity traded in the spot market and whose supply purchase is affected by price and demand uncertainty. A firm aims at meeting a random demand of the commodity at a random time by maximizing total expected profits. We model the firm's optimal procurement problem as a singular stochastic control problem in which controls are nondecreasing processes and represent the cumulative investment made by the firm in the spot market (a so-called stochastic "monotone follower problem"). We assume a general exponential L\'evy process for the commodity's spot price, rather than the commonly used geometric Brownian motion, and general convex holding costs. We obtain necessary and sufficient first order conditions for optimality and we provide the optimal procurement policy in terms of a "base inventory" process; that is, a minimal time-dependent desirable inventory level that the firm's manager must reach at any time. In particular, in the case of linear holding costs and exponentially distributed demand, we are also able to obtain the explicit analytic form of the optimal policy and a probabilistic representation of the optimal revenue. The paper is completed by some computer drawings of the optimal inventory when spot prices are given by a geometric Brownian motion and by an exponential jump-diffusion process. In the first case we also make a numerical comparison between the value function and the revenue associated to the classical static "newsvendor" strategy.Comment: 28 pages, 3 figures; improved presentation, added new results and section
    corecore