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Abstract

In this paper we focus on robust linear optimization problems with uncertainty regions
defined by φ-divergences (for example, chi-squared, Hellinger, Kullback-Leibler). We show
how uncertainty regions based on φ-divergences arise in a natural way as confidence sets if
the uncertain parameters contain elements of a probability vector. Such problems frequently
occur in, for example, optimization problems in inventory control or finance that involve
terms containing moments of random variables, expected utility, etc. We show that the robust
counterpart of a linear optimization problem with φ-divergence uncertainty is tractable for
most of the choices of φ typically considered in the literature. We extend the results to
problems that are nonlinear in the optimization variables. Several applications, including
an asset pricing example and a numerical multi-item newsvendor example, illustrate the
relevance of the proposed approach.

Keywords: robust optimization, φ-divergence, goodness-of-fit statistics.
JEL codes: C61.

1 Introduction

Several papers in the late 1990s ([29], [3], [4], [19], [20]) started a revival of Robust Optimization
(RO), both in terms of theoretical aspects, as well as practical applications. For a survey we
refer to [5] or [8]. Consider, for example, a linear constraint with uncertain parameters. The idea
of robust optimization is to define a so-called uncertainty region for the uncertain parameters,
and then to require that the constraint should hold for all parameter values in this uncertainty
region. The optimization problem modeling this requirement is called the Robust Counterpart
Problem (RCP). Although the RCP typically has an infinite number of constraints, it is still
tractable (polynomially solvable) for several optimization problems and several choices of the
uncertainty region. In particular, the robust counterpart for a linear programming problem

∗Part of this work was done during a visit of the first author at CWI, Amsterdam, The Netherlands.
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with polyhedral or ellipsoidal uncertainty regions reduces to a linear programming and a conic
quadratic programming problem, respectively.

When applying the RO methodology to a practical problem, a major modeling decision con-
cerns the choice of the uncertainty region U . Such a choice should fulfil three basic requirements.
First, U should be consistent with whatever data (and information) is available on the uncer-
tain parameters. Second, U should be statistically meaningful. Third, U should be such that
the corresponding RCP is tractable. The latter requirement is essential when confronting an
optimization problem having a large-scale design dimension and/or large scale parameter space.

In this paper we are concerned mainly with optimization problems where the uncertain pa-
rameters are probabilities. This is the case when the objective function and/or the constraint
functions involve terms with expectations (such as moments of random variables, or expected
utility, etc.). For such problems we advocate the use of uncertainty regions that are constructed
as confidence sets using φ-divergence functionals. Such functionals include the Hellinger dis-
tance, the Kullback Leibler, the Burg, and the chi-squared divergence, and many others. We
choose φ-divergences because these play a fundamental role in statistics (see [30] and [35]). The
main contribution of this paper is showing that the choice of U as such uncertainty sets indeed
fulfils the above three requirements:

• U is based on empirical probability estimates obtained from historical data.

• U is shown to relate to a statistical confidence region based on asymptotic theory.

• U is such that the corresponding RCP is shown to be tractable: for basically all signif-
icant φ-divergence functionals, the resulting robust counterpart problem is polynomially
solvable. In fact, in many cases it reduces to a linear, or a conic quadratic problem.

Using (smooth) φ-divergences, uncertainty regions can easily be constructed as (approximate)
confidence sets, when the probabilities can be estimated from historical data. This follows from
applying asymptotic theory. Moreover, φ-divergences also allow the construction of confidence
sets when the probabilities are calculated using additional information, represented by some
underlying statistical model. In this way, smaller confidence sets can be obtained without
reducing the confidence level. This is a consequence of the so-called information processing
theorem, valid for φ-divergences, see [30]. The size of the uncertainty region can be controlled
by the confidence level of the confidence set. For example, the choice of a 95% confidence level
will result in an uncertainty set which is (statistically) significant. Combined with the tractability
of the RCP with these uncertainty sets, φ-divergences therefore present an appealing approach
in robust optimization.

We illustrate the relevance of the proposed approach by applying it first to an investment
problem. We show that our approach yields a natural link with standard asset pricing theory.
We also present a numerical illustration in terms of a multi-item newsvendor problem. Using
our robust optimization approach leads to solutions that are quite robust, while at the same
time exhibiting good average optimal performance.

We now discuss related papers. In Chapter 2 of [5] probabilistic arguments are used to construct
an uncertainty region by using partial a priori knowledge on the underlying distribution of the
uncertain parameters. Klabjan et al. [28] use the well-known chi-squared statistic, which is a
special case of a φ-divergence statistic, to define uncertainty regions for the unknown demand
distribution in an inventory control problem. In their approach a robust dynamic programming
problem has to be solved. Calafiore [11] studies portfolio selection problems in which the true
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distribution of asset returns is unknown. He assumes that the true distribution is only known to
lie within a certain distance from an estimated one and uses the Kullback-Leibler divergence to
measure the distance. Our analysis includes the Kullback-Leibler divergence as a special case.
Moreover, whereas Calafiore’s approach requires solving a “nested” optimization problem, our
approach allows for a tractable reformulation of the robust counterpart. Wang et al. [39] studied
robust optimization for data-driven newsvendor problems, in which the uncertainty set for the
unknown distribution is defined as a “likelihood region”. Bertsimas and Brown [7] interpret
robust optimization in terms of coherent risk measures. Ben-Tal et al. [6] consider the soft
robust optimization approach and establish for such optimization problems a link with convex
risk measures. Related research on robust optimal portfolio choice with uncertainty sets based
on confidence sets include [16], [23], and [24] (for an overview, see [22]). These papers typically
use mean or covariance matrix-based confidence sets, while we use confidence sets based on
φ-divergences.

The remainder of this paper is organized as follows. We start with an introduction to robust
linear optimization in Section 2, and to φ-divergences in Section 3. In Section 3 we also discuss
the construction of uncertainty sets as confidence sets using φ-divergences. in Section 4 we study
the robust counterparts for problems with φ-divergence uncertainty regions. In Section 5 we show
that for different choices of the φ-divergence, the robust counterpart can be reformulated as a
tractable problem. In Section 6 we present some applications, including a numerical multi-item
newsvendor example, and Section 7 concludes the paper with topics for further research.

2 Introduction to robust linear optimization

In this paper the main focus is on robust linear optimization. Without loss of generality, we
focus on robust counterpart problems of the form

min {cTx | Ax ≤ b, ∀A ∈ Û},

where x ∈ R
n is the optimization vector, c ∈ R

n and b ∈ R
l are given (known) parameters,

A ∈ R
l×n is a matrix with uncertain parameters, and Û is a given uncertainty region for A.

Indeed, as shown in [5], for robust linear optimization we can, without loss of generality, assume
that the objective and the right-hand-side of the constraints are certain.

Moreover, as also shown in [5], for robust linear optimization, we can without loss of generality
assume constraint-wise uncertainty. Hence, we focus on a single constraint, which we assume to
be of the form

(a+Bp)Tx ≤ β, ∀p ∈ U, (1)

where x ∈ R
n is the design vector, a ∈ R

n, B ∈ R
n×m, and β ∈ R are given (known) parameters,

p ∈ R
m is the uncertain parameter, and U the uncertainty region for p.

In Table 1 the tractability results for several standard choices of U are given. For a detailed
treatment, see [5]. The last line in the table is a new result, and will be proved in this paper.
Here, we briefly discuss the derivation of the robust counterparts of the standard choices of U ,
illustrating the general principles. We shall apply these general principles in our approach as
well. To start, the results for the box and ball uncertainty region can easily be obtained by
finding the worst-case solution with respect to p, i.e., by solving

max{pTBTx | p ∈ U}.
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For the polyhedral and cone uncertainty region we can use duality. Specifically, under the
assumption that the uncertainty region is a cone K which contains a strictly feasible solution
(i.e., there exists a p̄ such that Cp̄+ d ∈ intK) it holds that:

max{pTBTx | Cp+ d ∈ K} = min{dT y | CT y = −BTx, y ∈ K∗},

where K∗ denotes the dual cone of K. This means that x satisfies (1) if and only if x satisfies

aTx+min{dT y | CT y = −BTx, y ∈ K∗} ≤ β.

Hence, we have that x satisfies (1) if and only if (x, y) satisfies





aTx+ dT y ≤ β

CTy = −BTx

y ∈ K∗.

Moreover, in [5] it is shown that if U is the intersection of different “tractable cones” then the
robust counterpart can also be reformulated as a tractable problem.

In this paper we shall show that if the uncertainty region U is based on a φ-divergence, the
robust counterpart can also be reformulated as a tractable optimization problem.

3 Introduction to φ-divergence

In this section, we first define the concept of φ-divergence, and discuss some properties that
will be useful in obtaining tractable reformulations of the robust counterpart of problem (1),
when the uncertainty region U is defined in terms of a φ-divergence. Next, we discuss how to
construct uncertainty regions as (approximate) confidence sets based on a φ-divergence.

3.1 Definition and some characteristics

The φ-divergence (“distance”) between two vectors1 p = (p1, · · · , pm)T ≥ 0, q = (q1, · · · , qm)T ≥
0 in R

m is defined as

Iφ(p, q) =
m∑

i=1

qiφ

(
pi
qi

)
, (2)

where φ(t) is convex for t ≥ 0, φ(1) = 0, 0φ(a/0) := a limt→∞ φ(t)/t, for a > 0, and 0φ(0/0) := 0.
We refer to the function φ as the φ-divergence function. We shall mainly focus on probability
vectors p and q that satisfy the additional constraint pT e = 1 and qT e = 1, where e denotes a
column vector of ones of the same dimension as p and q. However, some of our results are also
valid more generally for p ≥ 0 and q ≥ 0.

Different choices for φ have been proposed in the literature. For a good overview, see [32]. Table
2 contains the most known and used choices for φ. The power divergence class presented in the
bottom row of Table 2 was proposed by Cressie and Read [15] to be used in case of multinomial
data, and is since then extensively studied, see for example [27]. The expression for θ = 0 is
obtained by taking the limit θ → 0, and the expression for θ = 1 by taking the limit θ → 1.

1In case of a vector, we interpret the inequality componentwise, i.e., p = (p1, · · · , pm)T ≥ 0 means pi ≥ 0 for
i = 1, · · · , m. Similarly, p > 0 means pi > 0 for i = 1, · · · ,m.
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Uncertainty region U Robust Counterpart Tractability

Box ‖p‖∞ ≤ 1 aTx+ ‖BTx‖1 ≤ β LP

Ball ‖p‖2 ≤ 1 aTx+ ‖BTx‖2 ≤ β CQP

Polyhedral Cp+ d ≥ 0





aTx+ dT y ≤ β

CTy = −BTx

y ≥ 0

LP

Cone (closed, convex, pointed) Cp+ d ∈ K





aTx+ dT y ≤ β

CTy = −BTx

y ∈ K∗
Conic Opt.

Separable functions
∑

i fℓi(pi) ≤ 0, ∀ℓ ∈ {1, · · · , L}





aTx+
∑

ℓ

∑
i λℓf

∗
ℓi

(
sℓi
λℓ

)
≤ β

∑
ℓ sℓi = bTi x, i ∈ {1, · · · ,m}

λ ≥ 0.

Convex Opt.

Table 1: Robust linear optimization for different choices for the uncertainty region in terms of p = (p1, · · · , pm)T . The functions fℓi are
assumed to be convex, f∗

ℓi is the conjugate function of fℓi, and K∗ denotes the dual cone of K.
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Table 3 shows that the Cressie and Read class contains several well-known φ-divergence functions
proposed in the literature (up to normalization). Notice that when the φ-divergence function
corresponding to a φ-divergence is differentiable at t = 1, the function ϕ (t) = φ (t)−φ′ (t) (t− 1)
also yields a φ-divergence, satisfying (for probability vectors) Iϕ(p, q) = Iφ(p, q), with ϕ (1) =
ϕ′ (1) = 0 and ϕ(t) ≥ 0, see [32].

Given some φ with corresponding φ-divergence Iφ(p, q), the so-called adjoint of φ is defined for
t ≥ 0 as (see [2]):

φ̃(t) := tφ(
1

t
). (3)

It holds that φ̃ satisfies the conditions for φ-divergence functions, and I
φ̃
(p, q) = Iφ(q, p). Later

in this paper we will also use other properties of φ̃. For example, it is easy to see that the

adjoint of the adjoint function is the function itself, i.e.,
˜̃
φ = φ. Moreover, the function φ is

called self-adjoint if φ̃ = φ. As can be seen from Table 2, the J-divergence and the variation
distance are self-adjoint. For other interesting properties of φ̃ we refer to [2].

We will show in Section 4 that the robust counterpart of a linear constraint with φ-divergence
uncertainty can be reformulated in terms of the so-called conjugate of φ. The conjugate is a
function φ∗ : R → R ∪ {∞} which is defined as follows:

φ∗(s) = sup
t≥0

{st− φ(t)}. (4)

In Table 2 we only present the expressions of φ∗ on its effective domain dom(φ∗), i.e., the part
of the domain where φ∗ (s) < ∞.2

In some cases φ∗ does not exist in a (known) closed form. This is, for example, the case for
the J-divergence distance measure (see Table 2). In the sequel we will use the following two
propositions to determine tractable reformulations of the robust counterpart in cases where φ∗

does not exist in closed form. The first proposition applies when φ can be written as the sum of
two φ-divergence functions φ1 and φ2. The conditions required in the proposition are fulfilled
in case the functions f1 and f2 are φ-divergence functions.

Proposition 3.1 [36] Assume that f1 and f2 are convex, and the intersection of the relative
interiors of the effective domains of f1 and f2 is nonempty, i.e., ri(dom f1) ∩ ri(dom f2) 6= ∅.
Then

(f1 + f2)
∗(s) = inf

s1+s2=s
(f∗

1 (s1) + f∗
2 (s2)) ,

and the inf is attained for some s1, s2. �

The following proposition relates the conjugate of the adjoint function to the conjugate of the
original function.

Proposition 3.2 [26] For the conjugate of a φ-divergence function and the conjugate of its
adjoint, we have

φ∗(s) = inf{y ∈ R : (φ̃)∗(−y) ≤ −s}.
�

2These φ∗ correspond to φ with effective domain dom(φ) = (0,∞). Thus, we set φ(t) = ∞ for t ≤ 0.
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Divergence φ(t) φ(t), t ≥ 0a Iφ(p, q) φ∗(s) φ̃(t) RCP

Kullback-Leibler φkl(t) t log t− t+ 1
∑

pi log
(
pi
qi

)
es − 1 φb(t) S.C.

Burg entropy φb(t) − log t+ t− 1
∑

qi log
(
qi
pi

)
− log(1− s), s < 1 φkl(t) S.C.

J-divergence φj(t) (t− 1) log t
∑

(pi − qi) log
(
pi
qi

)
no closed form φj(t) S.C.

χ2-distance φc(t)
1
t
(t− 1)2

∑ (pi−qi)2

pi
2− 2

√
1− s, s < 1 φmc(t) CQP

Modified χ2-distance φmc(t) (t− 1)2
∑ (pi−qi)

2

qi

{
−1, s < −2

s+ s2/4, s ≥ −2
φc(t) CQP

Hellinger distance φh(t) (
√
t− 1)2

∑
(
√
pi −

√
qi)

2 s
1−s

, s < 1 φh(t) CQP

χ divergence of order θ > 1 φθ
ca(t) |t− 1|θ ∑

qi|1− pi
qi
|θ s+ (θ − 1)

(
|s|
θ

) θ
θ−1

t1−θφθ
ca(t) CQP

Variation distance φv(t) |t− 1| ∑ |pi − qi|
{
−1, s ≤ −1

s, −1 ≤ s ≤ 1
φv(t) LP

Cressie and Read φθ
cr(t)

1−θ+θt−tθ

θ(1−θ) , θ 6= 0, 1b 1
θ(1−θ)(1−

∑
pθi q

1−θ
i )

1
θ
(1− s(1− θ))

θ
θ−1 − 1

θ

s < 1
1−θ

φ1−θ
cr (t) CQP

Table 2: Some φ-divergence examples, with their conjugates and adjoints. The last column indicates the tractability of (1); S.C. means
“admits self-concordant barrier”.

aφ(t) = ∞, for t < 0
bNote that φ1

cr(t) = φb(t) and φ0
cr(t) = φkl(t).
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θ φθ
cr(t) Equivalent with

2 1
2(t

2 − 2t+ 1) = 1
2(t− 1)2 modified χ2-distance

1 t(log t− 1) + 1 Kullback-Leibler
1
2 4

(
1
2 + 1

2t−
√
t
)
= 2

(
1−

√
t
)2

Hellinger distance

−1 1
2

(
−2 + t+ 1

t

)
= 1

2

(√
t− 1√

t

)2
χ2-distance

Table 3: Some specific choices for θ for the Cressie and Read φ-divergence class.

To choose between different φ-divergences one might use some representation theorem for φ-
divergences, as given in, for example, Reid and Williamson [35], see also [30]. For instance,
a useful representation theorem states that φ-divergences can be represented by a weighted
average of basic φ-divergences, where the weights are exclusively determined by the second
order derivative of φ (possibly considered as a generalized function).

3.2 Construction of uncertainty regions

In this subsection we describe how to construct uncertainty regions for probability vectors p as
(approximate) confidence sets using φ-divergences. We consider settings in which there is a fixed
number m of given scenarios for a random variable Z, where the components of the probability
vector p = (p1, · · · , pm)T are given by pi ≡ P (Z ∈ Ci), i = 1, · · · ,m. Here, pi represents the
probability that scenario i will occur, where Ci, i = 1, · · · ,m, form a partition (of measurable
sets) of the outcome space of Z. As basic case we take the case where we only observe Z ∈ Ci,
i = 1, · · · ,m. In this situation we can assume without loss of generality that Z ∈ {1, · · · ,m},
where Z = i in case of scenario i. But we shall also consider cases where Z contains more
information than just which of the m scenarios occurs. To capture both the basis case and more
general cases, we assume the existence of a (measurable) transformation G, such that G (Z) = i
if Z ∈ Ci, i = 1, · · · ,m. The basis case then corresponds to the situation where G is a one-to-one
transformation.

Denote by PZ the probability distribution of Z. We shall assume that PZ belongs to a pa-
rameterized set of probability distributions

{
Pθ | θ ∈ Θ ⊂ R

d
}
, i.e., there exists some θ0 ∈ Θ,

such that PZ = Pθ0 . We write pθ = (p1,θ, · · · , pm,θ)
T , with pi,θ = Pθ (G (Z) = i), and we write

p0 = pθ0 . We consider the case where the probability distributions Pθ are dominated by a com-
mon σ-finite measure µ. The density of Pθ with respect to µ is denoted by fθ, where we shall
write f0 = fθ0 . In the basic case, when we only observe the scenarios, we have Z ∈ {1, · · · ,m},
and we can take, for example, Θ = R

m−1, µ the counting measure, and

Pθ (Z = i) = fθ (i)× 1 = exp (θi) /

m∑

j=1

exp (θj) , i = 1, · · · ,m,

for θ = (θ1, · · · , θm)T , with normalization θm ≡ 0. We then have

Pθ (Z = i) = pi,θ = fθ (i) , i = 1, · · · ,m,

so that there is a one-to-one correspondence between the sets P :=
{
p ∈ R

m | p ≥ 0, pT e = 1
}

and PΘ := {pθ | θ ∈ Θ}.

Given this setting, we shall discuss the construction of uncertainty sets as confidence sets, under
the assumption that a sample Z1, · · · , ZN , randomly drawn from PZ , is given. The φ-divergence
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between the densities fθ and f0 is given by

Iφ(fθ, f0) =

∫
φ

(
fθ
f0

)
f0dµ.

We shall first construct a confidence set in terms of fθ which we then use to construct a con-
fidence set in terms of pθ. Let θ̂ denote the Maximum Likelihood estimator of θ, and denote
f̂0 = f

θ̂
. In the basic case we get f̂0 = qN , where qN = (q1,N , · · · , qm,N )T is the m-dimensional

vector containing as components the sample frequencies of the m scenarios based on the random
sample Z1, · · · , ZN . We shall use Iφ(fθ, f̂0) as estimator for Iφ(fθ, f0).

3 Pardo [32] presents the
characteristics of this estimator under the assumption that φ is twice continuously differentiable
in a neighborhood of 1, with φ′′(1) > 0. Most φ-divergences reported in Table 2 satisfy this con-
dition. Under the probability distribution PZ = Pθ0 and under appropriate additional regularity
conditions, he shows that the normalized estimated φ-divergence

2N

φ′′(1)
Iφ(fθ, f̂0) (5)

asymptotically (i.e., for N → ∞) follows a χ2
d-distribution, with degrees of freedom determined

by the dimension of the parameter set Θ. In terms of the densities fθ we therefore have the
following (approximate) (1− α)-confidence set around f0:

{
fθ | Iφ(fθ, f̂0) ≤ ρ

}
, (6)

where4

ρ = ρφ(N, d, α) :=
φ′′(1)
2N

χ2
d,1−α. (7)

Based on the information (or data) processing theorem, see [30] for a new proof, we have

Iφ(pθ, p̂0) ≤ Iφ(fθ, f̂0),

where p̂0 = p
θ̂
is the estimator of p0, using θ̂ as estimator for θ. Thus, we have

{θ ∈ Θ | Iφ(pθ, p̂0) ≤ ρ} ⊃
{
θ ∈ Θ | Iφ(fθ, f̂0) ≤ ρ

}
.

We also have
{p ∈ P | Iφ(p, p̂0) ≤ ρ} ⊃ {p ∈ PΘ | Iφ(pθ, p̂0) ≤ ρ} . (8)

This implies the left hand side of (8) as (approximate) confidence set of confidence level at least
(1−α) for p ∈ P around p̂0. In the basic case, i.e., when we only observe the scenarios, we have
that the dimension of Θ equals m−1, so that d = m−1 in (7). But with additional information
we might be able to parameterize fθ by means of Θ ⊂ R

d with d < m− 1. Then, using (7) with
d < m− 1, we get a smaller confidence set, but of the same confidence level.

The confidence set (8) is based on asymptotics (N → ∞), and therefore only approximately
valid. In order to improve the approximation, several possibilities exist, see [32]. One possibility
in the basic case is to consider the statistic

1√
δφ

(
2N

φ′′(1)
Iφ(p, qN )− γφ

)
, (9)

3It is also possible to avoid the use of the Maximum Likelihood estimator, see, for example, [10] or [30].
4In this expression χ2

m−1,1−α is the 1 − α percentile of the χ2
m−1-distribution, i.e., P

(
X ≥ χ2

m−1,1−α

)
= α,

with X following a χ2
m−1-distribution.
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Divergence h(t) φ

Renyi 1
θ(θ−1) log(θ(θ − 1)t+ 1); θ 6= 0, 1 φθ

cr; θ 6= 0, 1

Sharma-Mittal 1
v−1

(
(1 + θ(θ − 1)x)

v−1

θ−1 − 1
)
; θ, v 6= 1 φθ

cr; θ 6= 0, 1

Bhattacharyya − log(1− 1
4t) φ

1

2
cr

Table 4: Examples of (h, φ)-divergence statistics.

instead of (5). The “correction parameters” δφ and γφ, satisfying δφ → 1 and γφ → 0 for
N → ∞, are defined at p. 190 of [32]. These corrections ensure that the test statistic has the
same mean and variance as the limiting χ2-distribution, up to order 1/N . We can use (9) to
construct an approximate confidence interval, similar to (6), but due to the correction terms the
approximation might be better for smaller sample sizes.

In the literature also several so-called (h, φ)-divergence statistics have been proposed. Such
a (h, φ)-divergence between two probability vectors p ≥ 0 and q ≥ 0 in R

m is defined as
h (Iφ (p, q))), for some appropriately chosen h. Some examples, taken from [32], are given in
Table 4. Let h be increasing and continuously differentiable in a neighborhood of 0. Then,
under PZ , the statistic

2N

h′(0)φ′′(1)
h(Iφ(fθ, f̂0)),

follows the same distribution as the statistic in (5). Therefore, the uncertainty regions in (6)
and (8), with

ρ = ρ(h,φ)(N, d, α) := h−1

(
h′(0)φ′′(1)

2N
χ2
d,1−α

)
, (10)

are approximate (1 − α)-confidence intervals. Thus, (8) with this choice of ρ yields a (h, φ)-
divergence based uncertainty region.

4 Robust counterpart with φ-divergence uncertainty

In this section we derive the robust counterpart (RCP) for (1) with a φ-divergence based uncer-
tainty region. We consider the following robust linear constraint:

(a+Bp)Tx ≤ β, ∀p ∈ U, (11)

where x ∈ R
n is the optimization vector, a ∈ R

n, B ∈ R
n×m, and β ∈ R are given parameters,

p ∈ R
m is the uncertain parameter, and

U = {p ∈ R
m | p ≥ 0, Cp ≤ d, Iφ(p, q) ≤ ρ}, (12)

where q ∈ R
m (with q ≥ 0), ρ > 0, d ∈ R

k, and C ∈ R
k×m are given. As discussed in the previous

section, when the uncertainty region is constructed as confidence set, we will have q = p̂0, the
empirical or data based estimate. Formulation (12) is somewhat more general than we considered
in the previous section. To deal with p as a probability vector we include the constraints eT p ≤ 1
and eT p ≥ 1. But if some additional information concerning p is available that can be expressed
in terms of linear (in)equalities, these can also be included in the uncertainty region as given by
(12). We shall assume that these additional constraints are such that q ∈ U .

We prove the following theorem.
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Theorem 4.1 A vector x ∈ R
n satisfies (11) with uncertainty region U given by (12) such that

q ∈ U if and only if there exist η ∈ R
k and λ ∈ R such that (x, λ, η) satisfies

{
aTx+ dT η + ρλ+ λ

∑
i qiφ

∗
(
bTi x−cTi η

λ

)
≤ β

η ≥ 0, λ ≥ 0,
(13)

where bi and ci are the i-th columns of B and C, respectively, and φ∗ is the conjugate function
given by (4), with 0φ∗ ( s

0

)
:= 0 if s ≤ 0 and 0φ∗ ( s

0

)
:= +∞ if s > 0.

Proof: We have that (11) holds if and only if:

β ≥ max
p

{(a+Bp)Tx |p ∈ U} = max
p≥0

{
(a+Bp)Tx

∣∣∣∣Cp ≤ d,

m∑

i=1

qiφ

(
pi
qi

)
≤ ρ

}
. (14)

The Lagrange function for the optimization problem on the right-hand-side of (14) is given by:

L(p, λ, η) = (a+Bp)Tx+ ρλ− λ
m∑

i=1

qiφ(pi/qi) + ηT (d− Cp),

and the dual objective function is:

g(λ, η) = max
p≥0

L(p, λ, η).

Since q ∈ U , it follows that U is regular in the sense that Cq ≤ d and Iφ(q, q) = 0 < ρ. Due
to this regularity of U strong duality holds. Hence, it follows that x satisfies (11) if and only if
minλ,η≥0 g(λ, η) ≤ β, where the min is attained for some λ ≥ 0, η ≥ 0. Equivalently, x satisfies
(11) if and only if g(λ, η) ≤ β for some λ ≥ 0 and η ≥ 0. The dual objective function satisfies:

g(λ, η) = aTx+ dT η + ρλ+max
p≥0

m∑

i=1

(
pi(b

T
i x)− pi(c

T
i η)− λqiφ(pi/qi)

)

= aTx+ dT η + ρλ+

m∑

i=1

max
pi≥0

(
pi(b

T
i x− cTi η)− λqiφ(pi/qi)

)

= aTx+ dT η + ρλ+

m∑

i=1

qimax
t≥0

{
t
(
bTi x− cTi η

)
− λφ(t)

}

= aTx+ dT η + ρλ+
m∑

i=1

qi (λφ)
∗ (bTi x− cTi η

)
. (15)

Finally, we have (λφ)∗ (s) = λφ∗ ( s
λ

)
for λ ≥ 0, where we define 0φ∗ ( s

0

)
:= (0φ)∗ (s), which

equals 0 if s ≤ 0 and +∞ if s > 0. �

In the RCP (13) we need φ∗, the conjugate function of φ. These conjugates are given in Table 2.
However, for the J-divergence, the conjugate function is not available in a closed form expression.
Nevertheless, in the next section, where we discuss the tractability aspects of (13), we also derive
a tractable representation of the RCP for this case.

We present four corollaries. The first corollary specializes the theorem to a probability vector
without additional constraints.
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Corollary 4.2 A vector x ∈ R
n satisfies (11) with uncertainty region U given by

U = {p ∈ R
m | p ≥ 0, eT p = 1, Iφ(p, q) ≤ ρ},

such that q ∈ U if and only if there exist η ∈ R and λ ∈ R such that (x, λ, η) satisfies

{
aTx+ η + ρλ+ λ

∑
i qiφ

∗
(
bTi x−η

λ

)
≤ β

λ ≥ 0.
(16)

Consider next the following nonlinear constraint in x ∈ R
n:

(a+Bp)Tf(x) ≤ β, ∀p ∈ U, (17)

where a ∈ R
k, B ∈ R

k×m, x ∈ R
n, and f : Rn → R

k. In the sequel we shall assume that
bTi f(·) : Rn → R is convex for all i (with bi the i-the column of B). Constraints such as (17)
may occur if p is a probability vector and if the objective and/or constraints of a nonlinear
programming problem depend on moments of a random variable. One example is the class of
expected utility maximization (see Section 6.1). We have the following corollary.

Corollary 4.3 A vector x ∈ R
n satisfies (17) with uncertainty region U given by (12) such that

q ∈ U if and only if there exist η ∈ R
k and λ ∈ R such that (x, λ, η) satisfies

{
aT f(x) + dT η + ρλ+ λ

∑
i qiφ

∗
(
bTi f(x)−cTi η

λ

)
≤ β

η ≥ 0, λ ≥ 0.
(18)

Proof: The dual objective is given by (15) with x replaced by f(x). Therefore, it follows
from (13) that (17) is equivalent to (18). �

In case we are not sure which φ-divergence to use, we might combine several φ-divergences.
For example, we can take the uncertainty region as an intersection of (a finite number of)
φ-divergences, given by

U = {p ∈ R
m | p ≥ 0, Cp ≤ d, Iφℓ

(p, q) ≤ ρℓ, ℓ ∈ {1, · · · , L}}, (19)

where φℓ are the corresponding φ-divergence functions and ρℓ > 0 are given. Again, we assume
q ∈ U . We have the following corollary.

Corollary 4.4 A vector x ∈ R
n satisfies (11) with uncertainty region U given by (19) such that

q ∈ U if and only if there exist η ∈ R
k and λ = (λ1, · · · , λL)

T ∈ R
L such that (x, λ, η) satisfies





aTx+ dT η +
∑

ℓ λℓρℓ +
∑

ℓ λℓ

∑
i qiφ

∗
ℓ(

sℓi
λℓ
) ≤ β

∑
ℓ sℓi = bTi x− cTi η, i ∈ {1, · · · ,m}

η ≥ 0, λ ≥ 0.
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Proof: In case of (15) we get
∑

ℓ λℓρℓ instead of λρ and (
∑

ℓ λℓφℓ)
∗ (bTi x− cTi η

)
instead of

(λφ)∗
(
bTi x− cTi η

)
. Using Proposition 3.1 we get

(
∑

ℓ

λℓφℓ

)∗ (
bTi x− cTi η

)
= min∑

ℓ sℓi=bTi x−cTi η

∑

ℓ

(λℓφℓ)
∗ (sℓi) .

Since this expression appears in the “≤”-inequality in (13), we may ignore the “min”. Finally,

using (λℓφℓ)
∗ (s) = λℓφ

∗
ℓ

(
s
λℓ

)
we arrive at the result of the corollary. �

In the derivation of the RCP we did not exploit the special structure of the φ-divergence func-
tions. Therefore, suppose that the uncertainty region in (11) is defined by separable constraint
functions:

U = {p ∈ R
m |
∑

i

fℓi(pi) ≤ 0, ∀ℓ ∈ {1, · · · , L}}, (20)

where fℓi are convex functions such that for each i we have ∩L
ℓ=1ri(dom fℓi) 6= ∅. Then the

following corollary gives a tractable reformulation of the RCP. This result extends the classes of
uncertainty regions for which tractable RCPs are derived in the literature. See also Table 1.

Corollary 4.5 A vector x ∈ R
n satisfies (11) with uncertainty region U given by (20) such that

for some p = (p1 · · · , pm)T ∈ U

∑

i

fℓi(pi) < 0, ∀ℓ ∈ {1, · · · , L} (21)

if and only if there exist λ = (λ1, · · · , λL)
T ∈ R

L such that (x, λ) satisfies





aTx+
∑

ℓ

∑
i λℓf

∗
ℓi(

sℓi
λℓ
) ≤ β

∑
ℓ sℓi = bTi x, i ∈ {1, · · · ,m}

λ ≥ 0,

where f∗
ℓi denotes the conjugate of fℓi, ℓ ∈ {1, · · · , L}, i ∈ {1, · · · ,m}.

Proof: The proof follows from the proof of Theorem 4.1 combined with that of Corollary
4.5, where (21) is Slater’s condition guaranteeing that strong duality holds in this case. �

Finally, we briefly consider the case where we lack sufficient data or information to determine
the nominal value q. If that is the case we might add a second robustness layer by replacing the
constraint in (13) by:

aTx+ dT η + ρλ+ λ
∑

i

qiφ
∗
(
bTi x− cTi η

λ

)
≤ β, ∀q ∈ U, (22)

where U is the uncertainty region for q. Note that the left-hand-side of (22) is an affine function
in q, so this constraint is a special case of (17). Therefore, if U is again a φ-divergence based
uncertainty region we can use the results obtained in this paper to determine tractable reformu-
lations, and if U is polyhedral or ellipsoidal we can use the results in [5]. Suppose, for example,
that

U = {q ≥ 0 |
∑

i

|qi − qi| ≤ ̺,
∑

i

qi = 1},
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for some ̺ > 0. Then it can easily be proven that (x, η, λ) satisfies (22) if and only if (x, η, λ, µ)
satisfies 




aTx+ dT η + ρλ+ µ+ ̺‖γ′‖∞ + qTγ′ ≤ β

γ′i = λφ∗
(
bTi x−cTi η

λ

)
≤ µ, i ∈ {1, · · · ,m}

η ≥ 0, λ ≥ 0.

(23)

5 Tractability of the robust counterpart

In this section we investigate a number of questions related to the RCP (13) and by answering
these questions we illustrate tractable reformulations for a selection of φ-divergence functions,
including the Burg-, the Kuhlback-Leibler-, and the J-divergence. We present the tractability
results of the other φ-divergences, which can be treated in a similar way, in the Appendix. The
last column of Table 2 summarizes the tractability results.

Questions that need to be addressed so as to derive tractable RCPs (13), are:

1. What to do if φ∗ is not differentiable?

2. What to do if φ∗ does not exist in a closed form?

3. What is the convexity status of the first constraint function in (13)?

4. Does the constraint set (13) admit a self-concordant barrier?

The first question is relevant since some φ∗ functions presented in Table 2 are not differentiable.
However, for all these cases we can reformulate the problem as a differentiable problem by adding
extra variables and constraints.

Question 2 will be addressed below, when we discuss uncertainty regions based on the J-
divergence.

To answer question 3, concerning the convexity issue, observe that for a φ-divergence function
φ its conjugate φ∗ is also convex. Moreover, since

λφ∗
(
bTi x− cTi η

λ

)
= sup

t≥0
{(bTi x− cTi η)t− λφ(t)}, (24)

and the supremum over linear functions is convex, we obtain that the left hand side of (24) is
jointly convex in λ, x, and η, which means that the constraint function in (13) is convex. In
a similar way we find that the constraint function in (18) is also convex, since we assume that
bTi f(·) is convex for all i.

An affirmative answer to question 4 is very desirable since it implies the possibility to use
polynomial-time interior point algorithms (see [31]). We shall address this question for the
Burg- and Kuhlback-Leibler-divergences. As we shall see later, after answering question 2 in
case of the J-divergence, we will also be able to answer question 4 for the J-divergence.5

5In case of the other φ-divergences presented in Table 2 we find that the RCP can even be reformulated as a
CQP or LP problem. See the Appendix.
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To investigate question 4, we reformulate the constraint set (13) as follows:




aTx+ dT η + ρλ+ qT z ≤ β,

λφ∗
(
bTi x−cTi η

λ

)
≤ zi, ∀i

η ≥ 0, λ ≥ 0,

(25)

with z = (z1, · · · , zm)T . In case of the Burg-divergence (like many others) we have dom(φ∗) =
(−∞, u), for u < ∞. As a consequence, the middle inequalities of (25) can be reformulated as

λf
(si
λ

)
≤ zi, si = λu−

(
bTi x− cTi η

)
≥ 0, ∀i, (26)

with f (s) := φ∗ (u− s).

Reformulation (26) cannot be used in case of the Kuhlback-Leibler-divergence, since the effective
domain of the conjugate of its φ-divergence function equals the real line. In this case we apply
Proposition 3.2 and obtain that the RCP (13) is equivalent to

{
aTx+ dT η + ρλ+ λ

∑
i qi inf

[
y ∈ R : (φ̃)∗(−y) ≤ −bTi x+cTi η

λ

]
≤ β

η ≥ 0, λ ≥ 0,
(27)

which, in turn, is equivalent to




aTx+ dT η + ρλ+ qT z ≤ β

λ(φ̃)∗
(−zi

λ

)
≤ −bTi x+ cTi η, ∀i

η ≥ 0, λ ≥ 0,

(28)

with again z = (z1, · · · , zm)T . In case of the Kuhlback-Leibler-divergence (like many others) we
have dom((φ̃)∗) = (−∞, ũ), for ũ < ∞. As a consequence, the middle inequalities of (28) can
be reformulated as

λf
(si
λ

)
≤ −bTi x+ cTi η, si = λũ+ zi ≥ 0, ∀i, (29)

with now f (s) := (φ̃)∗ (ũ− s).

Our aim is to establish self-concordance for the logarithmic barrier function for the constraint
set (25) combined with (26) (in case of the Burg-divergence) and for the constraint set (28)
combined with (29) (in case of the Kuhlback-Leibler-divergence). We first recall the definition
of a self-concordant function.

Definition: Let F ⊂ R
n be an open and convex set. A function ϕ : F → R is called κ-self-

concordant on F , with κ ≥ 0, if ϕ is C3(F ), and ∀y ∈ F and ∀h ∈ R
n the following inequality

holds:
|∇3ϕ(y)[h, h, h]| ≤ 2κ(hT∇2ϕ(y)h)

3

2 ,

where ∇3ϕ(y)[h, h, h] denotes the third order differential of ϕ at y and h.

We shall use the next theorem.

Theorem 5.1 If for a convex function f : R+ → R it holds that:
∣∣∣f ′′′

(s)
∣∣∣ ≤ κf

′′

(s)/s, for some κ > 0, (30)

then the logarithmic barrier function for

{yf(s/y) ≤ z, s ≥ 0, y ≥ 0} (31)

is (2 +
√
2
3 κ)-self-concordant.
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Proof: Define g(s, y) = yf(s/y). According to Lemma A.2 in [17] it holds that if there exists
a β such that

|∇3g(s, y)[h, h, h]| ≤ βhT∇2g(s, y)h

√
h21
s2

+
h22
y2

, ∀h ∈ R
2, (32)

in which ∇3g(s, y)[h, h, h] is the third order differential, then the logarithmic barrier function
for (31), given by

− ln(z − g(s, y)) − ln s− ln y, (33)

is (1 + 1
3β)-self-concordant. We now prove that (32) holds for β = 3 + κ

√
2. It can easily be

verified that for the second order differential we have

∇2g(s, y)[h, h] = hT∇2g(s, y)h = f ′′(s/y)

(
h21
y

− 2sh1h2
y2

+
s2h22
y3

)
. (34)

Moreover, for the third order differential we have

∇3g(s, y)[h, h, h] = f ′′(s/y)

(
−3h21h2

y2
+

6sh1h
2
2

y3
− 3s2h32

y4

)
+

f ′′′(s/y)

(
h31
y2

− 3sh21h2
y3

+
3s2h1h

2
2

y4
− s3h3x

y5

)
.

Using
∣∣∣f ′′′

(s)
∣∣∣ ≤ κf

′′

(s)/s, for some κ > 0, we have

|∇3g(s, y)[h, h, h]| ≤ f ′′(s/y)

∣∣∣∣−
3h21h2
y2

+
6sh1h

2
2

y3
− 3s2h32

y4

∣∣∣∣+

κ
y

s
f ′′(s/y)

∣∣∣∣
h31
y2

− 3sh21h2
y3

+
3s2h1h

2
2

y4
− s3h3x

y5

∣∣∣∣

≤ 3f ′′(s/y)

(
h21
y

− 2sh1h2
y2

+
s2h22
y3

) |h2|
y

+

κf ′′(s/y)

(
h21
y

− 2sh1h2
y2

+
s2h22
y3

)( |h1|
s

+
|h2|
y

)

≤ (3 + κ
√
2)hT∇2g(s, y)h

√
h21
s2

+
h22
y2

.

This proves that (32) holds for β = 3 + κ
√
2 and hence that the corresponding logarithmic

barrier function is (2 +
√
2
3 κ)-self-concordant. �

To apply this theorem, notice that we reformulated the relevant parts of both the constraint
set (25) combined with (26) (in case of the Burg-divergence) and the constraint (28) com-
bined with (29) (in case of the Kuhlback-Leibler-divergence) as (31). Thus, if f in (26) or in
(29) satisfies condition (30), then the theorem implies that the logarithmic barrier function for
the corresponding constraint set is self-concordant. In case of the Burg-divergence we have
dom (φ∗) = (−∞, 1), resulting in f(s) = − log(s). This function f satisfies condition (30) with
κ = 2. Therefore, it follows that in case of the Burg-divergence (25) combined with (26) is
tractable. As an immediate consequence we also have that (28) combined with (29) is tractable
in case of the Kuhlback-Leibler-divergence.

Finally, we return to question 2: what to do if φ∗ does not exist in closed form? For these cases
Propositions 3.1 and 3.2 may be of help.
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First, consider the case where φ∗ is not available in closed form expression, but there exist φ-
divergences φ1 and φ2 such that φ = φ1 + φ2, and φ∗

1 and φ∗
2 are available in closed form. Then,

applying Proposition 3.1, we obtain that the RCP (13) is equivalent to
{
aTx+ dT η + ρλ+ λ

∑
i qimins1i+s2i=bTi x−cTi η [φ

∗
1(s1i/λ) + φ∗

2(s2i/λ)] ≤ β

η ≥ 0, λ ≥ 0.

Since the first inequality is a “≤” one, we may delete the “min” and get the following system of
inequalities in (x, η, λ, s1, s2) to represent the RCP (13):





aTx+ dT η + λρ+ λ
∑

i qi [φ
∗
1(s1i/λ) + φ∗

2(s2i/λ)] ≤ β

s1i + s2i = bTi x− cTi η, ∀i
η ≥ 0, λ ≥ 0.

(35)

This is a tractable problem if, loosely speaking, the corresponding problems for φ1 and φ2 are
tractable.

We can apply this approach to the J-divergence for which there is no closed form expression
available for φ∗. The crucial observation is that in case of the J-divergence we have φj(t) =
(t − 1) log t = t log t − log t = φkl(t) + φb(t), where φkl(t) is the Kullback-Leibler φ-divergence
function and φb(t) the Burg φ-divergence function.

To complete our analysis, we give an example of a φ-divergence function, for which a closed form
expression for its conjugate is not available, but for which still a tractable RCP can be derived
by using Proposition 3.2. Suppose that

φ(t) = |t− 1|θt1−θ.

It can be verified that this is a φ-divergence function corresponding to a well-defined φ-divergence.
However, φ∗ is not available in a closed form expression, and hence (13) cannot be used directly.
To overcome this problem we observe that φ̃ = φθ

ca, i.e., the adjoint of φ is the χ-divergence
function of order θ, for which a closed form expression for its conjugate is available (see Table
2). Therefore, one can obtain a tractable RCP for this choice of φ by using (28), based on an
application of Proposition 3.2.

6 Applications

In this section we first present an expected utility maximization framework in general terms,
which we then specialize to an investment problem and to the newsvendor example. Next, to
illustrate the performance of φ-divergence based robust optimization, we present as numerical
example a multi-item newsvendor optimization problem.

6.1 Expected utility maximization

We consider a decision maker who faces a problem in which the outcome of the decision is
uncertain, and depends on which scenario will be realized. Let x ∈ R

n denote the decision
variable, let r(x, i) denote the payoff from decision x if scenario i = 1, · · · ,m occurs, and let
u(r) denote the utility that the decision maker attaches to payoff r ∈ R. Then, the optimization
problem is given by:

max
x∈X

∑

i

pi × u(r(x, i)), (36)
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where X ⊂ R
n denotes the feasible region for the decision variable x, and where pi is the

probability of scenario i to occur. In case the probability vector p = (p1, · · · , pm)T is not known,
the robust counterpart problem is:6

max
x∈X

min
p∈U

∑

i

pi × u(r(x, i)), (37)

or, equivalently,

max z

s.t.
∑

i

pi × u(r(x, i)) ≥ z, p ∈ U

x ∈ X.

Corollary 6.1 The RCP (37) with uncertainty region as given in Corollary 4.2 is equivalent
to:

max
x∈X,λ≥0,η

{
−η − ρλ− λ

∑

i

qiφ
∗
(−u(r(x, i)) − η

λ

)}
. (38)

Proof: The proof follows from combining Corollaries 4.2 and 4.3, with a = 0, B = Im×m,
and fi(x) = u(r(x, i)). �

Optimization problem (38) is a concave optimization problem if u(r(x, i)) is concave in x for all
i and the feasible set X is convex.

6.2 Investment example

As a special case we consider an investment problem. Let Ri ∈ R
n be an n-dimensional vector

of gross returns in case of scenario i. Investors can choose portfolios represented by a vector
of weights x belonging to the set X ≡

{
x ∈ R

n | xT e = 1
}
. If scenario i occurs, the portfolio

with weights x yields as gross return r(x, i) = xTRi. Let Ri =
(
R1i, R̃

T
i

)T
, with R̃i the

(n− 1)-dimensional subvector of Ri, containing the gross returns of assets 2 to n. Similarly, let

x =
(
x1, x̃

T
)T

and e =
(
1, ẽT

)T
. Then optimization problem (36) becomes

max
x̃

∑

i

pi × u
(
R1i + x̃T R̃e

)
, (39)

with R̃e = R̃ − R1iẽ. Similarly, the RCP becomes (37), with r(x, i) = R1i + x̃T R̃e and U as
given in Corollary 4.2. We shall assume that u is differentiable and that its derivative satisfies
u′ (·) > 0.

The first order optimality conditions for problem (39) are given by

∑

i

pi × u′
(
R1i + x̃T R̃e

i

)
× (Rji −R1i) = 0, j = 2, · · · , n. (40)

6See [25] for an axiomatization of this utility.
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This equation is a special case of the “basic equation of asset pricing,” see [12], p. 1517.7 It is
an equilibrium condition, stating that the weighted average of the excess return of any asset j in
excess of a reference asset (in our case asset 1) equals zero. The positive random variable realizing

these weights u′
(
R1i + x̃T R̃e

i

)
is a so-called Stochastic Discount Factor (SDF). Without risk,

the SDF would be constant, and the equilibrium condition (40) becomes the condition that all
(nonrandom) returns are equal. As its name suggests, the “basic equation of asset pricing”
is heavily used in finance, particularly in equilibrium pricing. But also when estimating and
testing a particular asset pricing model, one typically makes use of the implied SDF.

A natural question is whether the first order conditions of the RCP (37) or its equivalence
(38) are also a special case of the “basic equation of asset pricing.” To obtain the first order
conditions of the RCP, we shall assume that φ∗ is differentiable, with (φ∗)′ (·) > 0,8 and we shall
assume that λ > 0. Then we find as first order conditions

(w.r.t. η :) − 1 +
∑

i

q̃i = 0

(w.r.t. λ :) − ρ−
∑

i

qi × φ∗



−u
(
R1i + x̃T R̃e

i

)
− η

λ




− 1

λ

∑

i

q̃i ×
(
R1i + x̃T R̃e

i + η
)
= 0

(w.r.t. x̃ :)
∑

i

q̃i × u′
(
R1i + x̃T R̃e

i

)
× (Rji −R1i) = 0, j = 2, · · · , n,

where

q̃i ≡ qi × (φ∗)′



−u
(
R1i + x̃T R̃e

i

)
− η

λ


 , i = 1, · · · ,m.

If we combine the first order conditions with respect to η and x̃, we see that we have to solve
the same system of equations as in case of (40). The difference is that the probabilities pi are
replaced by q̃i, i = 1, · · · ,m.9 To become a special case of the “basic equation of asset pricing,”
we consider the equations as expectations with respect to qi,N , the empirical counterparts of pi.
We then find as SDF10

(φ∗)′



−u
(
R1i + x̃T R̃e

i

)
− η

λ


× u′

(
R1i + x̃T R̃e

i

)
.

7We assume rational expectations, i.e., the probabilities pi represent the “true” probabilities. The derived
SDF is up to normalization, since equation (40) is in terms of excess returns.

8It follows from the assumptions that domφ = R
+, and hence (φ∗)′ (·) ≥ 0. However, from Table 2 we see that

for some choices of φ, like the modified χ2-distance or the variation distance, (φ∗)′ (·) may be zero. Such choices
of φ are excluded in the sequel, as they do not result in a strictly positive SDF, required in the “basic equation
of asset pricing.”

9Moreover, the expectation of the optimal RCP portfolio return with respect to these probabilities q̃i has to
equal the maximum value of the objective function (38). This latter requirement follows from a reformulation of
the first order conditions with respect to λ:

∑

i

q̃i

(
R1i + x̃

T
R̃

e
i

)
= −η − ρλ− λ

∑

i

qiφ
∗




−u
(
R1i + x̃T R̃e

i

)
− η

λ


 .

10Again up to normalization, see footnote 7. Moreover, this SDF is the relevant one from an empirical point of
view in case q = qN , which is consistent for the true probability vector.

19



Thus, our reformulation (38), specialized to the investment problem, allows a straightforward
way to retrieve the SDF in case of the robust optimization problem. This makes reformulation
(38) also relevant from the point of view of equilibrium pricing and empirical finance.

A special case is obtained when u(r) = r. Then the RCP can be reformulated as

min
x̃

max
p∈U

∑

i

pi ×
(
−
(
R1i + x̃T R̃e

))
.

The inner maximization represents a coherent risk measure (see [1]). Thus, in this special case
of the RCP the portfolio weights are determined by minimizing a coherent risk measure. The
paper [33] provides an application.

6.3 Newsvendor example

In this subsection, we consider as application of utility maximization the single-item newsven-

dor problem. The newsvendor’s problem is how many units of a product (item) to order, taking
into account that the demand for the product is stochastic. Due to uncertainty, the newsvendor
can face both unsold items or unmet demand. The unsold items will return a loss because their
salvage value is lower than the purchase price. In the case of unmet demand the newsvendor
incurs a cost of lost sales, which may include a penalty for the lost customer goodwill.

Let u(r) denote the newsvendor’s utility from net profit r ∈ R. His objective is to choose the
order quantity x = Q in order to maximize the expected utility (36) of his net profit

r (Q, i) = vmin(di, Q) + s (Q− di)
+ − l (di −Q)+ − cQ,

where di ≥ 0 is the uncertain demand in scenario i, v is the unit selling price, s is the salvage value
per unsold item, l is the shortage cost per unit of unsatisfied demand, and c is the purchasing
price per unit. A standard assumption for this problem is v + l ≥ r.

In case the probability distribution of the demand is unknown, the RCP is given by:

max
Q

min
p∈U

{
∑

i

pi × u
(
vmin(di, Q) + s(Q− di)

+ − l(di −Q)+ − cQ
)
}
.

It follows immediately from Corollary 6.1 that with a φ-divergence uncertainty region U as given
by Corollary 4.2 this problem is equivalent to:

min
Q,λ≥0,η

{
η + ρλ+ λ

∑

i

qi,Nφ∗
(−u(vmin(di, Q) + s(Q− di)

+ − l(di −Q)+ − cQ)− η

λ

)}
.

With a concave utility function u(·), the assumption v + l ≥ s ensures that

−u(vmin(di, Q) + s(Q− di)
+ − l(di −Q)+ − cQ)

is convex in Q for all i.

Several papers study risk aversion in the newsvendor model by using as objective function
expected utility ([18]), mean-variance ([13]), or conditional value-at risk ([14]). Still, all these
papers assume that the entire demand distribution is known. Our approach can be used to
add risk aversion with respect to the unknown demand distribution in cases where only some
historical data is given.
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Item (j) 1 2 3 4 5 6 7 8 9 10 11 12

c 4 5 6 4 5 6 4 5 6 4 5 6

v 6 8 9 5 9 8 6 8 9 6.5 7 8

s 2 2.5 1.5 1.5 2.5 2 2.5 1.5 2 2 1.5 1

l 4 3 5 4 3.5 4.5 3.5 3 5 3.5 3 5

q
(j)
1,N 0.375 0.250 0.375 0.127 0.958 0.158 0.485 0.142 0.679 0.392 0.171 0.046

q
(j)
2,N 0.375 0.250 0.250 0.786 0.007 0.813 0.472 0.658 0.079 0.351 0.484 0.231

q
(j)
3,N 0.250 0.500 0.375 0.087 0.035 0.029 0.043 0.200 0.242 0.257 0.345 0.723

Table 5: Parameter values for the multi-item newsvendor example.

Remark. Our approach can also be applied to regret approaches for the newsvendor model.
Perakis and Roels [34] study regret in newsvendor models in which only partial information is
given, for example, mean, variance, symmetry, or unimodality. Our result here can be used to
minimize robustly the regret when only some historical demand data is available.

6.4 Numerical illustration: multi-item newsvendor example

As numerical illustration, we consider a multi-item newsvendor problem (see, for example, [21],
[37]). This problem deals with optimizing the inventory of several items which can only be
sold in one period. Due to the uncertain demand, this newsvendor can face both unsold items
or unmet demand. As in the single-item case, the unsold items will return a loss, and unmet
demand generates a cost of lost sales. For each item j, we define the purchase cost cj , the selling
price vj , the salvage value of unsold items sj, and the cost of lost sales lj . Furthermore, we
denote γ for the budget that is available for the purchase of the items.

We assume that demand for item j is a random variable that can take on m values, denoted as

di, i = 1, · · · ,m (i.e., for simplicity, the same possible outcomes for all items j). We denote p
(j)
i

for the unknown probability that the demand for item j equals di, and we let the uncertainty

region for p(j) = (p
(j)
1 , · · · , p(j)m )T be given by:

U (j) :=
{
p(j) ∈ R

m | p(j) ≥ 0, (p(j))T e = 1, Iφ

(
p(j), q

(j)
N

)
≤ ρ
}
, (41)

where q
(j)
N represents the sample-based estimated probability distribution for item j.

Denote by Qj the order quantity for item j. We consider two types of multi-item newsvendor
problems. The first is to maximize the sum of the profits:

max
Q

∑

j

∑

i

p
(j)
i rj(Qj , i),

and the second is to maximize the minimal profit:

max
Q

min
j

∑

i

p
(j)
i rj(Qj , i).

The robust versions of these problems can be stated as:

max ‖z‖
s.t. −cjQj +

∑

i

p
(j)
i fi,j(Qj) ≥ zj, ∀j,∀p(j) ∈ U (j)

∑

j

cjQj ≤ γ,
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for the case where the norm in the objective is either the 1-norm, or the ∞-norm, respectively,
and with

fi,j(Qj) = vj min{di, Qj}+ sj max{0, Qj − di} − lj max{0, di −Qj}.
It follows from (18) that this problem can be reformulated as:

max ‖z‖

s.t. −cjQj − ηj − λjρ− λj

∑

i

q
(j)
i,Nφ∗

(−fi,j(Qj)− ηj
λj

)
≥ zj , ∀j

∑

j

cjQj ≤ γ

λ ≥ 0.

Our numerical results apply to the case with n = 12 different items, and m = 3 scenarios for the
demand for each item: low demand (4), medium demand (8), and high demand (10), denoted
as d1 = 4, d2 = 8, and d3 = 10, respectively. The parameter values of the revenue functions, as

well as the values of q
(j)
i,N , are as given in Table 6.4. Furthermore, the budget is set at γ = 1000.

We solve the RCP for the Burg-divergence (or the Kullback-Leibler-divergence in terms of φ̃) and
for the Cressie and Read φ-divergence function with θ = 0.5. For both φ-divergence functions, we
consider the case where ρ = ρa is the test statistic (5) and the case where ρ = ρc is the corrected
test statistic (9). In each case, the confidence level is set at α = 0.05, and we determine the
robust optimal solutions for different sample sizes N = 10, 20, . . . , 1000.

Using the solutions of the RCP problems and the solution of the non-robust problem (i.e.,
assuming that qN is the true probability vector), we make several comparisons. First, we compare
the performance of the robust versus the non-robust solutions for the different values of the
sample size N (which in turn yields different values for ρaφ and ρcφ). Second, we compare the
results of the two φ-divergence measures. Third, for each φ-divergence measure, we look at the
effect of using the corrected test-statistic instead of the approximate test-statistic, i.e., using
ρ = ρcφ instead of ρ = ρaφ.

To make comparisons, we proceed as follows. First, we sample 10, 000 hypothetically true p-
vectors. Next, for each sampled probability vector p, we calculate the value of the objective
function for the non-robust as well as for the robust optimal solutions. We then compare the
performance of the different solutions by determining the mean and the range (i.e., the minimum
and the maximum value) of the objective values corresponding to the sampled p-vectors.

The p-vectors are sampled such that approximately 95 percent of the sample satisfies Iφmc
(p, qN ) ≤

ρ := ρaφmc
, where φmc denotes the modified χ2-divergence. Specifically, we sample pi, for

i = 1, . . . ,m − 1, from a normal distribution N(qi,N , σi), and set pm = 1 −∑m−1
i=1 pi. If this

sampling returns a probability vector (i.e., pi ≥ 0 for i = 1, · · · ,m) we accept the vector. Oth-
erwise, we repeat the sampling until a valid p-vector is found. To satisfy Iφmc

(p, qN ) ≤ ρ for
approximately 95 percent of the sampled p-vectors, we determine the value of σi of the normal
distribution as follows. We know that the condition Iφmc

(p, qN ) ≤ ρ is satisfied if (but not only
if) the following holds:

(pi − qi,N)2

qi,N
≤ ρ

m
⇔ qi,N −

√
ρ

m
qi,N ≤ pi ≤ qi,N +

√
ρ

m
qi,N .
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For the normal distribution about 95 percent of the values are within two standard deviations

from the mean. Therefore, we take σi =
1
2

√
ρ
m
qi,N . Because ρ can be relatively large for small

values of N and to avoid too many invalid samples, we put an upper bound of 1
2qi,N on σi.

Figures 1 and 2 display the range and the mean of the objective values corresponding to the
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Figure 1: Cressie-Read for θ = 0.5, and ρcφ,
and the 1-norm.
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Figure 2: Cressie-Read for θ = 0.5, and ρcφ,
and the ∞-norm.

sampled p-vectors for the Cressie and Read-divergence function with ρ = ρcφ, for the 1-norm and
the ∞-norm, respectively. The results for the Burg-divergence function are essentially similar.

Concerning the value of the objectives of the robust optimizations, there is a significant difference
between using the 1-norm and the ∞-norm. For the 1-norm (Figure 1), it holds that for small
values of N the mean of the objective values for the robust solution is lower than the mean of the
objective values for the non-robust solution, but as N grows the two methods have practically
the same mean profit. In contrast, for the ∞-norm (Figure 2), the mean of the objective values
for the robust solution is higher than the mean for the non-robust solution. Moreover, the
dispersion of objective values for the robust solution is significantly smaller than the range of
objective values for the non-robust solution for the ∞-norm. In particular, the robust solution
avoids substantial losses.

Concerning the effect of N , the effect of using ρcφ versus ρaφ, and the differences between the two
φ-divergence measures, we observe the following:

Effect of N . Because 95 percent of the sampled p-vectors needs to satisfy Iφmc
(p, qN ) ≤ ρ, and

because ρ is decreasing in N , the range of the expected returns becomes smaller as N increases.
However, because 5 percent of the sampled p-vectors does not need to satisfy Iφmc

(p, qN ) ≤ ρ,
the range does not converge to a single value.

Effect of ρcφ versus ρaφ. With regard to the differences between the robust solutions in case ρaφ
is used (i.e., the uncertainty region is based on the approximate test statistic) and when ρcφ is
used (i.e., the uncertainty region is based on the corrected test statistic), we observe that there
are significant differences only for relatively small values for N . This occurs of course since the
effect of the correction becomes smaller as N increases.

Comparison of different φ-divergence measures. The different φ-divergence measures lead
to different optimal quantities, but the structure of the solutions is similar. The mean expected
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utility as well as the range of the expected utilities over the sampled p-vectors is similar for the
two φ-divergence measures.

7 Concluding remarks

In this paper we have shown that the robust counterpart of linear and nonlinear optimization
problems with uncertainty regions defined by φ-divergence distance measures can be reformu-
lated as tractable optimization problems. Thus, these uncertainty regions are useful alternatives
to uncertainty regions considered in the existing literature, particularly so when the uncertainty
is associated with probabilities. In this latter case, we have shown that uncertainty regions based
on φ-divergence test statistics have a natural interpretation in terms of statistical confidence sets.
This allows for an approach that is fully data-driven.

Our approach also has other applications. For example, φ-divergence distances can be directly
used as the distance in the so-called Globalized Robust Counterpart methodology (see Chapter
3 in [5]).

Let us now mention some directions for further research. First, different choices of φ have been
proposed in the literature [32], each of them with different statistical properties. It could be
interesting to study the differences in performance of optimal solutions of robust counterpart
problems such as (13) for different choices of φ.

Next, in the classical statistical literature many goodness-of-fit statistics are considered that do
not belong to the φ-divergence class. It is an interesting topic for further research to analyze
whether the corresponding robust counterparts are tractable.

In terms of practical applications, it may be useful to extensively study the applicability of the
proposed approach to, for example, asset liability management problems and other inventory
control problems. In particular, with respect to inventory control problems it may be interesting
to extend the work of Wagner [38]. In that paper the Wagner-Whitin model with backlogged
demand and period-dependent costs is analyzed in settings in which the demand distribution is
not known. Our analysis can most likely be used to extend the analysis to the more practical
case where only some historical demand data is given.

Finally, several commonly used risk measures in finance (for example, mean-variance, expected
shortfall) are nonlinear in probabilities. It is a challenging question whether the proposed
approach can be extended to problems in which the unknown probability vector p appears
nonlinearly. In [5] techniques are described to deal with certain types of nonlinear uncertainty,
and maybe similar techniques can be used in this case.
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Appendix: Tractable reformulations

In this appendix we give the final tractable reformulations for (13) for different choices of φ.
The tractable reformulations for Kullback-Leibler, Burg entropy, and J-divergence are already
derived in Section 5.

χ2-distance (CQP)





aTx+ dT η + λρ+ 2λeT q − 2qT y ≤ β√
y2i +

1
4 (b

T
i x− cTi η)

2 ≤ 1
2(2λ− bTi x+ cTi η), ∀i

bTi x− cTi η ≤ λ, ∀i
η ≥ 0, λ ≥ 0.

Modified χ2 distance (CQP)





aTx+ dT η + λ(ρ− eT q) + 1
4q

T y ≤ β√
z2i +

1
4(λ− µi)2 ≤ 1

2(λ+ µi), ∀i
zi ≥ 0, ∀i
zi ≥ bTi x− cTi η + 2λ, ∀i
η ≥ 0, λ ≥ 0.

Hellinger distance (CQP)





aTx+ dT η + λρ− λeT q + qT y ≤ β√
λ2 + 1

4(yi − λ+ bTi x− cTi η)
2 ≤ 1

2(yi + λ− bTi x+ cTi η), ∀i
bTi x− cTi η ≤ λ, ∀i
η ≥ 0, λ ≥ 0.

χ divergence of order θ (CQP)





aTx+ dT η + λρ+
∑

i qi(b
T
i x− cTi η) + λ(θ − 1)

∑
i qi
(
zi
θλ

) θ
θ−1 ≤ β

zi ≥ −bTi x+ cTi η, ∀i
zi ≥ bTi x− cTi η, ∀i.
η ≥ 0, λ ≥ 0.

Variation distance (LP)





aTx+ dT η + λρ+ qT y ≤ β

yi ≥ −λ, ∀i
yi ≥ bTi x− cTi η, ∀i
bTi x− cTi η ≥ λ, ∀i
η ≥ 0, λ ≥ 0.
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Cressie and Read (CQP)





aTx+ dT η + λρ+ λ
θ

∑
qi

((
yi
λ

) θ
θ−1 − 1

)
≤ β

yi = λ− (1− θ)(bTi x− cTi η), ∀i
η ≥ 0. λ ≥ 0.
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