448 research outputs found

    An effective transmit packet coding with trust-based relay nodes in VANETs

    Get PDF
    ehicular ad-hoc networks (VANETs) are characterized by limited network resources such as limited bandwidth and battery capacity. Hence, it is necessary that unnecessary use of network resources (such as unnecessary packet transfers) is reduced in such networks so that the available power can be conserved for efficient multicast communications. In this paper, we have presented a Transmit Packet Coding (TPC) Network Coding in VANET to ensure reliable and efficient multicasting. With network coding, the number of transmitted packets over the network can be reduced, ensuring efficient utilization of network devices and resources. Here, the trust-based graph optimization is performed using Cuckoo search algorithm to select the secure relay nodes. The experimental results showed the superiority of the presented approach compared to the existing techniques in terms of throughput, latency, hop delay, packet delivery ratio, network decoder outage probability, and block error rate

    Connected Vehicle Technology: User and System Performance Characteristics

    Get PDF
    The emerging connected vehicle (CV) technology plays a promising role in providing more operable and safer transportation environments. Yet, many questions remain unanswered as to how various user and system characteristics of CV-enabled networks can shape the successful implementation of the technology to maximize the return on investment. This research attempts to capture the effect of multiple factors such as traffic density, market penetration, and transmission range on the communication stability and overall network performance by developing a new CONnectivity ROBustness (CONROB) model. The model was tested with data collected from microscopic simulation of a 195 sq-mile traffic network and showed a potential to capture the effect of such factors on the communication stability in CV environments. The information exchanged among CVs can also be used to estimate traffic conditions in real time by invoking the probe vehicle feature of CV technology. Since factors affecting the connectivity robustness also have an impact on the performance of traffic condition estimation models, a direct relationship between connectivity robustness and traffic condition estimation performance was established. Simulation results show that the CONROB model can be used as a tool to predict the accuracy of the estimated traffic conditions (e.g. travel times), as well as the reliability of such estimates, given specific system characteristics. The optimal deployment of road-side units (RSUs) is another important factor that affects the communication stability and the traffic conditions estimates and reliability. Thus, an optimization approach was developed to identify the optimal RSUs locations with the objective function of maximizing the connectivity robustness. Simulation results for the developed approach show that CONROB model can help identify the optimal RSUs locations. This shows the importance of CONROB model as a planning tool for CV environments. For the individual user performance characteristics, a preliminary driving simulator test bed for CV technology was developed and tested on thirty licensed drivers. Forward collision warning messages were delivered to drivers when predefined time-to-collision values take place. The findings show improved reaction times of drivers when receiving the warning messages which lend credence to the safety benefits of the CV technology

    A Job Market Signaling Scheme for Incentive and Trust Management in Vehicular Ad Hoc Networks

    Get PDF
    International audienceIn collaborative wireless networks with a low infrastructure, the presence of misbehaving nodes can have a negative impact on network performance. In particular, we are interested in dealing with this nasty presence in road safety applications, based on vehicular ad hoc networks (VANETs). In this work, we consider as harmful the presence of malicious nodes, which spread false and forged data; and selfish nodes, which cooperate only for their own benefit. To deal with this, we propose a Distributed Trust Model (DTM2), adapted from the job market signaling model. DTM2 is based on allocating credits to nodes and securely managing these credits. To motivate selfish nodes to cooperate more, our solution establishes the cost of reception to access data, forcing them to earn credits. Moreover, to detect and exclude malicious nodes, DTM2 requires the cost of sending, using signaling values inspired form economics and based on the node's behavior, so that the more a node is malicious, the higher its sending cost, thus limiting their participation in the network. Similarly, rewards are given to nodes whose sent messages are considered as truthful, and that paid a sending cost considered as correct. The latter is a guarantee for the receivers about the truthfulness of the message since, in case of message refusal, the source node is not rewarded despite its payment. We validated DTM2 via a theoretical study using Markov chains; and with a set of simulations, in both urban and highway scenarios. Both theoretical and simulation results show that DTM2 excludes from the network 100% of malicious nodes, without causing any false positive detection. Moreover, our solution guarantees a good ratio of reception even in the presence of selfish nodes

    Survey on QoE/QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are a new emerging technology which has attracted enormous interest over the last few years. It enables vehicles to communicate with each other and with roadside infrastructures for many applications. One of the promising applications is multimedia services for traffic safety or infotainment. The video service requires a good quality to satisfy the end-user known as the Quality of Experience (QoE). Several models have been suggested in the literature to measure or predict this metric. In this paper, we present an overview of interesting researches, which propose QoE models for video streaming over VANETs. The limits and deficiencies of these models are identified, which shed light on the challenges and real problems to overcome in the future

    Analysis of cyber risk and associated concentration of research (ACR)² in the security of vehicular edge clouds

    Get PDF
    Intelligent Transportation Systems (ITS) is a rapidly growing research space with many issues and challenges. One of the major concerns is to successfully integrate connected technologies, such as cloud infrastructure and edge cloud, into ITS. Security has been identified as one of the greatest challenges for the ITS, and security measures require consideration from design to implementation. This work focuses on providing an analysis of cyber risk and associated concentration of research (ACR2). The introduction of ACR2 approach can be used to consider research challenges in VEC and open up further investigation into those threats that are important but under-researched. That is, the approach can identify very high or high risk areas that have a low research concentration. In this way, this research can lay the foundations for the development of further work in securing the future of ITS

    A Hybrid Model to Extend Vehicular Intercommunication V2V through D2D Architecture

    Full text link
    In the recent years, many solutions for Vehicle to Vehicle (V2V) communication were proposed to overcome failure problems (also known as dead ends). This paper proposes a novel framework for V2V failure recovery using Device-to-Device (D2D) communications. Based on the unified Intelligent Transportation Systems (ITS) architecture, LTE-based D2D mechanisms can improve V2V dead ends failure recovery delays. This new paradigm of hybrid V2V-D2D communications overcomes the limitations of traditional V2V routing techniques. According to NS2 simulation results, the proposed hybrid model decreases the end to end delay (E2E) of messages delivery. A complete comparison of different D2D use cases (best & worst scenarios) is presented to show the enhancements brought by our solution compared to traditional V2V techniques.Comment: 6 page
    corecore